Acta Informatica manuscript No.
(will be inserted by the editor)

A Tool for Deciding the Satisfiability of Continuous-time
Metric Temporal Logic

Marcello M. Bersani - Matteo Rossi -
Pierluigi San Pietro

Received: date / Revised version: date

Abstract Constraint LTL over clocks is a variant of CLTL, an extension of linear-
time temporal logic allowing atomic assertions in a concrete constraint system.
Satisfiability of CLTL over clocks is here shown to be decidable by means of a re-
duction to a decidable SMT (Satisfiability Modulo Theories) problem. The result
is a complete Bounded Satisfiability Checking procedure, which has been imple-
mented by using standard SMT solvers. The importance of this technique derives
from the possibility of translating various continuous-time metric temporal logics,
such as MITL and QTL, into CLTL over clocks itself. Although standard decision
procedures of these logics do exist, they have never been realized in practice. Suit-
able translations into CLTL over clocks have instead allowed us the development
of the first prototype tool for deciding MITL and QTL. The paper also reports
preliminary, but encouraging, experiments on some significant examples of MITL
and QTL formulae.

1 Introduction

Constraint Linear Temporal Logic [19] (CLTL, for short) is an extension of linear-
time temporal logic allowing atomic assertions in a concrete constraint system.
By carefully choosing the constraint system, CLTL may be decidable, as well as
expressive and well-suited to define infinite-state systems and their properties.

In this paper, we define a variant of CLTL, called CLTL over clocks (CLTLoc,
for short), where arithmetic variables occurring in atomic assertions behave as
clocks. At every (discrete) position in time, a clock measures the real time elapsed
since the last position when the clock itself was “reset” (i.e., the variable was
equal to 0); clocks can also be compared against an integer constant. By defini-
tion, in CLTLoc each position i € N is associated with a real value (a “delay”)
corresponding to the “time elapsing” between i and the next position i + 1. This

This research was supported by the Programme IDEAS-ERC, Project 227977-SMScom and
by PRIN Project 2010LYA9RH.

Politecnico di Milano — DEIB, Piazza Leonardo da Vinci, 32 — 20133 Milano, Italy

2 Marcello M. Bersani et al.

allows mixing of discrete events with continuous-time, a typical situation arising
in many computer-controlled applications.

Satisfiability of CLTLoc is here shown to be decidable by means of a reduction
to a decidable Satisfiability Modulo Theories (SMT, for short) problem, resulting in
a complete Bounded Satisfiability Checking procedure. Although other automata-
based decision procedures are also suitable to show decidability of CLTLoc (e.g.,
[19]), the novelty of our reduction is that it can easily be implemented by using
standard SMT solvers, such as [2§8]. In fact, the paper also reports on a new,
publicly available, software tool to verify CLTLoc, allowing the application of
CLTLoc to the specification and the verification of timed systems. However, a
further advantage of our approach is that various continuous-time metric temporal
logics, such as Metric Interval Temporal Logic (MITL, for short) [4] and Quantified
Temporal Logic (QTL, for short) [24], may be translated into CLTLoc itself. These
translations have allowed us the development of the first available tool for deciding
both MITL and QTL. In this paper we report encouraging experiments on some
significant verification examples, such as the timed lamp and its properties, in
CLTLoc, MITL and QTL. Further evidence of the generality and effectiveness of
our approach is provided by our translation of the extension of QTL with so-called
Pnueli and counting modalities [34] into CLTLoc, thus providing its first concrete
decision procedure.

In general, the existing level of support for verification of continuous-time tem-
poral logics is not as well developed as for discrete-time models. Uppaal [7] is the
de-facto standard tool for verification of timed automata, but it does not support
continuous-time temporal logics: not only satisfiability checking is not available in
Uppaal, but even the formalization of system properties in temporal logic is not
allowed, aside from rather simple invariants and reachability properties. Satisfi-
ability Modulo Theories is a promising but well-consolidated field, supported by
efficient solvers that are able to decide problems of many disciplines. In particular,
decidable SMT problems have been already considered in the recent past, for in-
stance to solve reachability [30] and the bounded version of language inclusion [6]
for timed automata. The idea is to give a direct representation of bounded runs
of timed automata through an SMT formula, capturing a bounded unrolling of
the transition relation. Similarly, also Bounded Model-Checking (BMC, for short)
of Linear Temporal Logic on timed automata [5] can be tackled by reducing the
problem to an instance of an SMT problem, by using a technique extending the
traditional BMC procedure for LTL over finite automata [I8], but by restricting
the set of valid runs to those that are periodic in the values of the clocks. Finite
or periodic runs of timed automata can then be encoded in SMT formulae with
explicit arithmetic. Nonetheless, also this approach has so far failed to produce a
concrete decision procedure for logics such as MITL and QTL. This difficulty is
caused by the gap of translating formulae into timed automata, a step which is
avoided by our approach. Standard decision procedures of MITL and QTL logics
were already defined some time ago (e.g., [427[35]), typically based on timed au-
tomata [3], but, to the best of our knowledge, they have never been realized in
practice. This may suggest that these procedures are not easily implementable.

Temporal Logics such as Timed Propositional Temporal Logic (TPTL, for
short), Metric Temporal Logic (MTL, for short), MITL and QTL, and opera-
tional models such as timed automata as well, may be interpreted over dense
time domains in two ways: the “pointwise” semantics and the “continuous (or

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 3

“interval-based”) semantics [17]. In the pointwise semantics, an atomic formula is
interpreted as an instantaneous event with a timestamp. A behavior (or run) of
the system is described by a timed word, which is a sequence (ao,to)(a1,t1)...,
where each a; is a symbol of the alphabet and each ¢; is a real-valued timestamp.
A timed word must be strictly increasing (¢; < ¢;+1) and must verify the non-Zeno
condition, i.e., it is finite or it diverges to infinity. The pointwise semantics is very
natural when considering specifications of timed automata, with atomic formulae
interpreted as state transitions. In the continuous semantics, atomic formulae are
instead interpreted as state predicates, i.e., continuous flows or signals. A signal (also
called a timed state sequence) is a mapping associating values in Ry with states.
A finite variability condition (strictly related to the non-Zeno condition) is always
assumed. There are various results of expressiveness and decidability concerning
MTL over the two semantics. First, it is obvious that a MTL (and MITL as well)
formula interpreted over the pointwise semantics can always be translated into an
equivalent MTL (or MITL) formula in the continuous semantics. However, other
results are less immediate. For instance, MTL is undecidable in the continuous
semantics [4] (unless time-singular intervals are ruled out, thus obtaining the logic
MITL), but it is decidable, although not primitive recursive, in the pointwise ver-
sion over finite models [32]-paving the way to showing that MTL in the continuous
semantics is strictly more expressive than MTL in the pointwise semantics [20[17]
(over both finite and infinite models). No similar expressiveness result is known
for MITL.

CLTLoc is naturally defined over timed words and it is as expressive as timed
automata [I4], i.e., it can define the same class of languages (the timed w-regular).
In this paper, we prove that CLTLoc is decidable, with an SMT-based procedure
which has been implemented. We applied the resulting tool to a few examples of
CLTLoc specifications, showing that their verification is feasible.

However, CLTLoc can also be used as a tool to interpret and verify other metric
temporal logics. For instance, in [I5] we provide a complete translation of MITL
formulae over the continuous semantics into equisatisfiable CLTLoc formulae, thus
allowing their verification with our CLTLoc tool. We have implemented this trans-
lation and we report on various experimental results on MITL specifications.

We also consider the case of MITL over the pointwise semantics, first by study-
ing its expressiveness compared to CLTLoc. In this case, MITL is less expressive
than CLTLoc, but we prove that CLTLoc is equally expressive with projection-
closed MITL (pMITL, for short), an extension of MITL allowing existential propo-
sitional quantifiers [23]. Clearly, MITL formulae on timed words may be verified
by a simple conversion into equivalent MITL formulae on signals, which can then
be translated into CLTLoc. However, the translation from pMITL to CLTLoc, de-
fined in the equivalence proof, is much more compact than the one defined for the
continuous case, since in general signals may be more complex than timed words.
Therefore, it may be more efficient to apply the new translation to convert MITL
pointwise formulae directly into CLTLoc.

The paper is organized as follows. The first part is devoted to the main defini-
tions and to the proofs of decidability of CLTLoc and of its practical implemen-
tation. Sect. [2| defines CLTLoc, and illustrates it by means of a running example
(a timed lamp), while Sect. [3| proves that CLTLoc is decidable; Sect. [4] outlines
the implemented SMT-based decision procedure of CLTloc. The remainder of the
paper is devoted to illustrate the relations between MITL and CLTLoc, both in

4 Marcello M. Bersani et al.

theory and in practice. Sect. [5] briefly recalls the definition of MITL and some of
its variants, both in the pointwise and in the continuous cases; Sect. |§| shows that
pMITL and CLTLoc are equally expressive over the pointwise semantics. Sect. [7]
recalls the general idea of [12] behind the translation of MITL over the continu-
ous semantics into CLTLoc, while Sect. [§] illustrates the tool for the verification
of MITL, showing also experimental results for both CLTLoc and MITL. Sect. [9]
concludes.

2 Constraint LTL over clocks

Constraint LTL (CLTL [I9/10]) is an extension of LTL allowing atomic formulae
over a constraint system D = (D, R), where D is a specific domain of interpretation
for a finite set of variables V' and for constants, and R is a finite family of relations
on D (of various arities). CLTLoc is a special case of CLTL, where the domain
D is Ry (the set of nonnegative reals), the set R of relations is {<,=} and the
variables in V' are interpreted as clocks.

Let AP be a finite set of atomic propositions. A temporal term « is a constant
ceNor aclock z € V. A constraint is a formula of the form a ~ 8, where ~ is in
{<,=} and «, 8 are temporal terms. Well-formed CLTLoc formulae are defined as
follows:

p:=pla~alpng|—¢[X(¢)[Y(¢)]¢Us| @S¢

where p € AP, symbol ~ stands for < or =, and « is a temporal term. X, Y,
U and S are the usual “next”, “previous”, “until” and “since” operators of LTL,
with the same meaning. Boolean operators v, T, L, = can be introduced as usual;
the “globally” G, “eventually” F, “release” R, and “trigger” T operators may be
defined as in LTL, i.e., oR¥ is —(—¢pU—), ¢Ty is —=(—¢S—v), G¢ is LR¢ and
Fé is TU¢.

The semantics of CLTLoc is defined with respect to the constraint system
(R, <, =) and the strict linear order (N, <) representing positions in time. The values
of clocks are defined by a mapping o : N x V' — R, assigning, for every position
1 € N, a real value o(i,z) to each clock z € V. Intuitively, a clock z measures the
time elapsed since the last time when z = 0, i.e., the last “reset” of z. To ensure
that time progresses at the same rate for every clock, o must satisfy the following
condition: for every position i € N, there exists a “time delay” §; > 0 such that for
every clock z € V:

oli+1,3) = {a(i,x) +0;, time progress
0 reset x.

In this case, o is called a clock assignment.

An interpretation of CLTLoc is a pair (, o), where o is a clock assignment and
7 : N — ©(AP) is a mapping associating a set of propositions with each position
in N. The semantics of CLTLoc at a position ¢ € N over an interpretation (7, o) is
defined in Table |1} where we assume that o(i,c) = ¢ whenever ¢ is a constant.

A formula ¢ € CLTLoc is satisfiable if there exists an interpretation (m, o) such
that (7,0),0 = ¢. In this case, we say that (m,0) is a model of ¢ and we write
simply (7, 0) = ¢.

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 5

(m,0),il=p<pemn(i) forpe AP
(m,0),i = a1 ~az < (0(i,a1) ~ o(i,a2))
(1,00, |~ & (m,0),1 e 6
(myo),iEd A< (m,0),i=dand(mo),i =9
(my0),i b= X (9) & (m,0),i +1 ¢
(m,0),i =Y (¢) < (mo),i—1EFE¢Ai>0
(myo),iEUp e 3Ij=i: (mo),jEY A(mo)nE¢Vi<n<j
(my0),iE=¢SY < 3I0<j<i: (mo),jE=Y A(mo),nE¢Vji<n<i

Table 1 Semantics of CLTLoc.

By definition, the initial value of a clock, ¢(0,z), may be any non-negative
value. If needed, one or more of the clocks may be initialized to 0 just by adding a
constraint of the form = = 0. It is often convenient to assume that at every position
there is at least one clock which is not reset. To ensure that this is the case, just
add a new clock Now, which is never reset, except possibly at position 0. Hence,
the time delay d; is uniquely defined in each position ¢ as o (i + 1, Now) — o (i, Now).

Before going further, to motivate our approach, we provide an example of a
CLTLoc formula representing a simple yet realistic timed system.

Example 1

We consider the LTL specification of a timed lamp and its properties (studied in
Sect. [8) from [33]. The lamp is controlled by two buttons, labeled ON and OFF
respectively, which cannot be pressed simultaneously. The lamp itself can be either
on or off. When ON is pressed the lamp is immediately turned on, regardless of
its current state; similarly, if OFF is pushed then the lamp is immediately turned
off, also regardless of its current state. After ON is pressed, the lamp will not stay
on forever, but, if no more buttons are pressed, it will automatically turn off with
a delay A, a positive real constant. By pressing the ON button before the timeout
expiration then the timeout is extended by a new delay A.

Our CLTLoc formula makes use of atomic propositions on, off and [represent-
ing, respectively, events “push button ON” and “push button OFF” and the state
“light is on”. Clocks may be used to measure the exact time elapsed since the
last on; clearly some clock must be “reset” (i.e., set to 0, in analogy to Timed
Automata) whenever ON is pressed; when a clock is equal to A then the timeout
expires. To simplify the introduction of clocks, we first define a few shorthands
called rst-c, test.—a and testg<.<a. They have the intuitive meaning (which will
be formalized after the main specification) that they are true if, and only if, a
clock c is reset or, respectively, ¢ = A, or 0 < ¢ < A. The specification of the lamp,

still lacking the precise clock specification, is defined by formula G (/\?=0(goi)).

p1 = —(on A off)

p2 1= on < rst-c

p3 1= Y (I) = testy<e<n

w4 = turnoff & Y(I) A (off v teste=n)

p5 1= l < —turnoff S on.

6 Marcello M. Bersani et al.

Formula ¢ ensures mutual exclusion; o9 states that the timeout must be (re)started
whenever button ON is pressed; 3 constrains the time elapsed since the previous

instant if the light was on at that moment (i.e., not more than A); 4 defines (for

readability) an event turnoff, capturing the two cases when the lamp (supposed

to be ON in the previous instant) must be turned off at the current instant (i.e.,

OFF being pressed or the timeout expiring); finally, p5 gives the specification of
the light, as being on if, and only if, there was in the past an on event not followed

by a turnoff. Initialization is implicit in the specification (at instant 0, the light is

off).

To complete the specification, we must formalize also the behavior of clocks. In
CLTLoc, “resetting a clock” ¢, e.g., following an on event, is as simple as stating
that on = ¢ = 0; testing a clock ¢ against a constant A and causing say, a turnoff
is a simple as stating that ¢ = A = turnoff. Unfortunately, the same clock cannot
be tested and reset at the same time. When this is required, it is possible to
introduce two clocks cp and c¢;, rather than just one clock, so that they can be
reset alternatively: only one of the two clocks is reset and a new reset of the
same clock will eventually occur only after the occurrence of a reset of the other
clock. The behavior of this clock pair is described by the axiom G (¢e A 7), where
formulae s, p7 are:

ve:= N\ (Ci =0=—-X ((cmz >0Ug¢ = 0)))
i€{0,1}

pr:= co=0= —(c1 =0)

and “3 stands for the modulo 2 operator (i.e., 13 = 1, 22 = 0). Finally, the above
clock shorthands rst-c, test.— o and testy<.<a are defined as follows:

rst-c < cg=0ver =0
testpcecn < \/z‘e{o,1} 0<c¢g <A

testeen < Viego1y (i =4 A (Cﬁ2 >Av G, = 0)) .

3 Decidability and Complexity of CLTLoc

In this section, we show that CLTLoc is decidable in PSPACE, by reducing its
satisfiability problem to checking the emptiness of a generalized Biichi automaton:
for every CLTLoc formula ¢, one can build a generalized Biichi automaton AZ;
which has an accepting run if, and only if, ¢ is satisfiable.

Automaton AZf accepts words including both sequences of symbolic valua-
tions [I9)8] and constraints representing the clock regions induced by ¢. AZ; is
built using a slight variation of the construction of [I9.[8], where instead variables
are not restricted to behave as clocks: it is defined as the product of the Biichi
automaton A, recognizing the symbolic models of ¢ [T9] with the automaton AR,
recognizing the language of successive regions of R.

Preliminaries

We recall some fundamental definitions (see e.g. [§] and [19] for further details).

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 7

A generalized Biichi automaton A is 5-tuple (X, S, I,n, F), where X' is the input
alphabet, S is the state space, I < S is the set of initial states, FF € ©(S5) is the
accepting condition (namely, a set of sets of states), and n € S x X x S is the
transition relation. Let w = wow; ..., with each w; € X, be an w-word. A run of
A with label w is an infinite sequence sgsj ... of states in S such that: sg € I and,
for all ¢ = 0, (s;,w;, s;i+1) € n. The run is accepting if it visits at least one state of
every set of the accepting condition infinitely often. A word w is recognized by A
if, and only if, there exists an accepting run with label w.

Given a set of clocks V, a valuation is a mapping v : V — R, i.e., v associates
a value in R4 with each clock of V' (a clock assignment as introduced in Section
is a sequence of valuations). For convenience, valuations can be extended to take
into account constants in N so that v(c) = ¢ for all ¢ € N. A constraint a ~ 8 is
satisfied by a valuation v, written v =g a ~ 3, if v(a) ~ v(B). Let ¢ be a CLTLoc
formula and z,y € V. If ¢(x) is the maximum constant in ¢ clock z is compared
to, then

ac(z):={x=0,0<z}u{r<ec c<z x=c|Yce NT c<c(z)}
is the set of all clock constraints of z and
ac(z,y) :={z+c~y, y~z+c, y+d~uz, x ~y+d|Ve,de N c<c(y),d < c(z)},
where ~€ {<, =}, is the set of all clock constraints comparing = and y. Finally, set:

ac(@) 1= U ac(z) U ac(z,y)

z,y€ V,z#y

is the set of all clock constraints induced by ¢.

Regions

We shortly recall the definition of regions from [3], with a generalization to deal
with constraints of the form x ~ y. The clock space is the set]Rl_:/l. Every valuation
v:V — R4 can be considered an element of the clock space. For every real z, let
|z], {z} be the floor and the fractional part of z, respectively. Let Ry4 be the finite
partition induced on]RLV‘ by the following equivalence relation. We say that two
valuations v,v’ : V — R are Alur-Dill equivalent if

1. for all z € V, v(x) > c(z) iff v'(z) > c(z);
2. for all z € V, if v(x) < c(x) then |v(z)] = |v'(x)| and, moreover, {v(x)} = 0 iff

{v/(2)} = 0;
3. for all z,y € V, if v(z) < c(z) A v(y) < c(y) then {v(z)} < {v(y)} iff {v'(z)} <
{v' ()}

4. for all z,y e V, v(z) < v(y) iff v'(z) </ (y).

The elements of R, are called the clock regions of ¢ (regions for short). By definition
of Ry, given a region R, if v € R, x € ac(¢) and v [=g X, then for every v' € R
also v’ satisfies x, i.e., v’ =g x. Hence, a region R may be described as the set of
constraints x € ac(¢) such that v =g x, for every v € R; thus, with slight abuse of
notation we also write v =g R; in addition, if € is a set of constraints, we denote
with £ U R the union of ¢ and x.

8 Marcello M. Bersani et al.

A region R’ € Ry is called the time-successor of region R € R, if for every v e R
there exists a positive t € Ry and a valuation v’ € R’ such that for every clock = € V
either v/(z) = 0 or v'(z) = v(x) +t. Notice that the definition of time-successor also
considers that some clocks can be reset in R'.

To enforce the time-successor relation, let Ag, = (Ry,0) be the finite au-
tomaton where Ry is the set of states and § € Ry x Ry is the transition relation
containing all pairs (R, R') such that R’ € Ry is a time-successor of R € R,. Since
in CLTLoc clocks do not necessarily start from zero, each region is considered as
potentially initial.

Symbolic valuations and symbolic models

Let const(¢) be the set of constants occurring in ¢, and let C be a set of constraints
over VU const(¢). A set C is satisfied by a valuation v, written v =g C, if v =g &, for
all £ € C. Given a valuation v, let Cy be the set of all constraints over V' u const(¢)
such that v =g Cy.

Definition 1 A symbolic valuation sv for ¢ is a set of constraints over V U const(¢)
for which there is a valuation v such that sv = C,. SV (¢) denotes the set of
symbolic valuations associated with ¢.

For example, consider a formula ¢ over two clocks = and y with const(¢) =
{0,1}. An example of a symbolic valuation for ¢ is sv = {z < y,z < 1,0 < y,1 <
y,z = 0}. In fact, if v is a valuation such that v(z) = 0 and v(y) > 1 then sv is
satisfied by v, and there is no other constraint over V u const(¢) which is both
satisfied by v and not included in sv.

The satisfiability of a set of constraints, for the constraint system (R, <, =)
considered in this work, is decidable [I9]. Given a symbolic valuation sv and a
constraint £ over V U const(¢), we write sv|== ¢ if for every valuation v’ such
that v/ =g sv we have v/ =g €. The symbolic satisfaction relation F-— can also be
extended to infinite sequences v € SV (¢)“ of symbolic valuations; it is defined as
k=, but for the case of constraints. If £ is a constraint then:

vifE= € i) F= ¢

Then, given a CLTLoc formula ¢, we say that the sequence v is a symbolic model
for ¢ when v,0 == ¢. Notice that relation == is defined for CLTLoc formulae
that do not include propositional letters (i.e., for which AP = (¥); this is without
loss of generality, as it will be shown below. It is natural to extend relation =g to
sequences of valuations, i.e., clock assignments: a clock assignment o : NxV — R4
satisfies a sequence of symbolic valuations v if, for each 4, the valuation at position
1 satisfies v(7), which we write as o, =g v(7). Then, we say that a symbolic model

v admits an arithmetical model if there exists a clock assignment o that satisfies v.

Definition and properties of Ag

The closure of ¢, denoted cl(¢), is the smallest set containing all subformulae of ¢
and closed under negation. An atom I" € cl(¢) is a maximally consistent set, i.e.,
such that for each subformula v and ¢ of ¢':

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 9

—vYel'e —Y¢l,
—Yalel Y, Cel,
—yYviel sypelorlel.

Let Q be the set of all the atoms I'. Automaton Ay is a generalized Biichi
automaton, defined in [19], of the form (SV(¢),Q x SV (¢),I,n, F), for suitable
I,n,F. Automaton Ay, is a modified version of the Vardi-Wolper automaton for
LTL formulae, recognizing models of ¢, i.e., it accepts infinite sequences of symbolic
valuations that admit an arithmetical model. The following lemma regarding CLTL
is a direct consequence of Lemmata 4.3 and 5.3 of [19] and is key to prove the
decidability of the satisfiability of CLTLoc formulae.

Lemma 1 ([19]) Let ¢ be a CLTL formula over the constraint system (R, <,=) and
let ve SV(¢)”. Then, v is recognized by Ag if, and only if, v & ¢ and v admits an
arithmetical model.

Thanks to the following result, we can apply Lemmal|T]also to formulae that in-
clude propositional letters, which can be implicitly transformed into equisatisfiable
formulae that do not include propositional letters.

Lemma 2 FEvery CLTLoc formula ¢ with set of propositional letters AP can be trans-
formed into another CLTLoc formula ¢’ that only includes clocks (i.e., for which
AP’ = &), and such that ¢ is satisfiable if, and only if, ¢’ is satisfiable.

Proof Formula ¢’ is simply obtained by replacing, in ¢, each propositional letter p
with constraint ¢, = 0 on a fresh clock ¢p; that is, ¢y € Vap such that VapnV = &,
and the set of clocks of ¢’ is V.UV p. It is easy to see by induction that (7, o) = ¢
if, and only if, (n’,0") = ¢/, where 7’ : N — &, ¢/ : N x (V u Vyp) — Ry, for all
x € V we have o'(i,z) = o(i,z) and for all ¢, € V4p we have ¢'(i,cp) = 0 if, and
only if, pe n(i). o

Now, we define AZ; as a modification of A, to be consistent with the regions in
Rg: Ag is the generalized Biichi automaton (SV(¢) xRy, Qx SV (¢) x Ry, I', 0, F x
Rg), defined as follows. Relation 7’ is defined as:

(I, sv, R), (sv, R), (I", sv', R")) € o if, and only if,

1. (I, sv),sv, (I'", sv")) € n and
2. (R,R') e and
3. sv’ U R is satisfiable.

Set I' = I x Ry consists of initial states (atoms) of A, that are consistent with
the regions in Ry, i.e., if (I, sv) € I and R € Ry, then sv U R is satisfiable.
Satisfiability of quantifier-free formulae over (R, <, =) is well-known to be de-
cidable [36122].
We have the following auxiliary result.

Lemma 3 Let ¢ be a CLTLoc formula, with clocks V, regions Ry, and symbolic val-
uations SV (¢). Then:

1. Ifv is a valuation for the clocks of V', then there is exactly one region R € Ry such
that v =g R, and ezxactly one symbolic valuation sv € SV (¢) such that v =g sv.

2. If Re Ry, then there is exactly one symbolic valuation sv € SV (¢) such that, for
all valuations v such that v =g R, it holds that v =g sv.

10 Marcello M. Bersani et al.

3. If Re Ry, sv e SV(¢) and sv U R is satisfiable, for each valuation v such that
v =g R it also holds that v =g sv.

Proof Property 1 derives from Lemma 3 of [§], and from the fact that the set of
clock regions is a partition of the clock space, and a valuation assigns a value to
each clock inside the clock space.

To show that property 2 holds, let us consider a region R € Ry, and two
valuations v1,v2 such that v; =g R and v2 =g R. By property 1, there is exactly
one svy € SV (¢) such that v1 =g sv1, and one sva € SV (¢) such that va =g sva2. We
need to show that sv; = sva. First of all, recall that region R corresponds to the set
of constraints x € ac(¢) such that v =g ¥, for every v € R. By definition, symbolic
valuation sv; contains all comparisons between clocks (e.g., = < y), and between
clocks and constants (e.g., z < 1) that are satisfied by v1, and similarly for svs.
By definition of ac(¢), x contains, in addition to comparisons between clocks and
between clocks and constants, diagonal constraints of the kind z+c¢ ~ y and similar
ones. Since v1 =g x and vz =g x, both valuations satisfy the same constrains on
V U const(¢), that is, Cy, = Cy,, hence svi = svs.

Property 3 easily descends from properties 1 and 2. o

Lemma 4 Let ¢ be a CLTLoc formula. Then, there is (w,0) such that (w,0) = ¢ if,
and only if, .Az; has an accepting run.

Proof To prove the lemma, we first show that if (7, 0) |= ¢ then there is an accept-
ing run of automaton AZ;. From property 1 of Lemma for every position ¢ there
is one, and only one, region R; € Ry such that 0,7 =g R;. Also, from property 2 of
the same lemma, we have 0,4 =g sv; and 0,4 =g sv; U R;. Therefore, model (7, o)
induces a sequence v = (svgU Ro)(sv1 UR1). ... By Lemmall] sequence svgsvy ...
is recognized by A4 on which AZ; is based, so there is a run (I, svo)({1, sv1),... of
Ay that is accepting. We need to show that for each R;, R;;1 in v® it holds that
(Ri, Ri+1) € 6. In fact, for two adjacent positions 4, ¢ + 1 there exists §; > 0 such
that either z(i + 1) = z(¢) + §; or (i + 1) = 0. Therefore, R;;; is a time successor
of R; and the sequence RoR; ... is a sequence of successive regions recognized by
the automaton Ag,. Finally, by construction, run (I, svo, Ro)(I1, sv1,R1) ... is
recognized by AZ;.

We now show that if automaton AZ; has an accepting run p then ¢ is satisfiable.
By LemmalT} the sequence v = svgsv1 ... of symbolic valuations occurring in p is a
symbolic model of ¢ (v = ¢) when this is interpreted as a pure CLTL((R, <, =))
formula. Then, to be able to conclude that there is (, o) such that (7, 0) = ¢ we
need to show that there exists an arithmetical model for sequence (svo U Rp)(sv1 U
R1),... induced by p. The sequence of regions RoRiR2 ... is such that, for each
1 = 0, (R;, Ri+1) € . In addition, svg U Ro is satisfiable, so there is a valuation
vo such that vg =g svg U Ro. For each z € V we define ¢(0,z) = vo(z). Since
(Ro, R1) € §, there exist §p and a valuation v; such that v; =g R1 and, for allz € V,
either vi(x) = 0, or vi(z) = vo(z) + do. We define, for each z € V, o(1,z) = vi(z).
The process can be iterated ad infinitum, thus building a clock assignment o that
satisfies sequence RoRy,

By Lemma [3] property 3, since by hypothesis sv; U R; is satisfiable, it holds
that o,¢ =g sv; and also that o,i =g sv; U R;; hence we obtain the desired result.
(]

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 11

As mentioned in [3], an infinite sequence of time-successive regions is not guar-
anteed to capture the notion of time progression — for example, if from position ¢
on we loop ad infinitum in a region such that 1 < x < 2, time never advances more
than 1 time unit from the timestamp of i; hence, time progress is not guaranteed
by the construction of AZ;. However, this requirement is easily achieved by the
CLTLoc formula GF (z = 0) v FG (z > c¢(z)) (where c(z) is the biggest constant
clock z is compared to), for all clocks = € V. The same condition is considered in
[3] to guarantee time progression for timed automata.

Finally, the main result of this section is a direct consequence of Lemma [4]

Theorem 1 Satisfiability of CLTLoc is PSPACE-complete.

Proof Given a CLTLoc formula ¢, by Lemma E[, we can build a generalized Biichi
automaton .AZ;, recognizing symbolic models of ¢ and which has an accepting run
if, and only if, ¢ is satisfiable. Therefore, satisfiability of ¢ is decidable, since it is
reduced to checking emptiness of AZ;.

Satisfiability is PSPACE-hard, as every LTL formula (whose satisfiability problem
is PSPACE-complete) is also a CLTLoc formula. PSPACE-membership of CLTLoc
can be proved by applying arguments similar to those used in [3] to show that the
transition relation of the automaton to be checked for emptiness is computable in
PSPACE. Consider a CLTLoc formula ¢. Let |¢| be the number of subformulae of
¢, let N be the number of clock variables in ¢, and let K be the biggest constant
against which the clock variables of ¢ are compared. Since the number of clock
regions is O(N!- K™) [3], the number of states of AZ; is 0(21?l. N1. KN). However,
to check the language of A;z for emptiness, we do not need to build the whole
state space, but we can work on-the-fly by considering only a constant number of
vertices at a time. Since the space needed to store a vertex of .Az;, when using a
binary encoding for K, is polynomial in |¢|log(K), the algorithm for checking the
emptiness of AZ; is in PSPACE. o

4 An SMT-based procedure for solving CLTLoc satisfiability.

In this section, we outline a decision procedure for the satisfiability problem of
CLTLoc, by means of an SMT-based technique instead of automata. The technique
relies on encoding CLTLoc formulae into formulae of a decidable fragment of first-
order logic, which can then be solved by off-the-shelf SMT solvers.

This approach is along the lines of previous works [9] and [§], where a complete
procedure, called k-bounded satisfiability, was used to solve CLTL satisfiability by
means of a polynomial reduction (in k and the size of the formula) to an SMT
problem. This reduction has been implemented in the ae?zot plugin of the Zot tool
[2].

To deal with variables that behave like clocks, the method is here extended.

Preliminaries: k-bounded satisfiability for CLTLoc; the logic QF-EUF v LRA

Given a CLTLoc formula ¢ on a set of clocks V' and an integer k£ > 0, we say that
¢ is k-bounded satisfiable if there exists [, 0 < I < k, such that:

12 Marcello M. Bersani et al.

1. there exists an ultimately periodic sequence of symbolic valuations of the form:
v = sv0,...,sv_1(sv ...svp)* which is a symbolic model of ¢, i.e., v, 0= ¢;

2. there exists an ultimately periodic sequence of clock regions of the form:
Ro...R;_1(Ry...Rg)* such that for all 0 < i< k—1, R;41 is a time-successor
of Ri;

3. there exist k + 1 valuations v, v1,...v such that v; =g sv; and v; € R; for all
0 <i <k, i.e., they satisfy svg, ..., sv; and they correspond to the sequence of
regions Rp ... Ry;

4. for all z,y € V, for all 0 < ¢ < k, if both v;41(z) > 0,v;41(y) > 0 then
V41 (z) —vi(x) = vix1(y) — vi(y), i.e., all clocks in V, when not reset, progress
of the same amount from one position to the next.

The idea is that k-bounded satisfiability considers a finite sequence swvy, ..., svy
of symbolic valuations, which is representative of an ultimately periodic symbolic
model for ¢ and which admits a so-called k-bounded arithmetical model vy, ..., v,

which is a prefix of an infinite arithmetical model. Moreover, the sequence of tra-
versed time-successive regions corresponding to the k-bounded arithmetical model
is also ultimately periodic.

A peculiarity of the SMT-based approach when applied to CLTL and to CLTLoc
is that, if the set SV (¢) of symbolic valuations partitions the space D> (with D
the domain of the variables in V' and A the size of a symbolic valuation) then a
sequence of valuations uniquely induces a sequence of symbolic valuations. This
is the case for CLTLoc (and for many interesting constraint systems for CLTL).
By solving the k-bounded satisfiability problem for a formula ¢, we obtain a finite
prefix oy, of some infinite model o that satisfies the formula. Prefix o, is a sequence
of valuations, complying with the constraints in the formula, that induces an ulti-
mately periodic symbolic model for ¢. Hence, unlike automata-based techniques,
our approach does not require the explicit construction of the set SV (¢) because
symbolic valuations of the model are deduced from oy,.

We can avoid building the set of clock regions induced by CLTLoc formulae.
In fact, the bounded model o} can be constrained to go through time successive
regions just by enforcing that clocks behave correctly, i.e., if clocks verify Con-
dition (4) of k-bounded satisfiability, then Condition (2) is also verified for the
corresponding regions.

The results of Section [3]are crucial to see that k-bounded satisfiability is indeed
bounded, correct and complete. In fact, by Lemmald] satisfiability checking of ¢ is
equivalent to emptiness checking of a (generalized) Biichi automaton AZ;. Hence,
the language accepted by AL{ is w-regular, therefore it is nonempty if, and only if,

accepts an ultimately periodic word. A run p o accepting an ultimate
A% t Itimatel iodi d. A p of A¥ ting ltimately
periodic word has the form:

(I'o, svo, Ro) ... (Ij—1,sv1—1, Ri—1)((I3, svg, Ry) ... (I'h, sup, Rp))”

for some h > 0 and some [< h. Run p corresponds to a model of the formula
¢. Therefore, a procedure for solving k-bounded satisfiability may just examine
a finite number of bounded models of length k, and it is guaranteed to find a
solution, if it exists, whenever k& > h. Moreover, since AZ; is finite state, there
exists a well-defined bound hmag on the value of h, determined by the number of
states of A%. Therefore, the procedure is also complete, since it can be started
with a smaller bound %k that can then be increased until k& = hmaz.

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 13

In [8] we show how to solve k-bounded satisfiability, without time progress and
regions, for the case of CLTL over a class of arithmetical constraints that include
the family of clock constraints of CLTLoc. The k-bounded satisfiability problem
is solved through a reduction to the satisfiability problem of the logic composed
of the union of the Quantifier-Free Equality Logic with Uninterpreted Functions
(QF-EUF for short) and of the Quantifier-Free Linear Real Arithmetic (QF-LRA
for short).

QF-EUF is the quantifier-free fragment of first-order logic with built-in equal-
ity. Equality is interpreted as identity, while the logic admits also function symbols
which are not interpreted. Its syntax is defined by using Boolean operators —, A, v,
the equality binary relation =, any number of variables and a set of function sym-
bols of various arities. An example is the formula (z = y) A —(y = 2) A f(z,2) =
f(z,y). QF-LRA has Boolean operators, variables interpreted over real numbers,
integer constants and the predicate symbols +, —, <, =. An example is the formula
(x+y>0) A —(y—1<2z+05). The syntax of the union QF-EUF u LRA of these
two logics is defined as the Boolean combination of formulae in QF-EUF and of
formulae in QF-LRA. While satisfiability for the combination of theories QF-EUF
u LRA is, in the general case, NP-complete, the satisfiability for conjunctions of
literals is polynomial, as proved in [31] and [26], respectively. The combination of
the two theories is decidable [291[3T] and its decision procedure is implemented by
many SMT-solvers.

Reducing k-bounded satisfiability of CLTLoc to satisfiability of QF-EUF v LRA

We now sketch the reduction of k-bounded satisfiability of CLTLoc to QF-EUF
v LRA. Let ¢ be a CLTLoc formula on the set V of clocks. The goal of the
reduction is to define an encoding of ¢ into a QF-EUF u LRA formula. The
encoding explicitly considers positions 0,...,[...,k, k+ 1, enforcing periodicity by
imposing that regions, symbolic valuations and the truh values of all subformulae
of ¢ at position [are the same of those at position k + 1.

To encode every clock x € V' we introduce an arithmetic formula function x :
N — R; e.g., if z is a clock in ¢ then x is the function associated with it. The
intended meaning is that x(¢) is the value v;(z) of = at position 4 of the k-bounded
arithmetical model. To enforce that = behaves like clock z, first we constrain
all clocks to be nonnegative at position 0. Then, time progress of the clocks is
represented by a function § : N — R that forces, from position ¢ to position i + 1,
every clock in ¢ either to progress of §(i) or to be reset at position 7 + 1. Strict
monotonicity of time is enforced by making § be strictly positive.

We indicate with Adv(V) the following QF-EUF formula:

k
A\ z0)=0n A (5@) >0 A A(@@G+1)==2()+86) v ai+1) —0)> .

zeV =0 zeV

Let 0 € ac(¢) u S, where set ac(¢) was defined in Section [3| and S is the set
of constraints occurring in the symbolic valuations in SV (¢). Let (i) denote the
formula 6 where all clocks are replaced by their associated function at position i;
e.g., if 0 is z ~ y then 0(3) is = (i) ~ y(i).

As in [8], we introduce a variable loop representing position I € N in the
definition of k-bounded satisfiability.

14 Marcello M. Bersani et al.

We indicate with Per(ac(¢) u S) the following QF-EUF formula:

/AN 8(k+1) < 6(loop)
Oeac(p)usS

that constrains both regions and symbolic valuations at position loop to repeat
at position k + 1.

Let |¢|r be the bounded representation of ¢ described in [§]. Formula |¢|y
considers the Boolean and temporal operators in ¢ and encodes them using stan-
dard bounded model checking techniques [16] for encoding LTL into Boolean logic,
adapted for the logic QF-EUF u LRA. For instance, if ¢ has a subformula of the
form 11 A 2 then |¢|; includes a formula constraining the predicate 11 A ¥2:

k
/\ (1 A P2 (i) < P1(i) A 2(i)).

Similarly, if ¢ has a subformula of the form ;U2 then |¢|; includes the
following formula, constraining the predicate 11 Ut)a:

k
/\ ($1 Uz (i) < (2(i) v (1(i) A P2 U2(i + 1))))

obtained by the fixed point definition of 11 Uwg, i.e., 2 v (11 A X (101 Ueh2)), over all
positions between 0 and k; in this case, |¢x| must also include a formula imposing
the eventuality of Until, i.e., that i) is satisfied at a position i, loop < i’ < k, if
11 holds at k.

Formula |@|; also enforces that position loop is valid (i.e., 1 < loop < k), and
it imposes the periodicity of positions loop and k + 1 (i.e., every subformula ¢’ of
¢ must have the same truth value at positions & + 1 and {):

/\ (qb/(loop) < @' (k+ 1)) .
¢ in ¢

Finally, we may check the satisfiability of CLTLoc formula ¢ by feeding the
SMT solver with the formula:

|plk A Per(ac(p) u S) A Adv(V). (1)

The procedure that checks the satisfiability of a given CLTLoc formula first
defines the translation |¢|; and then builds the whole Formula . Satisfiability
must be verified by an SMT-solver implementing a procedure for QF-EUFULRA.
The outcome of the solver is either “sat”, if Formula is satisfiable, or “unsat”.
Since the translation preserves equisatisfiability, in the former case the original
CLTLoc formula ¢ is satisfiable and the model for Formula , provided by the
solver, can be used to build the model of the original CLTLoc formula; in the
latter case, formula ¢ is also unsatisfiable.

While PSPACE-complete, in practice k-bounded satisfiability can be solved
efficiently, at least when the value of k is small: checking k-bounded satisfiability
is then equivalent to solve a few SMT problems in NP. Obviously, the upper bound
for k is in general exponential in the size of the formula.

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 15

V/ \\

! ko k+1
5 02 09 23 05 06
x 01 031 12 0 105,
y . 21 32.3 3 32 55 i 6 3
R Ry ! R | Rio41,

! [

Fig. 1 A (portion of a) bounded model satisfying infinitely often sub formula (z < y)U(z = 0).
Dashed rectangles represents clock regions and the dashed arrow determines the periodic part
of the word. Position k + 1 is not part of the model of the formula but it is required to build
correctly the periodicity of the model.

An example of translation

Figure[I]shows a portion of a model satisfying the CLTLoc formula (z < y)U(z = 0)
infinitely often. Only the periodic part is depicted, since the prefix is straightfor-
ward. To make the example non-trivial let us consider ¢(z) = 1 and ¢(y) = 2. Set
ac(¢) of clock constraints induced by the formula (see Section |3) is {z = 0,0 <
ze<lyr=11<z,y=00<y,y<ly=11<yy<2,y=22<y,xz<y,z=
ypy<z,z+1l<yxz+1l=yy<z+ 1} Set SV(¢) is not entirely defined here,
for the sake of space, but the set of constraints defining the symbolic valuations in
SV(@)isS={r=00<z,z<lz=11<2z2,y=00<y,y<ly=11<yy<
2,y=2,2<y,x <y, x=y,y <z}

Formula Adv(V) is straightforward. We show the definition of Per(ac(¢) u 5),
for all € ac(¢), which enforces that regions R; and Ry, (dashed rectangles) are
equal. The similar formulae for 6 € S, to enforce also the periodicity of symbolic
valuations, are omitted.

z(loop) =0 =xz(k+1)=0
z(loop) <lexz(k+1) <1

/\ z(loop) < y(loop) < xz(k + 1) <y(k+1)

z(loop) + 1 < y(loop) = x(k +1)+1 < y(k +1)

In Figure (1] R; = {z(l) < y(1),0 < z(l) < 1,1 < y(I)} and Ry, ; = {z(k+ 1) <
yk+1),0<z(k+1)<1,1 <y(k+1)}.
To deal with the Until operator in the example, |¢|; will include the formula:

k
/\ (#(1) < (z(i) = 0) v (z(i) < y(i) A (i + 1))).
i=0

The eventuality of Until, i.e., a positive occurrence of subformula (z = 0) in the
loop, is guaranteed by the formula, using another variable iy:

¢(k) = loop < iy <k A (x(ip) = 0)

16 Marcello M. Bersani et al.

that imposes subformula (z = 0) to be satisfied at position iy, between [and k,
when ¢(k) holds.

In Figure[1] the value of clock z at position k, xj, = 0, satisfies the eventuality
for ¢ and for all the positions from [to k it holds that xz < y. Hence, ¢ is satisfied
infinitely often in the loop.

5 MITL, MTLq,), QTL, and pMITL

Let T be the set of intervals (i.e., convex sets over R) of the form {(a,b) or of the
form {a, +00), where 0 < a < b are integer constants, (is either (or [, and) is) or
]. Given a finite alphabet AP of atomic propositions, the syntax of (well-formed)
formulae of MITL is defined as:

p:=plonrnd|—¢[oUrsd

where p e AP and I € Z. We often write, as customary, U instead of U0, +0)-

Boolean operators v, T, L, = and the globally G; and eventually F; operators
can be defined by the usual abbreviations, e.g. F;¢ = TU;¢ and Gr¢ = —F;(—¢).

A signal is a function M : Ry — p(AP) which is assumed to be finitely variable,
i.e., such that in every finite interval there is a finite number of changes in the value
of the atomic propositions in AP.

The continuous semantics of MITL is defined in Table [2] for every ¢t € Ry and
for every signal M. Notice that in the definition of the semantics an interval I is
interpreted as the corresponding set of real numbers.

M,tEp<pe M(t) pe AP
Mt —¢p = Mt}
MtE=¢rt e Mtk ¢and Mt =
MitEoUmp eIt >ttt —tel,M,t' e andVit<t' <t M,t" ¢

Table 2 Continuous semantics of MITL.

An MITL formula ¢ is satisfiable in the continuous semantics if there exists a
signal M such that M,0 = ¢. In this case, M is called a continuous model of ¢.

The pointwise semantics is defined by introducing a relation =, defined in
Table [3| for every timed w-word (mw,7) and for every position ¢ € N. An MITL
formula ¢ is satisfiable in the pointwise semantics if there exists a timed w-word
(m,7) such that (w,7),0 = ¢ — also written as (m,7) = ¢. In this case, (7, 7) is
called a pointwise model of ¢.

A useful operator on timed words is “next” Xy, with the intuitive meaning
that X;¢ holds at position 7 if ¢ is true at position ¢ + 1, and the difference of
timestamps 7(¢+ 1) —7(¢) is in 1. Since we adopted the strict version of Uy, X can
be defined as X;¢ = LUj¢. It is also possible to define MITL with the non-strict
version of Uy, but in this case it is necessary to introduce also the (non-metric)
next operator X as primitive.

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 17

(m,7),iEp<e pemn(i)forpe AP
(m,7)i =g (m,7),i ¢
(mym)yiEp A < (m,7),i=¢ and (7, 7),i =
(m,7),i=Urp < 3j>i:7(j)—7(@) eI, (m71),jEvYand Vi<k <j (m,7),kE=¢

Table 3 Pointwise semantics of MITL.

It is sometimes useful to extend MITL with past-time operators, and in partic-
ular with the “since” temporal operator ¢Sy, whose semantics is the dual of the
one of Uy (Py is the past-time dual of F, so P;¢ = TS;¢). MITL with past-time
operators (MITL+Past) is strictly more expressive than MITL [I7] over both the
continuous and pointwise semantics. Nevertheless, our encoding for the continu-
ous semantics, presented in Sect. [7] can also deal with past-time operators, so the
examples of Sect. [§] will also include them.

In general, MITL formulae may give different results when interpreted over the
pointwise semantics and over the continuous semantics. An exhaustive discussion
of these two cases can be found in [20].

MTL(g) and QTL. A syntactic restriction of MITL, called MTLq), is one in
which in intervals I = {a,b) either a = 0 or b = o0. The logic QTL is MTLq o,
in which intervals are only of the form (0,1). Despite their apparent simplicity,
MTLg o) and QTL have the same expressive power of MITL [25].

Projection-closed MITL. Finally, we define an extension of MITL, here called
projection-closed MITL, pMITL for short [23]. This logic, defined on timed words, is
obtained by adding a set pAP of n > 0 propositional variables q, ..., gn, which can
be existentially quantified. The logic is called “projection-closed”, since the actual
extension to MITL is its capacity of adding new propositional variables, which
can then be eliminated (“projected” away) by an external existential quantifica-
tion, hence without extending the alphabet. This allows the definition of timed
w-languages that are not counter-free [23] (e.g., “the number of occurrences of
event a is even”), which cannot be defined in MITL.

The syntax of pMITL is defined by the clause: 3¢ ...gn¢, where pAP =
{q1,...,qn} for some n = 0 and ¢ is a MITL formula on the alphabet AP UpAP. To
follow our definitions of pointwise semantics, the semantics of pMITL may, e.g.,
be defined by the semantic clause:

(m,7),0 =3q1...qn¢ < there exists 7' :N — (AP UpAP) | (x',7),0 = ¢ and
Vje N7'(j) — pAP = (j)

The meaning is that (7,7),0 = 3q1...qn¢ if there exists a mapping 7’ : N —
©(AP U pAP) such that (7/,7),0 = ¢ and, at every position j, n’(j) may differ
from 7(j) only in the presence of a subset of qi,...,qn. We remark that, since
the existential quantification cannot be nested within temporal operators, the
quantified formula is only evaluated in the origin.

Notice that the alphabet of pMITL is only apparently extended with the set
pAP: every proposition in pAP must be existentially quantified, hence the actual

18 Marcello M. Bersani et al.

alphabet is still set AP. This is reflected in the semantics, where in a timed word
(m,7) the mapping still considers alphabet AP, i.e., 7 : N — ©(AP). This point
is important when comparing the expressiveness of pMITL with CLTLoc.

Complezity It is well-known that satisfiability of MITL and pMITL is EXPSPACE-
complete. This is consistent with PSPACE-completeness of CLTLoc, since our
translation from pMITL to CLTLoc of Section [f] is indeed exponential.

6 Comparing CLTLoc and pMITL on the pointwise semantics

In this section we show that, over timed words, CLTLoc and pMITL have the same
expressive power. To this end, we devise two new semantics-preserving transfor-
mations, from pMITL formulae to CLTLoc ones and vice-versa.

Satisfiability of CLTLoc over timed words.

To compare CLTLoc with pMITL we introduce the satisfiability of CLTLoc for-
mulae over timed w-words. A timed w-word over p(AP) is a pair (m,7) where
7 : N — p(AP) and 7 is a monotonic function 7 : N — R such that Vi 7(¢) < 7(i+1)
(strong monotonicity). The value 7(i) is called the timestamp at position i, i € N.
Given a CLTLoc interpretation (m,0), let 7 be such that 7(¢) = o(i, Now). Then,
(m,7) is called the timed w-word associated with (7, c) and it is denoted by [(, 0)].

A relation |= can be defined for every timed w-word (w, 7) as follows. Let ¢ be
a CLTLoc formula and z1,...,xn € V be the clocks occurring in it. Define:

(m,7),0 = 3z1---2n¢ < there exists o | (7,0),0 = ¢ and (7, 7) = [(7,0)].

A CLTLoc formula ¢ is satisfiable over timed w-words if (w,7),0 = 3z1 - zno,
for some (m,7), equivalently written (m,7) = ¢. The definition of satisfiability
over timed w-words requires that all clocks are existentially quantified and the
(quantified) formula is in prenex normal form.

For example, let ¢ = G(p A x = 0), and let (7, 7) be the timed w-word where, at
every position, p occurs and time is increasing by one: 7(i) = {p}, 7(i+1) = 7(i) +1
for every i = 0. It is enough to let o(i,z) = 0 for each position ¢ > 0, with
[(m,0)] = (7, 7), to have (7, o) |= ¢: hence, (7,T) = ¢.

The definition of satisfiability over timed words allows for pathological cases
when the truth of CLTLoc formulae depends only on the values of clocks. For
instance, let ¢ = F(z = 0), and let (7, 7) be a timed w-word where at each position
m is empty: 7(z) = &, for every i = 0. It is enough to let o(0,z) = 0 for a o such
that [(m,0)] = (7, 7), to have (7, o) |= 9: hence, (7, 7) |= %. Let now ¢’ be a clock
assignment such that o/(i,x) > 0 for every i > 0 and [(,0’)] = (7, 7). Therefore,
formula 4 is false on (m,0’), i.e., (7, 7) = —¢. Hence, ¢ and —¢ may be satisfied
on the same timed word (m,7), although on different models (7,0) and (m,0o),
because both (7,7),0 = Jx(¢) and (w,7),0 = Jz(—) hold. This occurs because
the definition of satisfiability over timed w-words requires the (implicit) existential
quantification of all clocks.

We now define the notion of equivalence between pMITL and CLTLoc formu-
lae.

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 19

Definition 2 A pMITL formula 3¢ ...¢gn¢ and a CLTLoc formula ¢ with set of
clocks V are equivalent if, for all timed words (mw,7) on alphabet =, (7, 7),0
3q1 ... qn¢ if, and only if, (7, 7),0 = Jx1 - - Ty Y-

6.1 From pMITL to CLTLoc

To transform pMITL formulae into CLTLoc ones, we first remark that the follow-
ing standard equivalences hold for MITL (and pMITL) formulae, where U is an
abbreviation for U g) — note that U)¢ = Ujg)¢ because we adopted the
strict version of the until operator.

Lemma 5 (From Sec. 9 of [21]) Let (7, 7) be a timed word and 0 < a < b. Then, for
all i = 0,

(1) (7T7T)7i '= ¢U[a,b>¢ had (71-77—)72' '= ¢U¢ A G(O,a) (¢ A ¢U¢) A F[a,b>(w)
(2) (7T7 T)vi ': ¢U(a,b>w < (71—77—)72. ': ¢U1/J A G(O,a] (()b A ¢U1/J) A F(a,b>(w)
(3) (777 T),i '= ¢U(o,b>¢ e (71-77—)77; '= ¢U¢ A F(o,b)@)

When b is 20, equivalences (1), (2) can be simplified, respectively, to ¢U[q)Y = U A
G (0,0)(@ A 9UY) and U (4 oyt = dUY A G(g 41(¢ A 9UY).

Thanks to Lemma [5] we can focus only on temporal operators U and Fj.
We also have the following result, which shows that a formula F, ; () must
stay true for at least b — a time units.

Lemma 6 Consider formula ¥, 1,(1). For any timed word (w,T) there cannot be two

positions i < j such that 7(j) —7(i) < b—a, (7,7),1 & F<a,b>(¢)7 (m,7),5 b~ F<a’b>(w),
and there is i <k < j such that (m,7),k = F, 5, (¥).

Proof Assume that there are three positions ¢ < k < j in (w,7) that violate the
property. Then, there is position ¥’ > k such that 7(k")—7(k) € {a,b) and (7, 7),k" =
+; in addition, for any position £” such that (k") € (a + 7(i),b + 7(i)) or 7(k") €
la+7(5),b+7(4)) it is (m,7), k" £ 1. Since 7(j) —7(i) < b—a, then a+7(j) < b+7(i),
hence for any position k" such that 7(k") € (a + 7(i),b + 7(4)) it is (m,7), k" & ¥.
But a + 7(i) < 7(k') < b+ 7(j), which leads to a contradiction. o

The following corollary descends from Lemma [6] and is exemplified in Figure

Foa® Fpa¥ Foa® Feqb Fea¥
o o ° ° ° ° ° °
“Feqgb “Feqgb “Feqgb
T 3 30001 44 50002 50003 7 7.0004 7.0006
i i

Fig. 2 Example of maximum number of changes in the value of formula F (3 4)% in interval
of length 4.

20 Marcello M. Bersani et al.

Corollary 1 For any timed word (w,T) and a pair of positions i,j such that 7(j) —
7(i) < b, between i (included) and j (excluded) there cannot be more than 2 [%a
positions k such that the value of F g () differs in k and k + 1.

Proof Suppose F, j,(¢) is false at position ¢ and true in i + 1. Then, by Lemma@,
F (4,5 (¢) cannot be false again until a position i’ with timestamp 7(i') = 7(i)+b—a.
Hence, in interval [(i), 7(i) + b—a) formula F, ;(¢) has at most 2 change points,

from false to true at i, and then from true to false at i’ — 1. The proof is concluded

by remarking that in an interval of length b there are at most [%] intervals of

length b —a. o

Let us consider a pMITL formula 3q; ...qn¢ such that AP is the set of its
non-quantified propositional letters, and pAP = {q1 ...qn} is the set of quantified
ones. The corresponding CLTLoc formula ¢’ is built upon the set AP, plus a set
of constraints on freshly introduced clocks Vj,4p that correspond to set pAP; we
use clocks and not propositional letters for set pAP to mimic the semantics of
the existential quantification, as shown in Theorem Moreover, we introduce
additional clocks Vi, which help capture the semantics of the subformulae of ¢
by measuring the passing of time.

The CLTLoc formula ¢’ corresponding to 3q1 ...¢n¢ is made of two parts: a
formula m, which is a syntactic transformation of ¢ that is defined recursively
(i.e., each subformula 0 of ¢ has a corresponding my), and a formula capturing the
semantics of the clocks V. We will inductively show that CLTLoc formula ¢ is
such that, for any subformula 6 of ¢, mg is true in a position of a timed word if,
and only if, 6 is also true there.

We first describe the new clocks in set V¢, and their semantics.

— For each subformula 0, Vi, contains two clocks, zg and zé, which are reset,
in an alternate manner, at every position ¢ in which € holds and it does not
hold in ¢ — 1 or in ¢ + 1. We use these clocks to measure the time distance
between changes in the value of 6. This is needed, as shown below, when 6 is
an argument of a F, ;, formula.

— Vg, includes two clocks zg and zg, which measure the distance between two
consecutive elements of the timed word; that is, at each position they are
alternatively reset. In addition, V¢, contains clock Now described in Section
which is reset in the origin and never again, which measures absolute time.

— If 0 is of the form F, 339, Ve, includes 2d auxiliary clocks, where d = 2[%] +1,

9,89, ... acg_l, ig_l, whose role and behavior is described later on.

The following CLTLoc formulae capture the properties of clocks {zg'}ne(0,1}

and {z§'},e(0.1}-
Formula enforces that the occurrence of a change in the truth of subformula
6 entails the reset of one of zg, z(}, and that clock zg is reset in the origin.

28:0/\XG(m9/\("Xmg\/"Ymg) = 28:0vzé:O). (2)

Let a € N and value @ be (a mod k). The clocks associated with a subformula 6
are alternatively reset. Hence, between any two resets of clock zg there must be a

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 21

reset of clock zé, and vice-versa:

cl A (zg —0= 2" s0aX (((D2 _)R (=) » 0))) .3

i€{0,1}

Formula [4| defines that clock 22 = 0 (resp. z; = 0) is reset in all even (resp. odd)
positions, and that clock Now is reset only in the origin.

2§ = 0AG /\ (z(; =0= Z(H—l)z >0n X(G+, _)> ANow = 0AXG(Now > 0).
:€{0,1}
(4)
We abbreviate by ckg the conjunction of formulae 7, and we call zddef
Formula .

We now define the syntactic transformation mgy. The transformation is induc-
tively defined, with the cases for propositional letters in AP U pAP being the base
ones.

e 0O=peAP: we simply have my = p.
e 0=qepAP: we introduce clock ¢q € V,4p and define mg = (cq = 0).

e 0= —1: in this case it is m_y = —my.
e O=vnayY: wehave: my,y = my A my.
e 0 =7Uqu¥: we need to take into account that the U operator in

pMITL is strict, whereas it is not in CLTLoc, hence we have the following;:
MyU(,00) = X(mVUde) :

In all cases above, we replace each occurrence of m, and m, with the corre-
sponding definition. For example, consider the pMITL formula ¢ = Elq(pU(Opo) (=p A @A
qU(O,oo)_'T) . Then, mg = X(pU(=p A ¢g = 0)) A X((cqg = 0)U—r).

e 0=F(¥t Asmentioned above, to capture the semantics of the F, 5
operator we need to introduce 2d associated auxiliary clocks {zg, 2 },e[0,d—1]-
Then, before defining the transformation mg (apyps WE present the formulae that
formalize the behavior of these auxiliary clocks. For simplicity, we focus on the
case in which {a,b) = (a,b), the other cases being similar.

The 2d clocks {xj, &j }nE 0,d—1] associated with a subformula F (a,b)¥ are reset

in pairs, i.e., a reset of z, is immediately followed by a reset of z 1:0, as defined by

Formula In addition, clock a;d ! is reset in the origin (where no other clock)
is reset).

d—1 d—2
G| N (sh=0=X(a)=0)) | rig™ =0r A ij>0. (5)
j=0 j=0

The order in which auxiliary clocks are reset is defined by Formulae @ and .
More precisely, Formula @ states that no two auxiliary clocks are reset at the
same time. In addition, clock zj) is reset in the origin.

79 =0 A XG /\ /\ 0nz)=0)|. (6)
i=0 j=0,i

22 Marcello M. Bersani et al.

Formula ', instead, states that the resets of clocks azé are circularly ordered.
That is, if mé = 0, then, from the next position, all clocks are strictly greater than
ity

0 until T, = 0 occurs.
G| A |zh=0=X (@) —)R A (=) >0)]]] (7)
i=0 jE[0,d—1], j#i+1q4

Let us now explain when clocks {zy}» (hence also clocks {Z§}.) are reset.

The idea is that a clock xé is reset at a position k£ when in interval [7(k), 7(k+1)]
there is a timestamp ¢t where the conditions for F(, ;)1 to become true or false
would be met. More precisely, this corresponds to the following two — p0551b1y
overlapping — cases for resetting xe in k, which are also exemplified in F1gure (in
the conditions m,, appears instead of v, because m,, is the CLTLoc formula that
holds wherever pMITL formula + does).

(a) There is a timestamp ¢ such that: (i) 7(k) <t < 7(k+1); (ii) there is a position
k' such that (m,7),k" = my and 7(k") — ¢ = b; and (111) there is no position
k" <K' such that (w,7),k" = my and 7(K") —t € (a,b) (e, t+a <7(K") <t+b
or, equivalently, 7(k') — (k") < b — a).

(b) There is a timestamp ¢ such that: (i) 7(k) <t < 7(k+1); (ii) there is a position
k' such that (m,7),k" | my and 7(k') —t = a; and (111) there is no position
k" > k' such that (m,7), k" = my and 7(k")—t € (a,b) (i.e., 7(K")—7(K') < b—a).

my, my my, my my my my, -my,
®----- ° ° ° ® L------ ° ° °
i i+1 i+2 i+3 i+4 i+5 i+6 i+7
T 3.2 3.7 6.2 7.5 8.3 9.6 10.4 15.4
I,e =0 xé) $(9:+1),1 -0 iéy#l)d —0

Fig. 3 Example of reset of clocks ze and x] for 0 = F (2 4)%.

Let us consider Figure [3| Position 4 is such that condition (a) holds. In fact,
for t = 3.5 and k' = i + 3 we have that m,, holds in k', 7(k') —t = 7.6 — 3.5 = 4,
and there is no position k” < k' where m, holds such that 7(k") —t € (2,4).
In other words, there is a timestamp in [7(i),7(i + 1)) in which F (5 4)% would
become true, as informally depicted by the dotted line in Flgure Hence, there
is a clock xe that is reset at position ¢, and the associated z aca is reset at posmon
i+ 1. Since all timestamps ¢’ in (3.5, 8. 3) are such that there is a position i’ such

that 7(i") — ¢ € (2,4), clock ac(]+) is not reset again before position i + 4 (recall
that clocks are reset c1rcularly). Position 7 + 4, however, satisfies condition (b)
above. In fact, if one considers ¢t = 8.4 and k¥’ = i + 6, then my holds in ¥/,
7(k') —t = 10.4 — 84 = 2, and there is no ¥” > k' where m, holds such that
7(k")—t € (2,4). In other words, there is a timestamp in (7(i +4), 7(i +5)] in which
Fo 4 would become false, as represented by the dotted line in Figure

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 23

Clocks zj, and #; are used to establish when F(q,p)¥ is true or false. We now
formalize conditions (a) and (b) by means of CLTLoc formulae.
Formula defines the necessary condition for a clock mje to be reset at a
position k.
G /\ (xé =0 = up@bj v down@a{g) . (8)
j=0

This condition rests on two possibilities, which are captured by abbreviations
up@b), and down@a), defined below, and which correspond, respectively, to condi-
tions (a) and (b)E| _

More precisely, up@by, is the following:

; ; zs=zb—a v Ié}b/\
up@b) = X [z} > 0U | my A A i .
=Ymy Azy Zb—a jgé<b

It states that there is a position k&’ > k& where the CLTLoc formula m,, holds, and
there is no position k” < k" where m,, holds and such that 7(k') — (k") < b—a
or, equivalently, such that 7(k”) belongs to interval (7(k’) — (b—a), 7(k")). This, in
turn, can occur in two cases: either

(i) there is no k” such that 7(k") € (7(k') —(b—a),7(k")), i.e. 7(K") —7(k' —1) = b—a,
which in turn corresponds to one of zg, z(% being = b — qa;
or

(ii) for all ¥” such that 7(k”) € (r(k') — (b—a), 7(k")), my does not hold there, which
corresponds to saying that m,, does not hold in &' —1 (i.e., =Ymy holds in ¥/,
so one of the clocks 23, zi} is reset there), and the last time when m,; switched
from true to false was at least b — a time units before 7(k") — that is, the clock
between z?b and zilp that is not reset in k" is > b — a.

Because of Corollary |1} between 7(k) and 7(k) + b F (4% cannot change value
more than d — 1 times, and we have d clocks xg,Tg_l, SO mg is not reset again
before k'. Hence, the condition that there is a timestamp ¢ € [7(k),7(k + 1)) such
that 7(k') —t = b corresponds to saying that in k" clock z is > b and 2}, is < b.

Let us consider Figure |3| again. Clock xg, is reset in position 4, and position
i + 3 is such that the previous one, i + 2, is closer than b — a = 2 time units, but
my, does not hold there (i.e., =Ym,, holds in i + 3). In addition, clocks zgj and z}b,
by Formula , are reset at positions ¢ + 1 and i + 3, hence the clock that is not
reset in ¢ + 3 has value 3.8 > 2 = b —a, s0 2y = b—a holds in i + 3.

Abbreviation down@ag is the following:

X(zs = b—a) v
—‘Xm,b/\
down@a‘g:X x§>OU My A My A A<r§>a/\>
-X [-my,U| ! . P <
v v0<sz<b—a Tosa
1=0

1 Note that, in the formulae of this section, we write zs ~ c¢ as an abbreviation for
Viefo,13 5 ~ ¢ (similarly for zy ~ c).

24 Marcello M. Bersani et al.

The formula defines that there is a position &' > k where the CLTLoc formula
m,, holds, and there is no position k¥” > k" where my, holds and such that (k") —
7(k") < b—a (i.e, such that (k") belongs to interval (7(k’), 7(k") + (b—a)). Similarly
to the case of up@b, this occurs in two cases: either

(i) there is no k” such that 7(k") € (r(k"), (k") + (b — a)), ie. 7(K' + 1) —7(K) =
b — a, which in turn corresponds to one of zg,z(% being > b—a in ¥’ + 1 (i.e.,
X(zs = b—a) holds in k');
or

(ii) for all ¥” such that 7(k") € (r(k),7(k") + (b—a)), my does not hold there, which
corresponds to saying that m,, does not hold in k" +1 (i.e., =Xmy, holds in k'),
and it is not true that the next time (if any) that m, switches from false to
true (when one of the clocks z2)7 z,}) is reset, by Formula) is less than b —a
time units after 7(k") — that is, the clock between zg and zi) that is not reset
when m,, becomes true is < b — a.

As before, because of Corollary x{; is not reset again before k', hence the condi-
tion that there is a timestamp t € (7(k), 7(k+1)] such that (k') —t = a corresponds
to saying that in k" clock z is > a and 2} is < a.

It is easy to see that, in Figure down@aéjﬂ)d holds in i+4, when one considers
k' =i+ 6, where both m,, and X(z5 = b— a) hold.

Formulae @D and define the sufficient conditions for one of the d auxiliary
clocks mé, with j € [0,d — 1] to be reset. They are, in a sense, the dual of abbre-
viations up@bg and down@ag. More precisely, consider Formula @D; if my, holds at
a position k and there is no position k¥’ < k such that (k) — 7(k') < b — a and
m,, holds in k', then 6 would have become true at time instant (k) — b, so —
unless 7(k) < b — there is a clock azg that was reset sometime in the past (recall
that operator P is the past-time dual of F) and that in k has value > b, with its
associated clock 2] that is < b.

Now < b v
G >b— -Y >b— d—1] . . .
mw/\(Zg a v () A zyp a)é (P({l‘éiO)/\IéZb/\i‘Jg<b)
j=0

(9)

The condition captured by Formula is similar to the one of abbreviation
down@aje.

X(z5 = (b—a)) v Now < a \
My A P(:cj :0> A
G | my A = d-1) o
—Xmy A =X | =my, U 1) 2 >a n
0<zy<b—a =0 6
i=0) <a

(10)

For example, consider Figure The antecedent of Formula @ holds at position
i + 3. Hence, there must be a clock z, such that in i + 3 both z} > b and) < b

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 25

hold, which entails that xg is reset at 7. Similarly, the antecedent of Formula

holds at position i + 6, so there must be a clock mg such that in i + 6 both xg >a

’

and i*g < a are true, so a:g is reset in 7 + 4.
We abbreviate by auxcky the conjunction of formulae 7.

We now introduce the CLTLoc formula mg an ¥ which captures the semantics
of the F(, ;) operator.

d—1

MF (06 = (ﬁ i=0§:é =0> sj\z/:(azg =0AX (i) >0U (my na<i<b)))

Formula mE, ¥ is true at position k if, and only if, in the greatest position, say &,
in which one of the {i}}» clocks was reset (with possibly k¥’ = k) the conditions for
which F (g, ;)4 is true held. These conditions are captured by the second argument
of the S subformula, which state that, if icg is the clock that is reset in k', then
there is a position k” > k" in which m,, holds and such that :ié is in (a,b) there
(i.e., 7(K') + a < 7(K") < 7(k’) + b). Notice that, since by Formula (6) clock #4~*
is reset in the origin, for any position k € N there is a &' < k in which one of the
{&}}n clocks is reset.

For example, let us consider Figure|3| In i + 1 clock §zé is reset, there is a later
position (i 4+ 3 in this case) where m,, holds, and the value of ig there (3.8) is in
(a,b); then, TF (41 is true in ¢ + 1. In 4 + 2, ¢ + 3 and i + 4, instead, no clock
{Zy}n is reset, so the value of mF,, ,,» depends on the conditions at the greatest
position before them in which one of those clocks was reset; this position happens
tobei+ 1, so MF(, 40 holds in all three positions.

Finally, given a pMITL formula 3¢ ...¢n¢, its equivalent CLTLoc formula
trans, is the following (where sub(¢) is the set of subformulae of ¢ which, for
simplicity, we assume to include in operators Feap only intervals of the form

(a,b)):

transy = my A zddef A /\ cky A /\ auxcky.
Oesub(p) Oesub(¢),0=F (q,p) (%)

For example, consider pMITL formula ¢ = Hq(ﬁpU(va)qAF(QA)q). Formula mg
is X(—pU(cq = 0)) A mF,, ¢, where mg, , ¢ must further be expanded according
to the definition above — where m,; is replaced by ¢, = 0 —, which we avoid for
the sake of brevity. Similar expansions must be carried out for the subformulae
ckg and auxcky.

We have the following result.

Theorem 2 Let 3q1...qn¢ be a pMITL formula. CLTLoc formula transy is equiva-
lent to dq1 ... gno.

To prove Theorem [2] we rely on the following lemma, which shows equivalence
between a non-quantified pMITL formula ¢ and the CLTLoc translation of ¢ where
the atoms in pAP are not transformed into clock relations.

26 Marcello M. Bersani et al.

Lemma 7 Consider a transformation miz,, which is the same as my, ezcept that m; £q
even when q € pAP, and define the following CLTLoc formula:

trans/qﬁ = m;) A zddef A /\ cky A /\ auxcky.
Oesub(p) Oesub($),0=F (q,)(%)

Let (7', 7) be a timed word such that 7' : N — o(APUpAP) and3q1 ... qne be a pMITL
formula. Then (7', 7) = ¢ if, and only if, (x',7) = trans;). In addition, there is exactly
one CLTLoc interpretation (n’,0) such that o : N x Vo, = Ry, [(x',0)] = («',7) and
(n',0) = trans/¢.

Proof First of all, let be £ be a CLTLoc formula. In the following we indicate by
o¢ a clock valuation that only includes the clocks appearing in ¢; that is, such that
o¢ : N x Ve — Ry, where V is the set of clocks referenced in &.

The proof is by induction on the structure of formula ¢. For each step, we show
that, for every subformula 6 of ¢:

P1. (7/,7) = cky and there is exactly one CLTLoc interpretation (', 0ck,) such
that [(7',0cke)] = (7', 7) and (1", 0ck,) = cky;

P2. (x',7) | auxcky when 6 is F, ;)9; in addition, there is exactly one CLTLoc in-
terpretation (7, 0auxck,) such that [(7, Cauxcky)] = («',7) and

(w’,aauxcke) = auxckg;
P3. for every i € N, (n',7),4 = 0 if, and only if, (7', 7),i = mj.

First, however, we need to show that every timed word (7', 7) is a model for
zddef. This is straightforward, as (7', 7) |= zddef if, and only if, there is a CLTLoc
interpretation (7', 0zdder) such that [(7', 0zades)] = (7', 7) and (7', 0zddet) |= zddef;
this is achieved simply by having, for all &k € N, Uzddef(Qk,Zg) = 0, 0zdaes (2k +
1,2(}) = 0 and o0zaqe (k, Now) = 0 if, and only if, ¥ = 0. In addition, the CLTLoc
interpretation (ﬂ'/,Uzddef) such that [(W/,O'zddef)] = (TFI,T) and (’/T/,Uzddef) |= zddef
is unique, because the sequence of clock resets defined by zddef is uniquely deter-
mined (first 2) and Now, then z}, then 2J, and so on).

Let us tackle the base cases where § = p € AP and 0 = q € pAP, which are
in fact treated in the same manner, as m;, = p and mfl = ¢. Concerning P1, we
have that (7’,7) |= ckp if, and only if, there is a CLTLoc interpretation such that
[(n',0ck,)] = (x',7) and (n',0c,) = ckp. Building the required (7', 0cx,) from
(n’,7) is straightforward. In fact, to satisfy Formulae and , no matter when
p holds in («/,7), it is enough to define oc, so that: (i) ocx, (0,29) = 0; (ii) either
ackp(i,zg) =0 or ackp(i,zé) = 0 if p holds in ¢, but it does not i — 1 or in i + 1;
and (iii) z) and z} are reset in an alternate manner. As before, interpretation
(7', 0cx,) such that [(7', ocx,)] = (z',7) is unique, since the sequence of clock resets
is uniquely determined from 7’ (2§ is reset in 0, then zj is reset the next time p
is true, but it is false the position before or the position after it, and so on). P2
does not apply to the base case, whereas P3 is trivial.

Let us now consider the inductive case. Hence, let 6 be a subformula of ¢; we
assume that properties P1, P2 and P3 hold for all subformulae of 6.

If 6 = = or & = v A 1, P1 holds for the same reasons as the base case:
no matter when mip and m/, hold, it is trivial to build a CLTLoc interpretation
(7', ock,) such that [(7/,0ck,)] = (7', 7) and (7, 0cx,) = cky. Showing that P3 holds
is also straightforward.

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 27

If & = YU(g,0)%, P1 holds for the same arguments as above. As far as P3
is concerned, by the semantics of Table [3| 6 holds in i if, and only if, there is
i’ > i such that (7/,7),7 &= %, and for all i < i" < ¢ we have (7',7),i" = 7,
which corresponds to the semantics of CLTLoc formula X(m’VUm;}) by inductive

hypothesis.

Let us now tackle the case 6 = F(, ;)¢.

P1 is similar to the other cases. By similar arguments as those used for showing
that P1 holds one can prove P2. In fact, P2 only asserts that, given a timed word
(n’,7), one can build a CLTLoc interpretation (7, cauxcx,) such that [(7, cauxcky)] =
(', 7) and (7', Cauxck,) |= auxckg. This is again straightforward, as Formulae (5]),
@, and are satisfied simply by having cauxck, (0,29) = 0, Tauxck, (0,553_1) =0
(and the other fsg clocks greater than 0 in the origin), oauxck, (7 + 1, %) = 0 when-

eVer OTauxcky (i,xé) = 0, and the {xg}n clocks are reset in a circular manner. In
addition, it is always possible to satisfy Formulae , @ and (|10 given the truth
value of mib. In fact, consider Formula @D If its antecedent (which only depends

on the subformulae of 6) is false no constraints are imposed on the {mg,ig}n
clocks. If the antecedent is true at position 7, then either 7(i) < b (i.e., Now < b),
or there is timestamp 7(i) — b > 0. Necessarily there is a unique i’ < 4 such that
(") < 7)) —b < 7(i' +1) (i.e., 7(i) —7(i') = band 7(i) —7(i' +1) < b), so it is enough
to define that cauxck, (', 23;) = 0 for the clock z that respects the ordering defined
by Formula . In addition, if the antecedent of Formula @D is true in ¢, both
the antecedent and the consequence of Formula hold, since up@b), holds at 4.
Similarly for Formula . Notice that, as for formula ckg, given (n’,7) the inter-
pretation (7', Gauxck,) Such that [(7', Cauxck,)] = (7', 7) and (7, Cauxck,) = auxcky
is unique, because the sequence of resets of clocks {zf}n is uniquely determined
from 7’ and 7.

The key to prove P3 is to show that Formulae f define that, unless i = 0,
no clock of set {Zy }» is reset in ¢ if in interval [7(i — 1), 7(¢)) there is no timestamp
t in which the conditions are met for 6 to become true in ¢, and in (7(: — 1), 7(7)]
there is no timestamp ¢ in which the conditions are met for # to become false at
t'. More precisely, these conditions, which are exemplified by the rising and falling
edges of the dotted line in Figure [J| are the following:

C1. For 6 to become true at timestamp ¢ there must be a position i’ > i such that
holds in ', 7(i') = t +b, and there is no i’ such that 7(i") € (7(i') — (b—a), 7(i'))
and + holds in 3".

C2. For 0 to become false at ' there must be a position i’ > i such that ¢ holds in
i, 7(i') = t + a, and there is no i” such that 7(i") € (v(¢'),7(i') + (b — a)) and 1
holds in 7”.

As mentioned above, interpretation (7', Cauxck,) such that [(7', cauxcx,)] = (7', 7)
and (7', Tauxcky) |= auxcky is unique; then, with a slight abuse, we do not specify
each time whether we are considering a position in (7',7) or in (7, Cauxck,)-

Now, suppose ¢ > 0 and no clock of set {Z{}n is reset in 4. Then, no clock of set
{} }n is reset in i—1. Hence, there cannot be i’ > i—1 such that (i) 7(i')—7(i—1) > b,
(i) — 7(i) < b and the antecedent of Formula (9) holds, or (ii) 7(i') — 7(i— 1) > a,
7(i") — 7(i) < a and the antecedent of Formula holds, otherwise one of the
{zy }n clocks should be reset in ¢ — 1, thus leading to a contradiction. It is easy
to see that case (i) entails that there is no timestamp ¢ € [7(: — 1), 7(¢)) where 0

28 Marcello M. Bersani et al.

can become true according to condition C1 above, and case (ii) implies that there
is no t' € (7(i — 1),7(i)] where 6 can become false according to C2. Conversely,
if a clock % is reset in ¢ > 0, acé is reset in 7 — 1, so the antecedent of Formula
holds in i — 1; then, there is ' > i — 1 where the second argument of the U
operator in Formula up@b, holds in 4’, or the second argument of U in Formula
down@ag does. In the first case i’ is such that 7(i') —7(i — 1) = b, 7(i') = 7(3) < b
and the antecedent of Formula @D holds, so again there is ¢t € [7(i — 1),7(7))
where 6 can become true according to condition C1 above; in the second case
7(i")=71(i—=1) > a, 7(i') —=7(3) < a and the antecedent of Formula holds, hence
there is t' € (7(i — 1), 7(i)] where § can become false according to C2.

Since we have established that no clock of set {2y }» is reset in ¢ > 0 if the value
of 6 cannot change between ¢ and i—1, it is easy to see that, by inductive hypothesis,
my in i holds if, and only if, § holds there. In fact, the value of mj is that of the
greatest i’ < i where one of the clocks of set {zf] }n is reset (¢’ is well-defined, because
ig_l is reset in the origin). Formula mj captures i’ through the S operator; more
precisely, i’ must be such that the second argument of S in mj, holds. Then, we need

to show that, assuming ig is reset in i/, X (532) >0U (mip Aa< i:g, < b)) correctly
defines the value of 6 there. This descends from the fact that, by Corollary|[l] there
cannot be more than d — 1 resets of clocks of set {Zf}» in an interval of length b,
hence ig is not reset again after i’ before hitting value b. Since F(, ;)¢ holds in 4’
if, and only if, there is i’ such that 7(i') +a < 7(i") < 7(s') + b and ¢ holds in i”, by
inductive hypothesis this is equivalent to formula X (55?, >0U (mib Aa < ;%g < b))
Finally, since for § = ¢ we have that Vtransib = Vzager U Ver, U Vauxcr, = Vo, ; the

CLTLoc interpretation (’,0) such that o : N x Vg, — Ry, [(',0)] = (', 7) and
(7',0) |= trans) is unique. ©

We can now prove Theorem [2] through a simple application of Lemma [7] by
substituting atoms in pAP with clock relations.

Proof (of Theorem[d) Let (,7), with 7 : N — p(AP), be a timed word. By definition
of equivalence between pMITL and CLTLoc formulae we need to show that (, 7)
is a model for 3q1 ... ¢gn¢ if, and only if, it is also a model for trans,.

First, note that (7, 7) |= 3¢1 . . . gn ¢ if, and only if, there is 7’ : N — p(APUpAP)
such that (7',7) |= ¢ and 7'(i) — pAP = (i) for all i € N. By Lemmal[7} (v, 7) |= ¢
if, and only if, (7', 7) }= trans). In addition, («’, Ttrans/,) SUch that [(W’,Utranszb)] =
(«’,7) and (legtransgb) |= trans) is unique, so (',7) |= trans), if, and only if,
(7T/7O-trans/¢) = trans;,. If in mj, we substitute each occurrence of ¢ € pAP with
constraint c; = 0, where cq € V,4p is a fresh clock, we obtain transformation m.
Consider interpretation (m, otrans), where otrans : Nx Vo, uVpap — Ry, such that
for all ¢ € pAP 0trans(i,cq) = O if, and only if, ¢ € 7/(i) and for all c € Ve, we
have otrans(i,¢) = Ograns'(i,¢). We have that (7, otrans) |= transgy if, and only if,
(w, Tirans,,) transj, and [(m, otrans)] = (7, 7), which concludes the proof. o

Before concluding this section we remark that the encoding presented above
can also be used to realize a decision procedure for the satisfiability of pMITL
formulae. For this, it is enough, given a pMITL formula 3q; ... ¢n¢, to build the
corresponding CLTLoc formula transg, then solve it using the tool presented in
Section However, formula transg has been devised to show the equivalence

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 29

of pMITL and CLTLoc formulae, and is not optimized for size. In fact, let us
compute the size of transy with respect to the number of subformulae of ¢, which
we indicate by |¢|, and to the value K of the biggest constant appearing in it. The
size of formula my A ckg A auxcky is biggest in the case 6 = F(, ;)¢. In this case,
the size of my is d times the size of my; since in the worst case d is 2K (if (a,b)
is (K —1,K)) and the number |¢]| of subformulae in ¢ is |0] — 1, the size of my
is O(Klel). The biggest factor in the size of auxcky is Formula , whose size is
proportional to the size of my times K. Hence, the size of auxcky is O(Klglﬂ),
which is also the size of mg A cky A auxcky. Finally, the size of formula trans, is
O(K?l + K191+1|¢]) which is O(K!?I+1|g|). If, as customary, we consider a binary
encoding for the constants appearing in ¢, we indicate by s the number of bits for
representing K, and we have n = ||, the size of transy is 025+).

However, if the goal is deciding the satisfiability of pMITL, although the expo-
nential factor in s cannot be eliminated (recall that the satisfiability problem for
MITL, which is a proper subset of pMITL, is EXPSPACE-complete, whereas it
is PSPACE-complete for CLTLoc), the size of formula trans, can be optimized.
Without delving in many details if, for each subformula 6 of ¢, we introduce a
fresh propositional letter 0, define mj as mg where each occurrence of m~ and My
is replaced by propositions v and 9, and introduce a constraint 8 < mj, we obtain
a satisfiability-preserving translation whose size is O(K|¢|), that is, O(2°n).

6.2 From CLTLoc to pMITL

To show the equivalence between pMITL and CLTLoc over timed words, in this
section we build a model-preserving transformation from CLTLoc to pMITL for-
mulae. We consider the future-only fragment of CLTLoc since, as shown in [I4],
over timed words it has the same expressiveness of the full language including past
operators.

Let ¢ be a future-only CLTLoc formula, over a set V;, of clocks. Without loss of
generality, we assume that all clocks of V are reset in the origin. In fact, suppose we
need to build a formula ¢ which states that, in the origin (i.e., the first meaningful
position in the interpretation), the clocks of V; have a certain relationship among
them captured by formula £. For example, we might have £ = 1 > o > z3. We
can build a CLTLoc formula ¢ whose models are isomorphic to those of ¢, and in
which all clocks are reset in the origin. The idea is to use the first [Vj| positions of
the model of ¢ to create the required ordering among clocks, and then the rest of
the positions to capture the semantics of ¢. More precisely, we introduce a fresh
clock 40t which is reset in each position 0 < i < \Vq;\, and then never again (we
do not show the corresponding CLTLoc formula, which is straightforward). Then,
the first position \Vd;\ in the model of ¢ in which x4t > 0 corresponds to the
origin of the model of ¢. ¢ is a transformation of ¢ obtained in the following way:
¢ = XIVslg' (where X™ stands for “X nested n times”), and ¢ is ¢ where each
formula of the form Y4 is replaced by Y (¢ A z4ct > 0) and each formula of the
form S is replaced by vS(¢ A zget > 0).

When all clocks are reset in the origin, it is easy to eliminate from a CLTLoc
formula ¢ constraints of the form z; < x; so that only constraints x;, ~ ¢, with c a
constant, appear in ¢. In fact, 2; < x; is equivalent to (z; > 0)S(z; = 0 A 2; > 0)
since for all zj, € Vy and k € N there is k' < k where zj, = 0.

30 Marcello M. Bersani et al.

Consider now a CLTLoc formula ¢ with clocks V;, that are all reset in the origin.
To capture its behavior in pMITL, we define the following quantified propositions
in set pAP:

— For each x; € V, we introduce a propositional letter ry;, which holds when
clock z; is reset (i.e., if condition x; = 0 holds).

— For each constraint z; ~ ¢ (with ¢ > 0), independent of the nature of rela-
tion ~, we introduce two propositional letters pz,<c and pz,<c, which capture,
respectively, the conditions z; < ¢ and z; < c.

The behavior of the new propositional letters is defined by a formula pgz;~c,
which captures when pg,;<c and pg; < hold with respect to the truth of ;. In the
formula we introduce abbreviation G%(€) = € A G (€) (resp. Fi(€) = € v F1(€)),
where 4 stands for “included”, which requires (resp. allows) £ to hold in the current
position (hence G(¢) = Gz(AO’OO)(Q).

If ¢ > 0 we have the following;:

Hx;~c i =Tx; N

. (<Gfo70] (Prs<e) A Flo o (G0,00) (7Pzs<c) v (mPai<e)Uo,0)T;) A))
G' | rg, = ; i .
(0,¢) (paci <c) A F(o,c) (G(O,ao)(_‘Paci<c) \4 (_‘p:ci<c)U(()7oo)'f'xi)
For ¢ = 0 we have simply pz,~0 := 7z, (i.e., we only require the clock to be

reset in the origin), since z; < 0 is true if, and only if z; is reset (i.e., ry; holds)
and z; < 0 is trivially always false.

Theorem 3 For any CLTLoc formula there is an equivalent pMITL formula.

Proof For every CLTLoc formula ¢ we inductively define a transformed pMITL
formula ¢’ as follows (recall that we can eliminate constraints of the form z <y
when z and y are clocks):
p—p forpe AP
z=0+— 1y
r<0r— L
T =C— Pr<c N TPx<c
T <cr Dr<e
—tp — =)/
YA = Ay
Xep — LUy)0
YUY — ' v (v Ay Uy o))
The final pMITL formula is

Irzy, Pri<es Pry<c - - - Ta:n:pmngmpxn<c(¢/ A /\ /J;ci~c) (11)
xi~ce sub(p)

where n = |Vy].

To show that Formula has the same models as ¢ we prove that for each
timed word (m,7) there is (m,04) such that [(7,04)] = (7,7) and (7,04) E ¢ if,

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 31

and only if, there is (7/,7), with 7’ : N — ©(AP U pAP), such that for all k € N
7'(k) — pAP = w(k) and (7', 7) = ¢'.

As usual, the proof is by induction on the structure of ¢. The base case for
p € AP is trivial, as it is simply (7, 7), k = p if, and only if, p € 7(k) in both CLTLoc
and pMITL.

The inductive cases for —, v A ¥, Xy and YUy are also straightforward, as
they do not rely on quantified propositions except possibly those necessary for
subformulae ¥ and ~y, which are covered by the inductive hypothesis.

The last case is the one of clock constraints z; = 0 and z; ~ c¢. First, consider
the following relation 74 between CLTLoc interpretations of ¢ and pMITL inter-
pretations of ¢': Ty((w,04), (x',7)) if, and only if, [(7,04)] = (7,7), and for each
keN

— 7' (k) — pAP = (k)

— for each clock z; € V, we have o4(k,z;) = 0 if, and only if, ry, € 7' (k),

— for each constraint z; ~ ¢ in ¢ we have o4 (k, z;) < c if, and only if, pz,<c € 7' (k)
and o4(k, ;) < c if, and only if, pz,<c € 7’(k).

Then, to prove the goal in this case we split it in two cases. We first show that,
for each CLTLoc interpretation (m,04), if T4((7,04), (7', 7)), then (7', 7) | pra;~ec.
Second, we prove that, for each pMITL interpretation (n’,7), if (7',7) & paz;~c,
then there exists CLTLoc interpretation (m,04) such that Ty ((m, 04), (7', 7)).

If (m,04) is a CLTLoc interpretation for ¢, it is easy to see that there is a
pMITL interpretation such that 74((w,04), (7', 7)). We show that (7', 7) | pia;~ec.
Since by hypothesis all clocks are reset in the origin, rz; € @'(0). If oy (k, ;) > 0,
then ry; ¢ n'(k), so the implication in jiz;~c holds. If o4(k,z;) = 0, instead, then
rz, € ©' (k). For all k' such that 7(k") — 7(k) < ¢ we have that z; < ¢ (even if z;
is reset again), hence p.,<. € 7'(k), so (7', 7),k = G%07c](p$i<5)' After k, either
x; is not reset anymore, or there is k” > k where it is reset, and it is not reset
in between. In the first case after the last k' such that 7(k’) — 7(k) < c it always
holds that x; > ¢, i.e., (7/,7),k = FZ('ch]G(O,OO)(—'pxigc). In the second case, after
the last &’ such that 7(k") — 7(k) < ¢, until x; is reset again it holds that z; > c,
ie., (n,7),k & FEO’C]((_‘pxriSC)U(O,OO)Twi)' Similarly for the other conjunct in the
consequence of the implication.

Let us now consider a pMITL interpretation for ¢’ such that (7', 7) &= pz;~c.
Then, 5, € 7'(0), so x; is reset in the origin, and the consequence of the implication
appearing in pg;~c also holds there. If r;, does not hold any more after 0, then it
is enough, for all k¥ > 0 to define o4 (k,z;) = 7(k) — 7(0) = 7(k); it is easy to see
that if by fiz;~c it holds that pz,<c € 7'(k), then o4 (k,z;) < ¢, and similarly for
pz;<c. If, instead, k > 0 is the next position after 0 in which r4, € 7'(k), then for
all 0 < k' < k we define o4 (k', 2;) = 7(k’) and, as before, if by iz;~c it holds that
pe;<c € T (K'), then oy(K', 2;) < ¢ (similarly for psz;<c). Then, since rz, € 7' (k),
the antecedent of formula iz, ~c holds there, and the arguments above are applied
again to build 0y. o

7 Encoding Metric Temporal Logics over the continuous semantics

We exploit the decision procedure for CLTLoc outlined in Sect.[d] to define mecha-
nisms for deciding various metric temporal logics over continuous time. In [12], [13]

32 Marcello M. Bersani et al.

and [II], we have defined several satisfiability-preserving reductions from metric
temporal logics to CLTLoc; hence, satisfiability of formulae of these former logics
can be determined by solving the corresponding problem for CLTLoc. In particular,
MITL, MITL g o), MITL (g o) with counting modalities [34], and their extensions
with past operators are the logics we have targeted so far.

We now briefly show how to encode MITL and MITL g) (hence, QTL) for-
mulae into CLTLoc ones, by providing some highlights of the reduction in a special
case.

In general, in [4] it is shown that a signal can be seen as an infinite sequence
of adjacent non-empty intervals starting from the origin. Each interval is a convex
set of points over R that defines exactly the set of atomic propositions that are
true in all the time instants in it. In our translation, we represent the truth of a
MITL (or MITL g o) formula ¢, over the sequence of time intervals, by a CLTLoc
formula that captures its semantics. We assume that signals are finitely variable.
For these signals, time can be partitioned in a countable set of adjacent intervals
such that the value of every subformula of ¢ is constant in each interval. In the
case of MITL, we also restrict signals to intervals that are left-closed and right-open

o

(Lc.r.o. for short), as in -~—6 e—-). As in Section , let {a,b) be a bounded
interval, where 0 < a < b are integer constants, (is either (or [, and) is) or].
Given a signal M : Ry — p(AP) over a finite alphabet AP and a bounded interval
I, denote with p € My, the case where p € M (z) for all x € I. A signal M is l.c.r.o if
forallpe AP, foralla <beRy ifpe Map) then p € Miqp) and for all a < be Ry
if pe M,y then there exists ¢ > b such that p € M,). The l.c.r.o. assumption
allowed us to devise a simpler translation, but it is not strictly necessary. For
instance, under the l.c.r.o assumption, a formula cannot hold in isolated points,
but if it holds at time instant ¢ then it holds over a non-empty interval [t,¢+¢), for
some € > 0. Then, the case of isolated points can be disregarded for l.c.r.o signals.

Let ¢ be a MITL formula. For each subformula 6 of ¢, we introduce a CLTLoc

predicate 0 that represents the value of 6 in the intervals and the following ab-
breviations:

E=-€ = Y(OAE L= Y(OA ¢

where T, for example, captures the situation in which ¢ changes its value from
false to true, with the formula being true in the current interval.

For simplicity, we focus our attention on temporal operators F (0,519 and Pg 3)%.
We remark that it can be shown that, if ¢ holds only in l.c.r.o. intervals, so do
F(0,5¢ and Ppg ;)¢ (the same does not hold, for example, for F(q41). For each
subformula 6 of ¢, we introduce two clocks, zg and zé, which measure the time
from the last change point (either I or Ty, so we have Ty vy < z) = 0vzj = 0),
and whose resets alternate. Our translation defines the (sufficient and necessary)
conditions causing events Iy and Ly to occur, for all 6.

Formula , then, captures the condition in which formula 6 = Fon¥ be-
comes false: in this case, 1y must become false, and it cannot become true again
for b instants (i.e., 1 cannot become true again before its associated clock that is
reset when ¢ becomes false hits b).

Toe Ly adyR- [Ty n A 2, <b]. (12)
1€{0,1}

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 33

The case for 6§ becoming true is not shown for brevity.

Consider the case 0 = P[q ;(¢). Formula captures the condition in which
0 becomes true. This occurs when 1) becomes true and either the current instant
is the origin (O is an abbreviation for =Y (T)), or ¢ has never become true since
the origin, or the last time 1 changed value (necessarily from false to true), this
occurred more than b instants ago (i.e., the clock associated with ¢ that is not
reset now is > b).

J—9<:>J_wA OVY("J—QLS(OAQZJ))\/ \/Z;Zb (13)
- i€{0,1}

To conclude this section, we provide an example of an MITL formula over two
l.c.r.o. signals, whose model is intrinsically aperiodic in the values of the delays
between change points. We say that a signal M : Ry — o(AP) is (ultimately)
periodic (with respect to the time) if there exist two instants ¢; and t2 such that
to —t1 =d >0 and M(t + kd) = M(¢) for all t; <t <t and for all £ € N. For
example, let AP be set {a}. A signal M such that M(t) = {a} for all 2k < ¢ < 2k+1
and k € N and M(t) = J elsewhere is periodic. A signal M’ such that M'(t) = {a}
forall 2k <t <2k +1+ %ﬂ and k€ N and M'(t) = & elsewhere is not periodic.
The existence of formulae admitting only aperiodic models shows that, in the
decision procedure of Section [d] the periodicity must be enforced on the set of
constraints defining regions, but not on the actual values of the clocks, nor on
the time differences §. Therefore, the encoding of a CLTLoc formula presented in
Section {] cannot include constraints of the form §(k+ 1) = §(loop) and x(k+1) =
x(loop) for some k > loop, where loop is the variable defining the position of the
periodic part of the model. In other words, there are aperiodic models that do not
admit a periodic sequence of time increments of the form dgd1 ... (d;...d;)“, even
if the sequence of clock regions is periodic.

Ezxample 2

Consider the behavior of two Boolean signals p and ¢ in Figure [4] Signal p holds
in [2k,2k + 1 +¢), for all k£ > 0, and it is false elsewhere, as formalized by the
conjunction of the following MITL formulae (recall that G}(¢) = ¢ A G1(6)):

G, A Gi(G<o,1]P = Gz 31P) (14)
Go,119 A G'(Go,119 = G2,319) (15)
G'(p=q). (16)

Both signals p and ¢ hold over intervals longer than one time unit, because of the
l.c.r.o. assumption which says that if p (or ¢) holds at ¢ then p holds in [¢,t + €)
for any t > 0 and any € > 0. In fact, if formula G ;)p holds at ¢ it imposes that p
holds in (¢,t + 1]. Assume that —p holds in (¢t + 1,¢ + 1 +), with u > 0. Because
of l.c.r.o. assumption, p must hold in [t + 1,¢+ 1 +¢) which yields a contradiction.
In addition, we require that ¢ is at least as long as p by Formula . Formulae
— above may, in general, admit periodic models with respect to the values;
therefore, we have to add other formulae to rule out these models. This may be
achieved by the following formulae (where yU%¢ = v A (yU¢)) enforcing that,

34 Marcello M. Bersani et al.

la
al

Fig. 4 Aperiodic model for the MITL formula of Example 2.

over interval [2k, 2k + 1], with k = 0, signal ¢ is strictly longer than p, while over
[2k+1.5,2k +2) both p and q are false and that each new occurrence of an interval
where p holds, involving instant 2(k + 1), is always longer than the previous one
involving instant 2kE|: Signals p and ¢ become false before each time instant 2k+1.5
because Formula ((17)) imposes that —p A ¢ occurs until both p and ¢ are false over
an interval of length 0.5.

G (Gyo1)(p A 0) = (A)U((=p A QU (Gg.0.579)) (17)
Gi(ﬁp NG = G<1,2]P)~ (18)

Now, we show that a signal that is model for the formula is not periodic. Let
th € (2k + 1,2k + 1.5) be the instant where p becomes false, and dj, = t} — 2k be
the length of the k-th interval [2k,¢}) in which p holds. Formula lengthens of
) > 0 time units the duration of p over the next interval starting at 2(k + 1); that
is, p holds in interval [2(k + 1),t} + 2 + d3,), whose length dj 1 is dj, + 6. Since &,
is strictly positive, the sequence of values dy, is strictly monotonic increasing, i.e.,
dp < dgy1, for all k£ > 0. Therefore, the signal modeling the conjunction of MITL
formulae 7 is not periodic with respect to the time, and the sequence of
durations dy, is also not periodic in its CLTLoc counterpart. However, the sequence
of clock regions induced by the clocks in the CLTLoc formula obtained through the
translation shown above applied to the conjunction of MITL formulae f
is periodic. In fact, it is easy to see that the length of intervals where p and ¢ hold
is always in (1,1.5). Then, the clocks measuring the time that elapses from the
instant in which p or ¢ start to hold are either reset to 0 — when the associated
signal becomes true—, or first reach region (1,1.5) — when the signal changes truth
value to false — and then region [2,2] when the signal becomes true again. The
same arguments hold for clocks measuring the time that elapses since p or ¢ become
false, as the length of the intervals in which the propositions do not hold is always
in (0.5,1).

2 With slight abuse, we use rational bound 0.5; as customary, a formula with only integer
bounds can be obtained by doubling all constants appearing in the formula.

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 35

8 Implementation and Experimental Results

The reductions from MITL to CLTLoc, outlined in Sect. [7} are implemented in
the gtlsolver tool, available from [I]. The tool translates MITL and MTL g o

into CLTLoc, which can be checked for satisfiability by ae?zot.

The resulting toolkit has a 3-layered structure, where CLTLoc is the inter-
mediate layer between SMT-solvers and various temporal formalisms that can be
reduced to CLTLoc. This not only supports (bounded) satisfiability verification
of different languages, but it also allows the expression of different degrees of
abstraction. For instance, MITL abstracts away the notion of clocks, inherently
encompassed within temporal modalities, which are instead explicit in CLTLoc
(as witnessed by the example of the timed lamp in Sect. and available to a
user, e.g., to express or verify properties where clocks are very convenient. In fact,
preliminary experimental results point out that the time required to solve CLTLoc
may be significantly smaller than the one needed for more abstract classes of lan-
guages, such as MITL. This gap is caused by the “effort” required to capture the
semantics of temporal modalities, which, on the other hand, allow for more concise
and manageable high-level specifications. One can then take advantage of the lay-
ered structure, which allows the resolution of a formula to be compliant also with
constraints imposed at lower layers, for instance by adding at the CLTLoc layer
some extra formula limiting the set of valid models (e.g., by discarding certain
edges of some events or by adding particular timing requirements). Also the third
layer (the SMT solver) may be used to add further constraints, e.g., to force the
occurrence of a proposition or of a certain clock value at a specific discrete position
of the finite model.

The current implementation of qtlsolver supports various reductions. More
precisely, it realizes the MITL-to-CLTLoc translation tailored to l.c.r.o. signals, as
highlighted in Sect. m It also implements a translation from MTLq) to CLTLoc.
This translation does not assume any special shape for signals, except that they
be finitely variable; it natively supports operators F o0y and Gegpy (and their past
counterparts), where the bounds can be either included or excluded. These oper-
ators allow us to define concisely F(, 3, and G, ;, as abbreviations. For instance,

G (3,6)(¢) is equivalent to G (g 3) (F(073) (G(073)(¢))); defining a similar equivalence

using only the F(q ;) and G(g ;) modalities (see, e.g., [24]) involves the recursive
expansions of each conjunct of Gz 4)(¢) A G[4,5)(¢) A G[5,6)(¢), where G, 1 1)()

is equivalent to G,) (F(OJ) (G(O)l)(qb))).
The following two encodings are currently available (they both include past
operators):

MITL: providing a direct definition of MITL operators, assuming l.c.r.o. intervals;

QTL: providing the definition of MTLq) operators with unrestricted signals
(other than they be finitely variable), and MITL operators through abbrevia-
tions.

We used the above two encodings and the CLTLoc decision procedure to carry
out some verification experiments on the example of the Timed Lamp described
in Sect. More precisely, we have built several descriptions of the behavior of
the lamp: (i) the CLTLoc model presented in Sect. [2 (ii) an MITL specification
assuming l.c.r.o. signals; (iii) an MTL(q) specification in which predicates on

36 Marcello M. Bersani et al.

and off are constrained to be true only in isolated instants. On each of these
specifications we have carried out three experiments, assuming A = 5: a check
of the satisfiability of the specification, to show that it is consistent (sat); the
(dis)proof of property “the light never stays on for more than A time units” (p1);
the proof of property “if at some point the light stays on for more than A time
units, then there is an instant when on is pressed, and then it is pressed again
before A time units” (p2). Depending on the temporal logic and of the restrictions
on the signals (l.c.r.o. or not) the formalization of the timed lamp and of the
properties can change.

In the case of the CLTLoc specification of the timed lamp, in order to formalize
properties p; and pa we introduce an auxiliary clock caux, which is reset every
time the light is turned on, i.e., caux © A Y (=1). Then, in CLTLoc property p; is
captured by formula G (Y (I) = caux < Q). In addition, property p2 is formalized
by the following formula:

F (I A caux = A) = F (on A X(—rst-cU(on A testgce<n))) - (19)

The behavior of the timed lamp can be captured by the following MITL formula
over l.c.r.o. signals (we write yS"¢ for ¢ v (v A YS(0,00)%) and Py for ¢ v Py):

G! ((l@ (onS'—off) A Pl('oA)(on)) A (on = ﬂoﬁ)> . (20)

In MITL over l.c.r.o. signals, where predicates hold over non-null intervals, we
limit the length of intervals in which on (and off) holds to be at most 1 by adding
the following constraint:

G’ (ﬁG(O,l](On) A ﬁG(o,l](Oﬁ)) : (21)

Over unrestricted signals, instead, we force on to hold only in isolated instants by
adding the following MITL g) constraint (and similarly for off)

G (=(0n U(p o) T) A =(0n S0, T)) - (22)

Properties p; and ps over unrestricted signals are captured by the following MTL g, e0)

formulae (where F? stands for F€O,+oo)):
G' (Fio,.a)(-0) (23)
F (Gz(-o,A](l)) = F' (on A F(O’A](on)> . (24)

Over l.c.r.o. signals property pp is still captured by Formula (23); property p2,
instead, is more involved, and corresponds to the following formula:

F' (GéO,A](l)) = F' ((ﬁon A PZ(-()’A)(on))Uion) . (25)

Table [§| reports the time and space required for the checks outlined above (all
tests have been done using the Common Lisp compiler SBCL 1.1.2 on a 2.13GHz
Core2 Duo MacBook Air with MacOS X 10.7 and 4GB of RAM; the solver was z3
4.0). All bounded satisfiability checks have been performed using a bound k = 20.
The first line of each row shows the total processing time (i.e., parsing and solving)

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 37

Table 4 Experimental results with the timed lamp, reporting Time (sec) and heap size (MB).

Problem || Satisfiable? || CLTL-o-c | MITL (L.c.r.o) | MTL(g o) (unrest.)
ot Ves 0.48/0.33 | 15.5/13.84 4.24/3.04
5.63 66.45 27.12
0.52/0.35 36.74/33. . .
o1 Ves / /33.16 17.2/14.86
6.22 102.47 63.5
0.67/0.49 6.61/5.09 257.1/240.88
P2 No
6.55 110.27 58.66

and the time taken by the SMT-solver (both times in seconds). The second line
reports the heap size (in Mbytes) required by z3. In every case the specification is
satisfiable, property p1 does not hold (the tool returns a counterexample), while
property p2 holds (“unsat” is returned). In addition to the results shown in the
table, a variant of Formula where testg<.< is used instead of testgc<a (i-e.,
< is replaced by <) is shown to not hold, and a counterexample is obtained in less
than 1 second.

Finally, we present an interesting behavior over unrestricted signals. The be-
havior is captured by the following formulae, which state that p and ¢ only occur
in isolated instants, with p occurring exactly every 80 time units, and ¢ occurring
within 80 time units in the past from each p (origin excluded).

G (G(O,SO)(*p) = G(so,wo)(ﬁp) A > R
(p=F,160p) A (¢=(—¢)UT)
P A Go,80)(7P) A G(o,00)(P = P(0,50)9)

(26)

In this case, the bound k = 10 is enough to prove that the formula is satisfiable: a
model is produced in about 40 secs. In around the same time, the solver shows that
property G° (p = F(0780)(q)) holds for model (up to the considered bound),
whereas property G'(q = F(0,80)(g)) does not hold. It is worth noticing that, in
Formula , the constants 80 and 160 occurring in the temporal modalities are
significantly greater than the above bound k = 10, since in principle any value is
possible for the clock increments between two consecutive positions. Therefore, the
length of the intervals described by a CLTLoc model is independent of the bound
k, as long as k is large enough to capture all change points that are necessary to
build a periodic sequence of regions.

9 Conclusions

This paper investigates a bounded approach to satisfiability checking of an exten-
sion of CLTL where variables behave like clocks (CLTLoc). The decidability of
the logic (by means of an automata-based technique) is shown first, followed by
an encoding into a decidable SMT problem. This encoding, implemented in our
ae?zot tool, allows, both in principle and in practice, the use of SMT solvers to
check the satisfiability of CLTLoc. We provide a short but non-trivial example of
a CLTLoc specification describing a timed behavior over continuous time, which
should demonstrate the effectiveness of this approach, as we are able to (dis)prove

38 Marcello M. Bersani et al.

various properties of the specification. The paper also outlines continuous time,
metric temporal logics, namely MITL and MTLq o, (a generalization of QTL),
showing that their extension pMITL, allowing existential propositional quantifiers,
is as expressive as CLTLoc over the pointwise semantics. An encoding of MITL
over the continuous semantics into CLTLoc is implemented in our qtlsolver tool.
This shows that CLTLoc can be considered as a target language to reduce decision
problems of various continuous-time formalisms, such as temporal logics, but in
principle also Timed Automata or Timed Petri Nets.

To the best of our knowledge, our approach is the first allowing an effective
implementation of a fully automated verification tool for continuous-time metric
temporal logics such as MITL. The tool is still a non-optimized prototype, whose
performance might also be substantially improved in future versions. Clearly, ver-
ification of formulae requiring many clocks may in general be infeasible, since
satisfiability of MITL is EXPSPACE-complete (but we also support verification
of an interesting, PSPACE-complete fragment of MITL). However, in practice a
large number of clocks is not very frequent, and the examples of MITL formulae
that we studied were verified in a fairly short time.

Acknowledgements We would like to thank the anonymous reviewers for their comments,
which have greatly helped improve the presentation of the paper.

References

—_

. gtlsolver. available from qtlsolver.googlecode.com.

. Zot: a bounded satisfiability checker. available from |zot.googlecode.com.

3. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

4. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. Journal of
the ACM, 43(1):116-146, 1996.

5. G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model checking
for timed systems. In Proc. of FORTE, pages 243-259, 2002.

6. B. Badban and M. Lange. Exact incremental analysis of timed automata with an SMT-
solver. In FORMATS, volume 6919 of LNCS, pages 177-192. 2011.

7. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In Lect. on
Concurrency and Petri Nets, volume 3098 of LNCS, pages 87-124. 2004.

8. M. M. Bersani, A. Frigeri, A. Morzenti, M. Pradella, M. Rossi, and P. S. Pietro.
Constraint LTL satisfiability checking without automata. Journal of Applied Logic,
2014. In Press, available from http://www.sciencedirect.com/science/article/pii/
S1570868314000615.

9. M. M. Bersani, A. Frigeri, A. Morzenti, M. Pradella, M. Rossi, and P. San Pietro. Bounded
reachability for temporal logic over constraint systems. In TIME 2010, pages 43-50. IEEE
Computer Society, 2010.

10. M. M. Bersani, A. Frigeri, M. Rossi, and P. San Pietro. Completeness of the bounded
satisfiability problem for constraint LTL. In Reachability Problems, volume 6945 of LNCS,
pages 58-71. 2011.

11. M. M. Bersani, M. Rossi, and P. San Pietro. Deciding continuous-time metric temporal
logic with counting modalities. In Reachability Problems, volume 8169 of LNCS, pages
70-82. 2013.

12. M. M. Bersani, M. Rossi, and P. San Pietro. Deciding the satisfiability of MITL specifi-
cations. In Proc. of the Int. Symp. on Games, Automata, Logics and Formal Verification
(GandALF), pages 64-78, 2013.

13. M. M. Bersani, M. Rossi, and P. San Pietro. On the satisfiability of metric temporal logics

over the reals. In Proc. of the Int. Work. on Automated Verification of Critical Systems

(AVOCS), pages 1-15, 2013.

I\

http://qtlsolver.googlecode.com
http://zot.googlecode.com
http://www.sciencedirect.com/science/article/pii/S1570868314000615
http://www.sciencedirect.com/science/article/pii/S1570868314000615

A Tool for Deciding the Satisfiability of Continuous-time Metric Temporal Logic 39

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. M. Bersani, M. Rossi, and P. San Pietro. A logical characterization of timed (non-
Jregular languages. In Mathematical Foundations of Computer Science, volume 8634 of
Lecture Notes in Computer Science, pages 75-86. 2014.

M. M. Bersani, M. Rossi, and P. San Pietro. An SMT-based approach to satisfiability
checking of MITL. Information and Computation, 2015. To appear.

A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, and V. Schuppan. Linear encodings of
bounded LTL model checking. Log. Met. in Comp. Sci., 2(5), 2006.

P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL and MTL.
Information and Computation, 208(2):97-116, 2010.

E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and complexity
of bounded model checking. In Verification Model Checking and Abstract Interpretation,
volume 2937 of Lecture Notes in Computer Science, pages 85-96. Springer, 2004.

S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL. Information
and Computation, 205(3):380-415, 2007.

D. D’Souza and P. Prabhakar. On the expressiveness of mtl in the pointwise and continuous
semantics. International Journal on Software Tools for Technology Transfer (STTT),
9(1):1-4, 2007.

D. D’Souza and N. Tabareau. On timed automata with input-determined guards. In
FORMATS/FTRTFT ’04, volume 3253 of Lecture Notes in Computer Science, pages 68—
83. 2004.

J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real addition
with order. STAM J. Comput., 4(1):69-76, 1975.

T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time languages.
In In Proc. 25th Int. Coll. Automata, Languages, and Programming (ICALP’98, pages
580-591. Springer-Verlag, 1998.

Y. Hirshfeld and A. Rabinovich. Timer formulas and decidable metric temporal logic.
Information and Computation, 198(2):148 — 178, 2005.

Y. Hirshfeld and A. M. Rabinovich. Logics for real time: Decidability and complexity.
Fundamenta Informaticae, 62(1):1-28, 2004.

L. Khachiyan. Polynomial algorithms in linear programming. U.S.S.R. Computational
Mathematics and Mathematical Physics, 20(1):53 — 72, 1980.

O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In Proc. of
FORMATS, volume 4202 of LNCS, pages 274-289. 2006.

Microsoft Research. Z3: An efficient SMT solver. http://research.microsoft.com/en-
us/um/redmond/projects/z3/.

G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst., 1(2):245-257, Oct. 1979.

P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, O. Maler, and N. Jain. Verification of
timed automata via satisfiability checking. In FTRTFT, volume 2469 of LNCS, pages
225-243. 2002.

D. C. Oppen. Complexity, convexity and combinations of theories. Theoretical Computer
Science, 12(3):291 — 302, 1980.

J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In LICS, pages
188-197, 2005.

M. Pradella, A. Morzenti, and P. San Pietro. Bounded satisfiability checking of metric
temporal logic specifications. ACM Trans. on Softw. Eng.g and Meth. (TOSEM), 22(3):20,
2013.

A. Rabinovich. Complexity of metric temporal logics with counting and the Pnueli modal-
ities. Th. Comp. Sci., 411:2331-2342, 2010.

P.-Y. Schobbens, J.-F. Raskin, and T. A. Henzinger. Axioms for real-time logics. Theor.
Comput. Sci., 274(1-2):151-182, 2002.

A. Tarski. A decision method for elementary algebra and geometry. Univ. of California
Press, second ed., Berkeley, 1951.

	Introduction
	Constraint LTL over clocks
	Decidability and Complexity of CLTLoc
	An SMT-based procedure for solving CLTLoc satisfiability.
	MITL, MTL(0,), QTL, and pMITL
	Comparing CLTLoc and pMITL on the pointwise semantics
	Encoding Metric Temporal Logics over the continuous semantics
	Implementation and Experimental Results
	Conclusions

