
Citation: Di Gerlando, A.; Ricca, C.

Analytical Modeling of Magnetic

Field Distribution at No Load for

Surface Mounted Permanent Magnet

Machines. Energies 2023, 16, 3197.

https://doi.org/10.3390/en16073197

Academic Editor: Ryszard Palka

Received: 28 February 2023

Revised: 16 March 2023

Accepted: 28 March 2023

Published: 1 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Analytical Modeling of Magnetic Field Distribution at No Load
for Surface Mounted Permanent Magnet Machines
Antonino Di Gerlando and Claudio Ricca *

Department of Energy, Politecnico di Milano, via La Masa 34, 20156 Milan, Italy
* Correspondence: claudio.ricca@polimi.it

Abstract: This paper presents an analytical study of the air-gap magnetic field of a Surface Permanent
Magnet (SPM) linear machine under no load. By means of the method of images, the complex
expression of the magnetic field of a conductor, inside the air gap between two smooth iron surfaces,
is retrieved. Then, integrating the conductor expression, the formulation of the magnetic field of a
current sheet and thus the one of a SPM, using two vertical current sheets, is obtained. At last, the
no-load magnetic field expression, for a generic time instant, of a slotless machine is retrieved. The
novelty of the proposed approach is the availability, due to a different calculation approach, of a
unique closed-form formulation for the slotless machine air-gap field, a quantity that, in literature, is
usually present in Fourier series formulation. Additionally, as a means to calculate integral quantities
and show the goodness of the method a complex slotting function is introduced to account for the
slotted geometry. Finally, starting from Lorenz’s force formulation, the expression of the Maxwell
tensor in complex form is retrieved and the contribution of forces, integral of the complex stress
tensor quantity, will be calculated and compared with FEM simulations, showing a good agreement
also with the analytical slotted model.

Keywords: cogging torque; electromagnetic forces; magnetic fields; Maxwell tensor; magnetic flux
density; permanent magnet machines

1. Introduction

The study of analytical techniques to predict the magnetic field distribution inside
the air gap of the electrical machines has been, and still is a topic of interest, also after
the improvement experienced by numerical methods. It is so because analytical methods
not only help us to better understand the core parameters which influence the physical
phenomena; but also because they are generally faster than their counterpart. Thus, even
if under simplifying hypotheses, they are helpful, especially during the early part of a
design project to predict motor performances or to carry out optimizations. Through the
study of the air-gap magnetic field, it is possible to calculate quantities like flux linkages,
back electromotive forces, and magnetic forces, hence, investigating the cause of noise and
vibration inside electrical machines.

Among the analytical methods concerning the flux density distributions inside the
air-gap of the electrical machines present in literature, it is found the method based on
the solution of the analytical 2D Laplacian quasi-Poissonian field equations assuming
infinitely permeable iron [1,2]. Those types of models were introduced for slotless SPM
motors in [3] and later extended to slotted geometries, throughout the use of the relative
air-gap permeance [4], for the normal flux density component only, which, expressed
in term of Fourier series and multiplied to the slotless flux density distribution gives
the flux density profile of the slotted machine. Nevertheless, the lack of tangential flux
density component of the slotted geometry, developed in [4] does not allow to retrieve
quantities like the cogging torque, by integrating the tangential component of the Maxwell
stress tensor. To this purpose, [5] introduced the complex permeance function allowing
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us to also retrieve the tangential component of the flux density air-gap field distribu-
tion and analytically calculate the torque, using the Maxwell stress tensor [6]; this pro-
cess, unfortunately, requires the solution of a nonlinear complex equation, leading to
higher computational time. The methods just mentioned together with the work done by
Carter [7] and the Schwarz–Christoffel mapping method [8–10] fall all into the conformal
mapping category.

Another category of models concerns the subdomain models, which solve the flux
density field inside the slotted machine, by dividing the entire domain into subdomains,
enclosing air, magnets, slots, and slot openings; solving Maxwell’s equations into it using
the separation of variables [11–13]. Subdomains models can accurately predict flux density
into magnetic air gap, magnets, and slot opening with very good accuracy, and they appear
to be better also for the cogging torque calculation compared with permeance models [14].

Methods that rely on the equivalent magnetic circuit methods (EMC) can be also found
and consist in drawing a magnetic circuit model of the machine with lumped or distributed
reluctances parameters to model the machine’s magnetic flux tubes and retrieve quantities
like flux linkages and average flux density values [15,16]. A variety of hybrids methods of
the previously mentioned ones are also present [17–19].

Lastly, a less used and known category of analytical methods based on Lord’s Kelvin
method of images as [20,21] can be found and the presented paper belongs to it. The method
here introduced models the slotless field of an SPM machine, not solving the 2D Laplacian
quasi-Poissonian field equations like Zhu did in [3], but using a different approach based
on the method of images and duality between the electric and magnetic fields.

In Sections 2.1 and 2.2 the flux density air-gap expression produced by the powered
conductor stated by [22] and then formulated in complex form [23], has been extended to
an indefinitely long current sheet energized by a linear current density: then, two vertical
parallel current sheets have been used, in order to model a surface permanent magnet.

In Section 2.3 the totality of permanent magnets present on the machine periphery has
been modeled introducing also the time variable.

Then, in Section 3.1, to account for the slotting effect, similarly to [5], a more compact
formula of the relative air-gap permeance function has been introduced, starting from [24].

In Section 3.2, the flux density profile of the slotted machine, product of the complex
slotting function, and the slotless flux density vector is retrieved and compared with FEM
simulations, showing an outstanding agreement.

In Section 4.1, starting from the Lorentz’s force formula, the Maxwell stress tensor in
complex form has been obtained and in Section 4.2 it is used to retrieve both the normal
and tangential component of the total force of the slotted machine.

Finally in Section 4.3 the computational time required for the proposed method is
shown in comparison with FEM simulations.

What distinguishes the proposed model from the other ones is that: the slotless
formulation is not expressed by means of a solution in the Fourier series but by means of
a closed-form analytical formulation. Furthermore, the high level of accuracy of the flux
density normal and tangential air-gap components calculation is in the same range as the
sub-domain models.

Among the advantages of the above-mentioned method, there is the simplicity of
implementation and fast response, bringing accurate results also for the Maxwell stress
tensor calculation, which is not an easy task as it is well known in the literature. On the other
side, the method shows the weak points of assuming unity relative recoil permeability
and neglect saturation. However, modern SPM machines are usually equipped with
PM materials with pu recoil permeability typically around 1.09 [25–27], so quite close to
vacuum permeability. Moreover, it is possible to show that the actual air-gap flux density
distribution taking into account saturation can be obtained from the unsaturated one,
multiplied by suitably calculated saturation correcting factors.
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2. Magnetic Field between Smooth Ferromagnetic Surfaces
2.1. Linear Conductor with Infinitesimal Section

The magnetic field distribution produced by an indefinite current-carrying conductor,
cutting the paper plane perpendicularly and placed into the air gap between two smooth
ideal ferromagnetic surfaces, can be modeled analytically in Cartesian coordinates, using
the method of images described in [22]. The aforementioned method makes use of the
following assumptions and limitations:

i Stator and moving surfaces are supposed to be smooth and separated by an air gap of
uniform width.

ii Magnetic field is just 2D and lies in the paper plane.
iii The machine is supposed to be so long into the paper plane direction, so end effects

are negligible.
iv Relative recoil permeability is considered to be equal to the vacuum permeability

(µr = 1).
v Iron permeability is assumed to be infinite so the method of superimposition can be

used.
vi The iron parts are perfectly laminated thus no eddy current can be induced in the iron

by the varying magnetic field.
vii The conductors placed inside the air gap extend indefinitely perpendicular to the

paper plane.
viii Skin effect due to alternating currents flowing in the conductors is neglected.

By representing the magnetic field vector quantities as complex numbers, made by a
real and imaginary part, representative respectively of the tangential and normal vector
components, let’s focus on Figure 1, where a conductor powered by a current I, flowing
perpendicularly outwards the paper plane xy, is positioned into the air-gap complex plane
at a generic point p of coordinates zp = xp + jyp, between two smooth infinitely permeable
iron surfaces.

yp

xp

I Bc(z)
z = x + jy

x

y

Iron

Iron

Airg

Figure 1. Conductor powered by a current I, flowing outwards the paper plane, between two smooth
infinitely permeable iron surfaces, in the complex plane.

To be able to calculate the field strength vector at a certain point z between two smooth
iron surfaces, the aforementioned configuration can be exchanged with an equivalent one
in which the iron parts are removed and substituted with two infinite series of images.
The conductors from the first and second series of images are placed at positions zp + j2ng
and z̄p + j2ng, with n ∈ Z ranging from minus and plus infinity. By using the theorem
of superimposition the field strength inside the air-gap can be expressed as the sum of
two mathematical series representative of the two image series, a formulation a little
complicated which has been simplified in [23] giving rise to the formulation:

Bc(z) = µo
jI
4g
·
ï

coth
π(z̄− z̄p)

2g
+ coth

π(z̄− zp)
2g

ò
(1)

where I is the current flowing inside the conductor, g the air-gap length, zp and z̄p the
position of the conductor in complex coordinates and its conjugate.
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2.2. Permanent Magnet Current Sheet Model

As it is well known already in the literature, the magnetic field produced by a per-
manent magnet can be modeled by the use of current sheets. In the following subsection,
the approach which models the magnetic field produced by a conductor set between two
smooth ideal iron surfaces previously introduced will be extended to current sheets in
order to model the magnetic field produced by surface permanent magnets.

In Figure 2 current sheet indefinitely extended into the paper plane and vertically
oriented, inside the air gap of two smooth iron surfaces are considered, distributed
along the points p, with coordinates zp = xp + jyp. This distribution has extreme points
zp1 = xp + jyp1 and zp2 = xp + jyp2.

yp2

yp1 xp

∆ · dyp
Bcs(z)

z = x + jy
x

hcs

y

Iron

Iron

Airg
δ

Figure 2. Vertically oriented current sheet of length hcs, powered by a current density ∆ flowing
outwards the paper plane, whose extremes are situated at zp1 and zp2 between two smooth iron
surfaces (g = 11.5 mm and δ = 1.5 mm).

Let’s assume that the current sheet is powered by a constant current density of
∆ = I/hcs, flowing outwards the paper plane, where I is the total current and hcs the
current sheet finite length. By taking into consideration an infinitesimal current sheet
element ∆ · dyp, it is possible to express the infinitesimal flux density air-gap complex
vector as:

dBcs(z) = µo
j∆dyp

4g
·
ï

coth
π(z̄− xp + jyp)

2g
+ coth

π(z̄− xp − jyp)
2g

ò
. (2)

Then, let’s integrate (2) between yp1 and yp2, with yp1 set to zero (the current sheet
starts from the lower iron surface), the air-gap flux density vector, produced by a current
sheet of length hcs, with zp1 = xp + j0 and zp2 = xp + jyp2 its ends points and powered by
a current density ∆ flowing outwards the paper plane is retrieved:

Bcs(z) = µo
∆

2π
· ln
ï

sinh
π(z̄− xp + jyp2)

2g

¡
sinh

π(z̄− xp − jyp2)
2g

ò
. (3)

Making use of (3), the field of an SPM, leaning on the lower iron surface and with
the north pole oriented positively towards y, can be modeled by the use of two current
sheets vertically oriented, whose current density equals the PM coercivity Ho = Br/µoµr.
The first current sheet will be positioned on the right, inside the first quadrant, powered
by a current density ∆ = −Ho, flowing inwards the xy plane, whose ends are situated at
zp1 = bm/2 + j0 and zp2 = bm/2 + jhm, being bm and hm the width and height of the PM.
The second one will instead be positioned symmetrically to the y axis on the left, inside the
second quadrant, powered by a current density ∆ = Ho which flows outwards the plane
and whose ends point equals the negative conjugates of points zp1 and zp2, giving:

BPM(z)=
Br

2πµr
·
®

ln


sinh

π(z̄−zp2)
2g

sinh
π(z̄−z̄p2)

2g


+ ln


sinh

π(z̄+zp2)
2g

sinh
π(z̄+z̄p2)

2g



´

zp2 = bm/2 + jhm

(4)



Energies 2023, 16, 3197 5 of 19

wherein the real part BPMx (z) = Re{BPM(z)} and imaginary part BPMy (z) = Im{BPM(z)}
represent the tangential and normal components of the vector flux density function of a
generic complex point z, produced by an SPM leaning on the lower iron surface, with y as
an axis of symmetry and north oriented positively towards it.

The theoretical case of a SPM, between two smooth iron surfaces, indefinitely extended
along x, that lies on top of the lower iron surface, is now investigated making use of the FEM
analysis and the analytical vertical current sheets model previously introduced. The magnet,
positioned in the center of the coordinate system, has peripheral size bm = 102.05 mm and
height hm = 10 mm, and its north points toward y positive. In Figure 3a,b the analytical
and FEM normal and tangential flux density distribution components on the middle of
the mechanical air gap at yM = g− δ/2 over the permanent magnet peripheral extension
is plotted. FEM simulations have been carried out with infinitely permeable iron and
relative recoil permeability set to one. Both the normal and tangential distributions are
expressed in p.u. with respect to Bi = µo ·U/g, which is the ideal flux density flat profile
reference value, with U the air-gap magnetic voltage drop and g the distance between the
ferromagnetic surfaces. is important to mention that, for the considered ideal case, where
the magnet is between two smooth iron surfaces extended indefinitely along x, the magnetic
voltage drop in the part of air-gap where the flux comes back, equals zero. Being the
crossing area of the returning flux of infinite extension, as it is clearly shown in Figure 3a,
everywhere the magnetic voltage drop is positive, thus Bi = µo Hohm/g. Figure 4a,b, instead
show the normal and tangential analytical and FEM infinitely permeable iron flux density
distributions generated by the permanent magnet between two smooth iron surfaces in the
middle of the PM body.
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Figure 3. Analytical and FEM flux density distributions, on the middle mechanical air-gap line,
caused by an SPM between two smooth iron surfaces (−bm ≤ x ≤ bm Nx = 1000). (a) p.u. normal;
(b) tangential component.
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Figure 4. Analytical and FEM flux density distributions on the middle PM line, caused by an SPM between
two smooth iron surfaces (−bm ≤ x ≤ bm Nx = 1000). (a) p.u. normal; (b) tangential component.
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2.3. Magnetic Field due to a Sequence of Permanent Magnets

The SPM current sheet model introduced in the previous subsection can be extended
to a series of permanent magnets, to model the magnetic field produced by an SPM machine
during no load working conditions. For the sake of simplicity, the method will be now
applied to a linear SPM machine, but it can also be generalized for cylindrical geometries
using conformal mapping, as it is done for a series of concentrated conductors in [23]. It is
worth mentioning that the following method works also for more complex magnet shapes
for example the Halbach ones. The machine type examined for the purpose is shown in
Figure 5a whose main data are listed in Table 1; the machine sizes listed below are retrieved
using a pre-design procedure applied to an axial flux PM machine, linearized along the
average radius [28].

y

x

nth: 1 2 3 4 5 6 7 8 9

BA

(a)

y

x

hm

δ

bs

bm/2

bso

bps

hps

hs

g

hso

(b)

Figure 5. (a) Machine case of study: (1) slotless: zones A© and B© both filled with iron; (2) slotted:
zone A© filled with iron and B© with air. (b) Zoom with main sizes.

Table 1. Machine Main Data.

Parameters

residual flux density, Br 1.1 T
N° of teeth, Nth ; N° of PM, Nm 9 ; 8
PM pitch, τm ; p.u. ratio, αm 113.39 mm ; 0.9
PM height, hm ; air-gap height, δ 10 mm ; 1.5 mm
slot height, hs ; slot width, bs 20.5 mm ; 44.3 mm
tooth tip height, hso ; slot opening width, bso 2 mm ; 6 mm
pole shoe height, hps ; pole shoe width, bps 12 mm ; 94.79 mm
stack length, ` 61.25 mm

Let’s consider first the slotless machine pictured in Figure 5a, where A© and B© are both
filled with iron. Considering as moving the PM slider at a constant speed equal to 2τm/T,
(4) can be also expressed as a function of time and generalized for a kth magnet belonging
to the machine periphery as:

BPM(z, k, t) =
Br

2πµr
·
®

ln


sinh

π(z̄−zp2+∆kx)
2g

sinh
π(z̄−z̄p2+∆kx)

2g


+ ln


sinh

π(z̄+zp2+∆kx)
2g

sinh
π(z̄+z̄p2+∆kx)

2g



´

zp2 = bm/2 + jhm ∆kx = kτm +
t
T

2τm

(5)
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where the term ∆kx represents the shift in space, function of time, along the negative coordi-
nate x of a generic kth SPM belonging to the machine periphery. Being in magnetic linearity,
from (5), the contribution of the flux density at the point z into the air-gap, produced by
the SPMs totality situated on the moving structure of the considered configuration can be
finally stated as:

B(z, t) =
Nm/2

∑
k=−Nm/2

(−1)k · BPM(z, k, t) (6)

in which the term (−1)k justifies the presence of the alternating north and south adjacent
polarities. Figure 6a,b shows the flux density distributions components of the total SPM
model stated in (6) on the middle air-gap line in comparison with a magneto-static FEM
simulation with infinitely permeable iron for a PM slider position corresponding to a time
instant t = T/15 (T = 16.67 ms).

−4 −2 0 2 4
−1.2

−0.6

0

0.6

1.2

x · τ−1
m

B y
( x

+
jy

M
,

T 15
) ( T

)

ANA

FEM

(a)

−4 −2 0 2 4
−0.2

−0.1

0.1

0.2

x · τ−1
m

B x
(x

+
jy

M
,

T 15
)(

T
)

ANA

FEM

(b)
Figure 6. Analytical and FEM no-load flux density distributions on the middle mechanical air-gap
line of the slotless machine of Figure 5a, with PM slider position corresponding to a time instant
t = T/15 (−4τm ≤ x ≤ 4τm Nx = 1000). (a) normal; (b) tangential component.

Note that, the inequality between adjacent peaks for both the FEM and analytical
patterns in Figure 6b isn’t real but just a plotting effect due to the spatial discretization of
the machine periphery.

3. Magnetic Field in Case of Slotted Ferromagnetic Surfaces
3.1. Slot Opening Model

In the subsequent sections, the presence of the slot opening and its influence on the
magnetic field distribution inside the air gap will be analyzed. Using the approach based
on the solution in Fourier series of the Laplace equation [24], a unique and more compact
expression of the complex relative air-gap permeance function is obtained, effective for any
segment positioned inside the air-gap of the machine.

Figure 7 exhibits the flux lines map, produced by a slot with two rectangular energized
active sides with a total slot m.m.f of constant value Ms, inside a linear ferromagnetic
slotted structure, for a slot opening size bso = 6 mm.

Figure 7. Flux lines inside energized and not energized slot (slot opening bso = 6 mm). Even if not
shown in the figure, the magnetic structure is symmetrical with respect to the energized slot axis.
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The focus will be placed according to the classical theory on the area regarding the
unenergized slot, the slot where the m.m.f contribute is null, being the energized slot area
object of another work.

Considering a generic point z = x + jy inside the air-gap domain, it is possible to
define a complex function β(z) = βx(z) + jβy(z) whose components are:

βy(x + jy) =
Bsy (x + jy)

Bi
(7)

βx(x + jy) =
Bsx (x + jy)

Bi
(8)

with Bi = µo Ms/2g. Recalling the flux density vector B(z) between smooth iron surfaces
the slotted flux density vector can be stated as:

Bs(z) = λ(z) · B(z) (9)

where λ(z) is the relative complex permanence function [5]. Due to the fact that the slotless
flux density vector has only the vertical component (B(z) = jBi) from (9):

λ(z) =
Bs(z)

jBi
= βy(z)− jβx(z) = −jβ(z). (10)

Hence it is possible to define a complex slotting function β(z) which transforms the
slotless flux density vector B(z) to a slotted vector according to:

Bs(z) = −jβ(z) · B(z) (11)

and finally, starting from the approach explained in [24] and through some manipulations,
the complex slotting function can be formulated as:

β(z) =

Nh

∑
n=1

j
α(n)

sinh 2πng
τt

ï
cos

2πnz̄
τt

+
(−1)n

kc − 1
cos

πn(z− z̄)
τt

ò

Nh

∑
n=1

(−1)nα(n)

[
τt

2πng
+

1
kc − 1

cos πn(z−z̄)
τt

sinh 2πng
τt

]

α(n) =
∫ ρso/2

0

Ç
1

3
√

ρso/2− ξ
− 1

3
√

ρso/2 + ξ

å
sin(2πnξ)dξ.

(12)

This slotting complex function is periodic along the coordinate x over a machine tooth
pitch τt and in respect to [24] it has the advantage to be just one compact complex formula
generalized for a generic complex point z = x + jy within the air-gap domain.

Now bringing the attention to the schematic shown below in Figure 8, where a generic
exploration segment γe is horizontally positioned at ye in the range 0 ≤ ye ≤ g, the slotted
flux density vector along segment γe can be obtained as follows:

Bs(x + jye) = −jβ(x + jye) · B(x + jye). (13)
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y

x

ye

g γe

Figure 8. Slotted air-gap with generic segment γe (−τt/2 ≤ x ≤ τt/2).

Figure 9a,b show the p.u. flux density distributions retrieved with (12) compared with
the FEM on an horizontal segment at y = yM in front of a slot opening bso = 6 mm.
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Figure 9. Analytical and FEM no-load flux density p.u. (a) normal and (b) tangential component on
the middle mechanical air-gap line at ye = yM (−1/5τt ≤ x ≤ 1/5τt Nx = 1000, Nh = 150).

3.2. Magnetic Field due to a Sequence of Permanent Magnets for Slotted Surfaces

It will be now taken into consideration the slotted machine pictured in Figure 5a
where A© is filled with iron and B© is filled with air. In Section 3.1 the behavior of the flux
density vector inside the mechanical air-gap, in proximity of an unpowered slot has been
investigated, defining a complex slotting function analogous to the complex permeance
function. As soon as the value of the exploration coordinate is chosen, the slotted flux
density vector on the horizontal line at y = ye as a function of time can be retrieved:

Bs(x + jye, t) = −jβ(x + τt/2 + jye) · B(x + jye, t) (14)

with (12) also taken along a horizontal line at y = ye shifted by τt/2 to align with the
coordinate system of Figure 5a. It can be easily noticed that, being the slot opening of the
linear machine positioned on the stator, the complex slotting function is fixed and does not
depend on time.

Figures 10a and 11b show the normal and tangential flux density distributions on the
middle air-gap line z = x + jyM for a time instant t = T/15, where t = 0 corresponds to the
time in which the north magnet (white color PM in Figure 5a is aligned with the central
tooth nth = 5.
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Figure 10. Analytical and FEM no-load flux density normal component on the middle mechanical
air-gap line of the slotted machine of Figure 5a, with PM slider position corresponding to a time
instant t = T/15 (−4τm ≤ x ≤ 4τm Nx = 1000, Nh = 150); (b,c) are two different selective zooms
of (a).
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Figure 11. Analytical and FEM no-load flux density tangential component on the middle mechanical
air-gap line of the slotted machine of Figure 5a, with PM slider position corresponding to a time
instant t = T/15 (−4τm ≤ x ≤ 4τm Nx = 1000, Nh = 150); (b,c) are two different selective zooms
of (a).
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The analytical pattern is perfectly superimposed almost everywhere to the FEM one,
except in some areas where the two patterns slightly differ from each other, as it can be
seen in Figures 10b and 11b. The reason is explained by the fact that, in the area of interest,
a magnet edge lies in front of the slot opening, slightly modifying, because of fringing,
the flux lines patterns from the ideal ones represented by the slot opening complex function.
Notice that the method here presented models the no-load air-gap flux density pattern of a
machine with semi-closed slots but it can be applied to model the air-gap flux density of
machines with open slots as well.

4. Complex Integral Quantities
4.1. Complex Vectors and Mechanical Actions

In the antecedent sections, the analytical expression of the magnetic field inside the air
gap of a smooth infinitely permeable iron machine has been introduced and subsequently,
by the use of (12), the complex slotting function was obtained to account for the presence
of the slots. Now being aware of the analytical field distribution, into the air-gap domain,
it is possible to determine integral quantities like magnetic fluxes and mechanical forces.
Here attention will be devoted only to the mechanical forces generated inside the machine.

Let’s consider the infinitesimal portion of a conductor, with infinitesimal cross-section
dA and length d`, immersed in a magnetic field and powered by a current density J shown
in Figure 12.

d`

B
J

dA

Figure 12. Infinitesimal conductor portion powered by a current density J immersed in a magnetic
field of flux density value B.

Writing the well-known Lorenz’s expression, the infinitesimal contribution of force
acting on the conductor is:

dF = JdAd`× B. (15)

Moving the vector information from the vector infinitesimal element d` to the current
density J and dividing by the infinitesimal volume dv = dAd` allows to write:

dF
dv

= J× B = (∇×H)× B (16)

which is the expression of the force per unit volume, that, integrated over the conductor
volume, gives the entire mechanical force acting on it. Consequently (16) can be integrated
in the volume of interest:

F =
∫

V
(∇×H)× B dv. (17)

Because the field is planar, lying entirely on the xy plane, (17) can be written as a
surface integral over the area of interest A multiplied by the axial length `:

F = ` ·
∫

A
(∇×H)× B dA. (18)

At this stage, before to proceed with further manipulations of the aforementioned equations,
a small mathematical statement must be postulated:
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Considering a generic complex vector W(z(x, y)) = Wx + jWy, lying on the xy plane
and z̄ = x− jy, being the conjugate of a generic complex point z, being ∂z̄

∂x = 1 and ∂z̄
∂y = −j

it is possible to write: 



∂W(z(x,y))
∂x = ∂W

∂z̄ · ∂z̄
∂x = ∂W

∂z̄

∂W(z(x,y))
∂y = ∂W

∂z̄ · ∂z̄
∂y = −j ∂W

∂z̄

(19a)

and from (19a):

2
∂W
∂z̄

=
∂W
∂x

+ j
∂W
∂y
⇒ 2

∂

∂z̄
=

∂

∂x
+ j

∂

∂y
. (19b)

Introducing another generic complex vector Ω(z(x, y)) = Ωx + jΩy, function of the complex
variable z it can be demonstrated that:

Ω̄W = Re{Ω̄W}+ j Im{Ω̄W} = Ω ·W + j|Ω×W| (19c)

thus looking at (19b) and (19c), setting Ω = ∇, the curl and divergence of the generic
complex vector W can be expressed as follows:

∇ ·W =

Å
∂

∂x
+ j

∂

∂y

ã
· (Wx + jWy) = 2

∂

∂z̄
·W = Re

ß
2

∂W
∂z

™
(19d)

|∇ ×W| =
∣∣∣∣
Å

∂

∂x
+ j

∂

∂y

ã
× (Wx + jWy)

∣∣∣∣ =
∣∣∣∣2

∂

∂z̄
×W

∣∣∣∣ = Im
ß

2
∂W
∂z

™
. (19e)

Then, according to what is stated above in (19d) and (19e), the divergence and curl of
the vector H can be expressed as the real and imaginary part of twice the derivative of H in
respect to z:

∇ ·H = Re
ß

2
∂H
∂z

™
(20)

∇×H = Im
ß

2
∂H
∂z

™
k̂ (21)

where k̂ is the versor of the axis perpendicular to the complex plane. However, due to the
solenoidal property of the field and being inside a constant permeability medium (air), (20)
equals zero and the derivative of H in respect to z is purely imaginary:

2
∂H
∂z

= j Im
ß

2
∂H
∂z

™
(22)

consequently (16) can be stated as:

dF
dv

= Im
ß

2
∂H
∂z

™
k̂× B = −j2

∂H
∂z

k̂× B = 2
∂ B2

2µo

∂z
. (23)

Finally by the use of (23), remembering the property explained in (19a)–(19e) the total
force acting on the conductor expressed into (18) can be stated as a force per unit length
F′ = F/` as follows:

F′ =
∫

A

Ç
∇ · B2

2µo

å
dA + j

∫

A

∣∣∣∣∇×
B2

2µo

∣∣∣∣ dA. (24)

If the generic closed curve C oriented counterclockwise shown in Figure 13 is taken,
by applying the divergence and curl theorem:
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A

C
dp

Figure 13. Generic closed curve C inside the complex plane embracing an area A.

F′ =
∮

C

∣∣∣∣
B2

2µo
× dp

∣∣∣∣+ j
∮

C

B2

2µo
· dp

=
∮

C
Im

®
B2

2µo
dp

´
+ j

∮

C
Re

®
B2

2µo
dp

´
= j

∮

C

B2

2µo
dp (25)

wherein the first term on the first line of (25) is the flux of B2/(2µo) across C and the second
term is the circulation of B2/(2µo) along C respectively. Then the final expression of the
complex force vector per unit length is obtained. The quantity B2/(2µo) is the conjugate
of the flux density vector squared, divided by twice the permeability of vacuum. Finally
deriving (25) in respect to dp the Maxwell stress complex tensor expression can be retrieved:

σ =
dF′

dp
= j

B2

2µo
. (26)

It is worth mentioning that the equations described in this subsection are of general
validity, also with currents flowing in the stator windings.

4.2. Maxwell Stress Complex Tensor and Forces

The Maxwell stress tensor is used in classical electromagnetism to calculate forces;
the volume integral of J× B, throughout some mathematical manipulations is reduced
to a surface integral of the stress tensor valid for any enclosing surface in the air of the
considered volume, simplifying the calculations. If, into (26) the slotted flux density vector
stated in (14) is inserted, it is possible to write:

σs(z, t) = j
Bs(z, t)2

2µo
(27)

obtaining the Maxwell tensor complex expression, the function of time for the slotted
configuration. Figure 14a,b show the normal and tangential components of the Maxwell
tensor on the middle mechanical air-gap line at y = yM and t = T/15 in comparison
with FEM.
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Figure 14. Analytical and FEM no load Maxwell tensor distributions on the middle mechanical
air-gap line of the slotted machine of Figure 5a, with PM slider position corresponding to a time
instant t = T/15 (−4τm ≤ x ≤ 4τm Nx = 1000, Nh = 150). (a) normal; (b) tangential component.

Figure 14. Analytical and FEM no load Maxwell tensor distributions on the middle mechanical
air-gap line of the slotted machine of Figure 5a, with PM slider position corresponding to a time
instant t = T/15 (−4τm ≤ x ≤ 4τm Nx = 1000, Nh = 150). (a) normal; (b) tangential component.
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As concerns the calculation of the forces per unit length, there are two different targets:

• evaluation of the forces applied to each tooth, typically considered in NVH calculations;
• evaluation of the forces applied to the global system.

With reference to the linear system of Figure 5a, the force on the tooth nth can be
expressed as:

F′nth
(t) =

∫ xnth
+

τt
2

xnth
− τt

2

σs(x + jyM , t) dx (28)

Equation (28) is integrated on the position y = yM , on the middle mechanical air-gap
line, over the tooth pitch of the nth tooth, centered on the tooth axis xnth value, with nth =
1, 2, ..., Nth. The real part and imaginary part of (28) represent the tangential and normal
components of the force per unit length acting on the nth tooth tip. The force applied to the
global stator can be written as:

F′(t) =
∫ Nth

2 τt

− Nth
2 τt

σs(x + jyM , t) dx (29)

but it can also be expressed in the following manner:

F′(t) =
Nth

∑
nth=1

F′nth
(t). (30)

Equations (27)–(30) have general validity, also in case of flowing currents in the stator
windings. If (28) is applied to the central tooth nth = 5 under no load conditions, the normal
and tangential forces per unit length are the ones shown in Figure 15.
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Figure 15. Analytical and FEM force per unit length F′5(t) (0 ≤ t ≤ T/2 Nt = 120) (a) normal; (b)
tangential component. FEM curve obtained using the Maxwell tensor.

The following remarks can be highlighted:

• FEM and analytical waveforms are in fair agreement;
• the normal component amplitude is predominant with respect to the tangential one;
• the force waveform acting on a generic tooth tip has a frequency that is double the

fundamental frequency (1/T).

It can be realized that the no load force waveforms are equal for each tooth tip but
shifted in time by a quantity multiple of T · τt/(2τm). It is possible then to calculate the
total force acting on the stator structure from (28) referred to a single machine tooth tip; for
convenience the tooth whose axis is aligned with the y axis of the reference frame nth = 5:

F′o(t) =
Nth

∑
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t + (nth − 5) · τt

2τm
T
ã

(31)

Figure 15. Analytical and FEM force per unit length F′5(t) (0 ≤ t ≤ T/2 Nt = 120) (a) normal;
(b) tangential component. FEM curve obtained using the Maxwell tensor.

The following remarks can be highlighted:

• FEM and analytical waveforms are in fair agreement;
• the normal component amplitude is predominant with respect to the tangential one;
• the force waveform acting on a generic tooth tip has a frequency that is double the

fundamental frequency (1/T).

It can be realized that the no load force waveforms are equal for each tooth tip but
shifted in time by a quantity multiple of T · τt/(2τm). It is possible then to calculate the
total force acting on the stator structure from (28) referred to a single machine tooth tip; for
convenience the tooth whose axis is aligned with the y axis of the reference frame nth = 5:

F′o(t) =
Nth

∑
nth=1

F′5

Å
t + (nth − 5) · τt

2τm
T
ã

(31)
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wherein the real part F′ox (t) = Re{F′o(t)} and imaginary part F′oy (t) = Im{F′o(t)} represent
the tangential and normal components of the force per unit length acting on the stator
structure, under no load conditions, at a generic time instant t. Computing (31) for Nt
samples of time with 0 ≤ t ≤ T, allows us to retrieve a transient analytical calculation of
the machine’s instantaneous force acting on the stator. Figure 16a,b show the normal and
tangential component of (31) over a period of the cogging force, which corresponds to 1/18
of the electrical period T.
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Figure 16. Analytical and FEM no load force per unit length of the slotted machine of Figure 5a
(0 ≤ t ≤ T/18 Nt = 120). (a) normal component; (b) tangential component. The analytical calculation
was based on (31) and FEM curve was calculated using the Maxwell tensor.

The following considerations can be done:

• the diagrams shown in Figure 16a,b in which both analytical and FEM calculations
are based on Maxwell tensor, can be also obtained using (29);

• (29) implies a greater computation time in respect to (31) due to a wider spacial
integration interval;

• on this peripheral extension, corresponding to the space period, FEM calculation can
be also performed by using the Virtual Work Principle;

• the analytically calculated normal component shows a better agreement with respect
to the FEM result;

• a wider difference appears for the tangential component: the reason for that could be
a massive difference in the order of magnitude of these two components, making the
numerical noise error predominant in the analytical calculation of the minor quantity;
moreover, the tangent component calculation is affected by local inaccuracies due to
fringing effect as shown in Figure 11b.

Figure 17 shows the FEM model at t = 0 which has been used in order to validate
the introduced analytical model together with a picture of the mesh inside the equivalent
air-gap region. The two dotted lines B.C. indicate the boundary conditions that allow us to
obtain periodicity in the field patterns. With the aim of carrying out an equal comparison of
the introduced model with the numerical one, the relative recoil permeability of the PMs of
the FEM model was set to one (µr = 1) and both the rotor and iron relative permeabilities
were set to a very high numerical value (µ f e = 106) to recreate, numerically speaking,
the theoretical condition of infinite iron permeability and neglect the saturation effect. Mag-
netic saturation is not included in the model described in this paper, but already developed
procedures demonstrated that the field in the air gap under saturated conditions can be
obtained starting from the unsaturated distribution using suited correcting coefficients.

Figure 16. Analytical and FEM no load force per unit length of the slotted machine of Figure 5a
(0 ≤ t ≤ T/18 Nt = 120). (a) normal component; (b) tangential component. The analytical calculation
was based on (31) and FEM curve was calculated using the Maxwell tensor.

The following considerations can be done:

• the diagrams shown in Figure 16a,b in which both analytical and FEM calculations
are based on Maxwell tensor, can be also obtained using (29);

• (29) implies a greater computation time in respect to (31) due to a wider spacial
integration interval;

• on this peripheral extension, corresponding to the space period, FEM calculation can
be also performed by using the Virtual Work Principle;

• the analytically calculated normal component shows a better agreement with respect
to the FEM result;

• a wider difference appears for the tangential component: the reason for that could be
a massive difference in the order of magnitude of these two components, making the
numerical noise error predominant in the analytical calculation of the minor quantity;
moreover, the tangent component calculation is affected by local inaccuracies due to
fringing effect as shown in Figure 11b.

Figure 17 shows the FEM model at t = 0 which has been used in order to validate
the introduced analytical model together with a picture of the mesh inside the equivalent
air-gap region. The two dotted lines B.C. indicate the boundary conditions that allow us to
obtain periodicity in the field patterns. With the aim of carrying out an equal comparison of
the introduced model with the numerical one, the relative recoil permeability of the PMs of
the FEM model was set to one (µr = 1) and both the rotor and iron relative permeabilities
were set to a very high numerical value (µ f e = 106) to recreate, numerically speaking,
the theoretical condition of infinite iron permeability and neglect the saturation effect. Mag-
netic saturation is not included in the model described in this paper, but already developed
procedures demonstrated that the field in the air gap under saturated conditions can be
obtained starting from the unsaturated distribution using suited correcting coefficients.
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µ f e = 106

µ f e = 106

Figure 17. FEM model of the machine case of study and selective zoom of the mesh inside the
equivalent air-gap region.

4.3. Computational Efficiency

The time required by the analytical and FEM for the calculation of forces is now
compared. Table 2 shows the time necessary to compute (29) and (31) with respect to
transient FEM simulations using the Virtual Work Principle (VWP) and the Maxwell
tensor (MT).

Table 2. Computational Time.

Method Time

ANA1 (29) Nh = 150,
−4τm ≤ x ≤ 4τm Nx = 10, 000, 3.2 s
0 ≤ t ≤ T/18 Nt = 120,

ANA2 (31) Nh = 150,
−1/2τt ≤ x ≤ 1/2τt Nx = 1111, 0.36 s
0 ≤ t ≤ T/2 Nt = 120,

FEM VWP
0 ≤ t ≤ T/18 Nt = 120, 5.5 min
FEM MT
0 ≤ t ≤ T/18 Nt = 120, 20.6 min
N° of mesh triangles in the different parts inside the machine:
stator: 2100, slider: 1600,
air-gap: 12,000, slots: 300, PMs: 10,800

The calculator is an i7-10850H @ 2.70GHz 32GB RAM, the analytical model has been
implemented using MATLAB R2019b while the FEM simulations have been carried out
with Ansys Electronics Desktop 2021 R2. In the FEM environment, the entire portion of
the machine periphery has to be modeled, due to the fact that τt and τm are not equal no
smaller equivalent models exploiting spatial periodicity can be used. The FEM MT requires
a much higher computational time with respect to the FEM VWP because, for each time
step of the simulation, the field map must be saved. Both the analytical methods are faster
than FEM and comparing the slowest analytical (ANA1) with the fastest FEM (FEM VWP),
analytical is more than 100 times faster. This makes the presented method a good choice for
an easily implemented and fast analytical calculation of the forces acting on the machine
under no load conditions, opening also the possibility to develop future models for the
study of the armature reaction and the on load condition.
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5. Conclusions

The presented paper introduces a new method to analyze the flux density generated
into the air gap of an SPM machine under no-load conditions. Starting from the model of
a single conductor between two smooth iron surfaces, the analytical formulation of two
vertical parallel current sheets have been retrieved and used to model an SPM, showing a
very good agreement with magneto-static FEM simulations, for the slotless machine but
also, after the application of the slotting function, for the slotted machine.

Subsequently, the parameter time has been introduced into the model; and the Maxwell
tensor in the complex formulation has been retrieved starting from Lorentz’s force equation,
adding the possibility to calculate the motor total forces, by the integration of the complex
tensor along the middle air-gap machine periphery using two different approaches.

The proposed method is applied to a classical SPM configuration although it works
very well for more complex PM configurations too, like the Halbach one, as it will be shown
in future work. Future research will focus on the slotting function in front of the energized
slots and will aim to deal with saturation and leakage which is one of the main limitations
of the proposed model, especially under loaded conditions. By using conformal mapping,
the method will be adapted to cylindrical machines. Moreover, saturated conditions will
be modeled by suited correction factors that, applied to unsaturated air-gap flux density
distributions, give the saturated ones.

Author Contributions: Conceptualization, A.D.G. and C.R.; methodology, A.D.G. and C.R.; software,
A.D.G. and C.R.; validation, C.R.; formal analysis, A.D.G.; investigation, A.D.G. and C.R.; resources,
A.D.G.; data curation, C.R.; writing—original draft preparation, C.R.; writing—review and editing,
A.D.G. and C.R.; visualization, C.R.; supervision, A.D.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

bm, αm PM peripheral size, p.u. ratio bm
τm

.
bps tooth tip peripheral size.
bs, bso slot, slot opening peripheral size.

Bc, Bcs, BPM
conductor, vertical current sheet, SPM double current sheet flux density complex vec-
tor.

B, Bs smooth (slotless), slotted flux density complex vector.
Br, Ho, µr, PM residual flux density, linearly extrapolated coercivity, relative recoil permeability.
Bi ideal flux density flat profile reference value.
F, F′, σ force, force per unit length, Maxwell Tensor complex vector.
H magnetic field strength complex vector.
hm, δ, g PM, mechanical air-gap, equivalent air-gap height.
hcs current sheet length.
hps, hs, hso tooth tip, slot, slot opening height.
I, ∆, J conductor current, linear current sheet, vector current density.
kc Carter’s factor.
` lamination stack length.
Ms total slot m.m.f.
Nt, Nx, Nh N° of time samples, spatial samples, slotting function harmonics.
Nth, Nm N° of stator teeth, permanent magnets.
nth N° of stator teeth counted from left to right.
U ideal magnetic voltage drop.
t, T parameter time, electrical period.
Wx, Wy generic vector tangential and normal component.
ye, yM exploration coordinate inside the air-gap, middle air-gap y coordinate g− δ/2.
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zp, z̄p
generic point p of complex coordinates xp + jyp where the conductor is positioned
and its conjugate.

z, z̄ generic point of coordinate x+ jy inside the air-gap complex plane and its conjugate.
β(z), λ(z) slotting, permeance complex function.

γe, γM

generic exploration segment at y = ye, middle mechanical air-gap segment at
y = yM inside the air-gap.

ξ, ρso p.u. ratios x/τt and bso/τt.
τm, τt PM pitch, tooth pitch.
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