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Abstract. We consider a viscoelastic plate equation of Moore-Gibson-Thompson type
coupled with two different kinds of thermal laws, namely, the usual Fourier one and the
heat conduction law of type III. In both cases, the resulting system is shown to generate a
contraction semigroup of solutions on a suitable Hilbert space. Then we prove that these
semigroups are analytic, despite the fact that the semigroup generated by the mechanical
equation alone does not share the same property. This means that the coupling with
the heat equation produces a regularizing effect on the dynamics, implying in particular
the impossibility of the localization of solutions. As a byproduct of our main result, the
exponential stability of the semigroups is established.

1. Introduction

The Moore-Gibson-Thompson (MGT) equation

uttt + αutt + βAut + γAu = 0,

where A is a strictly positive operator on some Hilbert space H, and α, β, γ > 0 are given
parameters, has deserved a lot of attention in recent years. Several papers have appeared
in the literature on this topic (see [3, 5, 6, 7, 12, 13, 17, 20, 21], among others). The
equation was originally introduced in connection with fluids mechanics [25], as a model for
the acoustic velocity potential in thermally relaxing fluids (see also [12]). Surprisingly, the
same equation arises as a model for the displacement in certain viscoelastic materials (see
[3, 6, 8, 20] and references therein), as well as a model for the temperature displacement
in a type III heat conduction with a relaxation parameter (see [4, 23]).

In the particular case where A = ∆2, with proper boundary conditions, the MGT
equation appears as a possible model for the vertical displacement in viscoelastic plates
(see [18]). It is worth recalling that this equation can be obtained by considering viscosity
effects of memory type when the kernel is a negative exponential. Namely, if we consider
the function

G(s) = k∗ + (τ−1k − k∗)e−τ−1s,

where τ, k, k∗ > 0 represent the thermal relaxation, the thermal conductivity and the
conductivity of the material, respectively, after combining with the local balance for the
momentum equation (see e.g. [4]), we obtain

ϱutt = −G(0)∆2u−
∫ ∞

0

G′(t− s)∆2u(s) ds,

2010 Mathematics Subject Classification. 35B40, 35B65, 74F05, 74K20.
Key words and phrases. MGT equation, viscoelasticity, Fourier heat conduction, type III heat con-

duction, analytic semigroups.
1



2

where ϱ > 0 is the mass density. Substituting the explicit form of G in the equation, one
arrives at

(1.1) τϱuttt + ϱutt = −k∗∆2u− k∆2ut,

which can be seen as the natural counterpart of the classical Kirchhoff plate equation.
We remark that (1.1) is stable if and only the dissipation condition

(1.2) k∗τ < k

holds. In this case, the equation generates a (linear) contraction semigroup S(t) of solu-
tions (see e.g. [12]), which turns out to be exponentially stable. However, such a semigroup
is not analytic [12, 17, 21].

The main goal of this paper is to show that coupling a thermal effect to equation (1.1),
describing a viscoelastic plate of MGT type, makes the corresponding semigroup to be
analytic, hence producing a regularizing effect on the solutions (see [14, 15] for similar
results involving standard thermoelastic plates; see also [2, Capter 11]). We will realize
that, first, by coupling (1.1) with the Fourier heat conduction law (see e.g. [1, 18]). In
this case, the coupled problem reads{

τϱuttt + ϱutt = −k∗∆2u− k∆2ut −m∆θ,

cθt = l∆θ +mτ∆utt +m∆ut,

where m ̸= 0 is the coupling parameter, c > 0 is the thermal capacity, and l > 0 is the
thermal conductivity. This, in a way, could be expected. Indeed, the Fourier equation,
being fully parabolic, possesses high regularization properties. At the same time, such a
regularization must be transferred to the mechanical part via the coupling, which is not so
obvious. Less expected, instead, is the same regularization property when in place of the
Fourier law one considers heat conduction of type III, introduced by Green and Naghdi
[9, 10, 11]. In this case (see e.g. [4, 14]), the coupled problem reads{

τϱuttt + ϱutt = −k∗∆2u− k∆2ut −m∆θ,

cθt = l∗∆α + l∆θ +mτ∆utt +m∆ut,

where

α(t) = α(0) +

∫ t

0

θ(s)ds

represents the thermal displacement and l∗ > 0 is the conductivity rate. Here, the thermal
equation is of mixed type, and it exhibits hyperbolicity effects that prevent the instan-
taneous regularization of the variable α. Nonetheless, even for this kind of coupling, the
resulting solution semigroup is analytic. The analysis of both models will be carried out
within the dissipation condition (1.2), which is assumed to hold throughout the paper.
This allows us to introduce the further parameter

K = k − τk∗ > 0,

that will appear in the definition of the norms.
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Plan of the paper. In the next Section 2, we recall some general results needed in the
course of the investigation. Section 3 deals with the well-posedness of the Fourier heat
conduction model, whose analyticity is established in Section 4. A similar analysis is
carried out in Sections 5 and 6 for the same mechanical model, where the Fourier heat
conduction law is replaced by the type III one.

2. Some Theoretical Results

In what follows, let H be a complex Hilbert space, and let A : H → H be a densely
defined linear operator of domain D(A) ⊂ H. With standard notation, σ(A) and ρ(A)
will stand for the spectrum and the resolvent of A, respectively. Recall that A is said to
be dissipative if

Re⟨AU ,U⟩H ≤ 0, ∀U ∈ D(A).

Remark 2.1. Actually, in this paper, we will always work with an operator A defined
on a real Hilbert space H. This is not at all a problem, since all the theorems stated
in the sequel apply by merely taking the standard complexification of H (defined as
H⊕ iH), along with the standard complexification of A. Accordingly, whenever we apply
the forthcoming theorems, it is understood that we are using the complexified objects.

The first result concerns with the generation of a contraction semigroup, and is a
corollary of the Lumer-Phillips theorem (see e.g. [16, 19]).

Theorem 2.2. Assume that A is a closed operator. If A is dissipative and Range(A) = H,
then A is the infinitesimal generator of a (linear) contraction semigroup S(t) = etA on H.

Note that, as A is closed, the condition Range(A) = H can be equivalently stated as
0 ∈ ρ(A). Indeed, contrary to the Lumer-Phillips theorem, which does not require the
closeness of A in advance, here the fact that A is closed is essential. However, for the kind
of A (of differential type) used in this work, proving the closeness is completely standard.

The next theorem provides a necessary and sufficient condition for the analyticity of
the semigroup (see e.g. [16]).

Theorem 2.3. Let A be the infinitesimal generator of a contraction semigroup S(t) = etA

on H satisfying the property

(2.1) iR ⊂ ρ(A).
Then, the semigroup S(t) is analytic if and only if

(2.2) lim sup
|λ|→∞

∥∥λ(iλI − A)−1
∥∥
L(H)

< ∞.

Here, L(H) denotes the Banach space of bounded linear operators on H. A byproduct
of analyticity is the impossibility of the localization of solutions.

Corollary 2.4. Let S(t) be analytic, and let U ∈ H. Then, if S(t)U = 0 for some t > 0,
it follows that U = 0, hence S(t)U = 0 for all times.

Indeed, within (2.1)-(2.2), the semigroup turns out to be exponentially stable as well,
namely, there exist constants ε > 0 and M ≥ 1 such that

∥S(t)∥L(H) ≤ Me−εt.
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This is a consequence of the famous result due to Prüss [22] reported here below.

Theorem 2.5. A contraction semigroup S(t) = etA on H is exponentially stable if and
only if (2.1) holds and

lim sup
|λ|→∞

∥∥(iλI − A)−1
∥∥
L(H)

< ∞.

Conditions (2.1)-(2.2) deserve some comments, that we will write in the next two re-
marks.

Remark 2.6. Given a contraction semigroup S(t) and λ ∈ R, if iλ ∈ σ(A), then by the
Hille-Yosida theorem it necessarily belongs to the boundary ∂σ(A) of σ(A) (see, e.g. [19]).
And it is well-known that the only elements in σ(A)∩∂σ(A) are approximate eigenvalues
(see, e.g. [24, Theorem 5.1-D]). Accordingly, in order to show that iR ⊂ ρ(A), it is enough
showing that, given any λ ∈ R, there is no sequence Un ∈ D(A) of unit norm for which,
in the limit n → ∞,

iλUn − AUn → 0 in H.

Remark 2.7. The usual strategy in order to prove analyticity is by contradiction, as-
suming that (2.2) fails to hold. In this case, there exist sequences λn, with |λn| → ∞,
and Vn ∈ H of unit norm, such that∥∥λn(iλnI − A)−1Vn

∥∥
H → ∞, as n → ∞.

If we more conveniently define the vectors (of unit norm)

Un =
λn(iλnI − A)−1Vn

∥λn(iλnI − A)−1Vn∥H
∈ D(A),

then the contradiction argument becomes∥∥iUn − λ−1
n AUn

∥∥
H → 0, as n → ∞,

which is much easier to handle.

3. The Fourier Heat Conduction Model

Let Ω ⊂ R2 be a bounded domain with a sufficiently smooth boundary (for instance, in
order to guarantee the use of the divergence theorem). We analyze the MGT-viscoelastic
plate coupled with Fourier heat conduction. Namely, for τ, ϱ, k, k∗, c, l > 0 and m ̸= 0, we
consider the system in the unknown variables u, θ : Ω× [0,∞) → R{

τϱuttt + ϱutt = −k∗∆2u− k∆2ut −m∆θ,

cθt = l∆θ +mτ∆utt +m∆ut,

subject to the initial conditions

u(0) = u0, ut(0) = v0, utt(0) = w0, θ(0) = θ0,

where u0, v0, w0, θ0 are prescribed data. The system is supplemented with the boundary
conditions

u(x, t) =
∂u

∂ν
(x, t) = θ(x, t) = 0, x ∈ ∂Ω.
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In particular, we are here assuming the so-called clamped boundary conditions for the
plate.

In order to frame the system in the correct functional setting, the first step is defining
a suitable Hilbert space accounting for the boundary conditions above. To this end, we
consider the usual Hilbert space (L2(Ω), ∥·∥, ⟨·, ·⟩), along with the standard Sobolev spaces
Hp(Ω), H1

0 (Ω) and H2
0 (Ω). Recall that

1

∥u∥H1
0
= ∥∇u∥ and ∥u∥H2

0
= ∥∆u∥.

Finally, we set (in what follows, Ω will be omitted for short)

H = H2
0 ×H2

0 × L2 × L2.

Hence, introducing the state vector

U(t) = (u(t), v(t), w(t), θ(t)),

we are able to rewrite our system as the ODE in H
d

dt
U(t) = AU(t),

with initial condition

U(0) = (u0, v0, w0, θ0) ∈ H.

Here, A is the linear operator given by

A


u
v
w
θ

 =


v
w

− 1
τϱ

[
ϱw +∆(k∗∆u+ k∆v) +m∆θ

]
1
c
∆
[
lθ +mτw +mv

]
 ,

with domain

D(A) =

U ∈ H

∣∣∣∣∣∣
w ∈ H2

0

θ ∈ H2 ∩H1
0

k∗∆u+ k∆v ∈ H2

 .

It is easily seen by direct computations that the operator A, besides being densely defined,
is closed as well. This is essential in the proof of the next result, based on an application
of Theorem 2.2.

Theorem 3.1. The operator A is the infinitesimal generator of a strongly continuous
linear semigroup S(t) = etA on the phase space H. Besides, S(t) is a contraction with
respect to the (equivalent) norm of H

∥(u, v, w, θ)∥2H = ϱ∥v + τw∥2 + k∗∥∆u+ τ∆v∥2 + τK∥∆v∥2 + c∥θ∥2,
where we recall that K = k − τk∗ > 0.

In particular, for every initial datum U0 = (u0, v0, w0, θ0) ∈ H, there exists a unique
solution U ∈ C([0,∞),H) to the Cauchy problem above, given by

U(t) = S(t)U0.

1As usual, abusing the notation, we keep writing ∥∇u∥ to mean the norm of ∇u in [L2(Ω)]2.
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The result will be proved by applying the abstract Theorem 2.2. Indeed, the operator A
is dissipative as, for U = (u, v, w, α, θ), direct calculations give

(3.1) Re(AU ,U)H = −K∥∆v∥2 − l∥∇θ∥2 ≤ 0.

Accordingly, the proof of Theorem 3.1 follows from the next lemma.

Lemma 3.2. We have Range(A) = H.

Proof. For F = (f, g, h, q) ∈ H arbitrarily given, we want to find U = (u, v, w, θ) ∈ D(A)
satifying

AU = F .

Equivalently, 
v = f,

w = g,

−∆(k∗∆u+ k∆v)− ϱw −m∆θ = τϱh,

m∆v +mτ∆w + l∆θ = cq.

Plugging f and g in the last two equations, we end up with{
∆2z = −τϱh−m∆θ − ϱg,

−l∆θ = m∆f +mτ∆g − cq,

having set
z = k∗u+ kf.

We first solve the second equation. Since the right-hand side belongs to L2, this is
immediately done by inverting −∆, viewed as an operator on L2 with domain H2 ∩H1

0 ,
so obtaining

θ =
1

l
(−∆)−1

[
m∆f +mτ∆g − cq

]
∈ H2 ∩H1

0 .

At this point, ∆θ is now a known vector of L2. Hence, calling

y = −τϱh−m∆θ − ϱg ∈ L2,

the first equation becomes
∆2z = y.

Then, we can invert ∆2, viewed as an operator on L2 with domain H4 ∩ H0
2. Accordingly,

z = (∆2)−1y ∈ H4 ∩ H0
2.

In particular, as v = f ∈ H0
2, we learn that u ∈ H0

2 and k∗∆u + k∆v ∈ H2. 

4. Analyticity of the Fourier Heat Conduction Model

We now show that the effect of the coupling between the MGT-viscoelastic equation and 
heat conduction of Fourier type renders the corresponding solution semigroup analytic. 
Besides, the coupled dynamics remains exponentially stable.

Theorem 4.1. The semigroup S(t) = etA on H is analytic and exponentially stable.

Remark 4.2. In particular, due to Corollary 2.4, we have that if S(t)U0 = 0 for some 
t > 0, then S(t)U0 = 0 for all times.
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The proof of Theorem 4.1 will be carried out by exploiting Theorem 2.3 (implying in
turn Theorem 2.5, that ensures the exponential stability of the semigroup). This amounts
to proving the next two lemmas.

Lemma 4.3. The operator A satisfies condition (2.1), that is, iR ⊂ ρ(A).

Proof. On account of Remark 2.6, and since we already know that 0 ∈ ϱ(A), it is enough
showing that, given any λ ̸= 0, there is no sequence Un = (un, vn, wn, θn) ∈ D(A) of unit
H-norm for which

(4.1) iλUn − AUn → 0 in H.

By contradiction, let us then assume the existence of such a Un. Multiplying (4.1) by Un

in H, and using the dissipation inequality (3.1), we infer that

∆vn,∇θn → 0 in L2.

At this point, writing (4.1) componentwise, we obtain four relations, two of which read

iλun − vn → 0 in H2
0 ,

iλvn − wn → 0 in H2
0 .

Hence, we immediately conclude that

un → 0 in H2
0 , wn → 0 in H2

0 ,

meaning that Un → 0 in H.

Lemma 4.4. The operator A satisfies condition (2.2).

Proof. By contradiction, and with an eye to Remark 2.7, let us assume the existence of a
sequence λn ∈ R, with |λn| → ∞, and a sequence of vectors Un = (un, vn, wn, θn) ∈ D(A)
of unit H-norm such that

(4.2) iUn − λ−1
n AUn → 0 in H.

Written in components,

iun − λ−1
n vn → 0 in H2

0 ,(4.3)

ivn − λ−1
n wn → 0 in H2

0 ,(4.4)

iτϱwn + λ−1
n ∆(k∗∆un + k∆vn) + ϱλ−1

n wn +mλ−1
n ∆θn → 0 in L2,(4.5)

icθn −mλ−1
n ∆vn −mτλ−1

n ∆wn − lλ−1
n ∆θn → 0 in L2.(4.6)

Since vn is bounded in H2
0 and |λn| → ∞, we immediately infer from (4.3) that

(4.7) un → 0 in H2
0 .

Multiplying (4.2) by Un in H, and exploiting the dissipation inequality (3.1), we deduce
that

(4.8) λ−1/2
n ∇θn → 0 in L2.

Thanks to the Gagliardo-Nirenberg interpolation inequality,∥∥λ−1/2
n ∇wn

∥∥2 ≤ Cλ−1
n ∥∆wn∥ ∥wn∥ ,
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for some suitable C > 0. Since wn and λ−1
n ∆wn are both bounded in L2, due to (4.4), we

deduce the control

sup
n

λ−1/2
n ∥∇wn∥ < ∞.

Using the relations above, we now take the inner product of (4.6) and θn, to get

ic ∥θn∥2 +mτ⟨λ−1/2
n ∇wn, λ

−1/2
n ∇θn⟩ → 0,

and since λ
−1/2
n ∇wn is bounded in L2, we immediately conclude that

(4.9) θn → 0 in L2.

At this point, we denote

ṽn = vn + k∗k−1un.

Taking into account that λ−1
n wn → 0 in L2, we deduce from (4.5) that

(4.10) iτϱwn + kλ−1
n ∆2ṽn +mλ−1

n ∆θn → 0 in L2.

Observe now that (4.6) provides

mτλ−1
n ∆wn + lλ−1

n ∆θn → 0 in L2.

Indeed, the first two terms therein vanish in light of (4.9) and the convergence λ−1
n ∆vn → 0

in L2. Exploiting (4.4), we thus have

imτ∆vn + lλ−1
n ∆θn → 0 in L2,

and the convergence (4.7) provides

(4.11) imτ∆ṽn + lλ−1
n ∆θn → 0 in L2.

Since ∆ṽn is bounded in L2 by construction, we immediately learn from (4.11) that

(4.12) sup
n

λ−1
n ∥∆θn∥ < ∞.

In turn, since wn is bounded in L2, we deduce from (4.10) that

sup
n

λ−1
n ∥∆2ṽn∥ < ∞.

Applying once again the Gagliardo-Nirenberg inequality,

∥λ−1/2
n ∇∆ṽn∥2 ≤ Cλ−1

n ∥∆2ṽn∥∥∆ṽn∥,
establishing

(4.13) sup
n

λ−1/2
n ∥∇∆ṽn∥ < ∞.

We can now test (4.11) by ∆ṽn, to obtain

(4.14) imτ ∥∆ṽn∥2 − l⟨λ−1/2
n ∇θn, λ

−1/2
n ∇∆ṽn⟩+ lλ−1

n

∫
∂Ω

∂θn
∂ν

∆ṽn → 0.

The next step is showing that the latter term vanishes. To this end, we first write

λ−1
n

∣∣∣∣∫
∂Ω

∂θn
∂ν

∆ṽn

∣∣∣∣ ≤ λ−3/4
n

∥∥∥∥∂θn∂ν

∥∥∥∥
L2(∂Ω)

λ−1/4
n ∥∆ṽn∥L2(∂Ω) .
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Using the trace theorem and the Sobolev spaces inequalities (see e.g. [16, Theorem 1.4.4]),
along with the previous relations, we have (in what follows C > 0 stands for a generic
constant)2

λ−3/4
n

∥∥∥∥∂θn∂ν

∥∥∥∥
L2(∂Ω)

≤ C
(
λ−1
n ∥∆θn∥

)1/2 (
λ−1/2
n ∥∇θn∥

)1/2 → 0,

in light of (4.8) and (4.12). Besides, with the aid of the Young inequality,

λ−1/4
n ∥∆ṽn∥L2(∂Ω) ≤ C

(
λ−1/2
n ∥∆ṽn∥H1

)1/2 ∥∆ṽn∥1/2

≤ Cλ−1/2
n ∥∇∆ṽn∥+ C ∥∆ṽn∥ ,

which is bounded by (4.13). We conclude that, as desired,

lλ−1
n

∫
∂Ω

∂θn
∂ν

∆ṽn → 0.

Therefore, (4.14) becomes

imτ ∥∆ṽn∥2 − l⟨λ−1/2
n ∇θn, λ

−1/2
n ∇∆ṽn⟩ → 0.

Recalling again that λ
−1/2
n ∥∇θn∥ → 0 and invoking (4.13), it is apparent that ∆ṽn tends

to zero in L2, which in turn implies

(4.15) vn → 0 in H2
0 .

We are left to prove that

(4.16) wn → 0 in L2.

To see that, we multiply (4.10) by wn in L2. We get

iτϱ∥wn∥2 + k⟨∆ṽn, λn
−1∆wn⟩ + m⟨λn

−1∆θn, wn⟩ → 0.

Knowing that ∆ṽn → 0 in L2, we learn from (4.11) that λn
−1∆θn → 0 in L2. Exploiting 

once more the fact that λn
−1∆wn is bounded in light of (4.4), we finally arrive at wn → 0 

in L2.

Collecting (4.7), (4.9), (4.15) and (4.16), we have that ∥Un∥H → 0 in H, which contradicts 
the fact that ∥Un∥H = 1. The result is proved. 

Remark 4.5. As a final comment, we mention that other physically relevant boundary
conditions for the mechanical part could be also considered. For instance, we could assume
the hinged boundary conditions for the plate, namely, u = ∆u = 0 on the boundary ∂Ω.
In fact, in this situation the analysis becomes easier, and all the argument above can be
immediately adapted. In particular, the treatment of the boundary conditions is similar
to the one proposed in the next two sections for the case of type III heat conduction.

2Recall that, as θ ∈ H2 ∩H1
0 , the H2-norm of θ is equivalent to ∥∆θ∥.
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5. The Type III Heat Conduction Model

An alternative theory to the Fourier heat conduction is the type III one (see [4, 9, 10, 11]).
In this case, given τ, ϱ, k, k∗, c, l, l∗ > 0 and m ̸= 0, we have the system the unknown
variables u, α : Ω× [0,∞) → R{

τϱuttt + ϱutt = −k∗∆2u− k∆2ut −m∆αt,

cαtt = l∗∆α+ l∆αt +mτ∆utt +m∆ut,

subject to the initial conditions

u(0) = u0, ut(0) = v0, utt(0) = w0, α(0) = α0, αt(0) = θ0,

where u0, v0, w0, α0, θ0 are prescribed data. The system is supplemented with the bound-
ary conditions

u(x, t) = ∆u(x, t) = α(x, t) = 0, x ∈ ∂Ω.

In particular, we are here assuming the hinged boundary conditions for the plate.

Setting H = L2(Ω), we introduce the strictly positive selfadjoint operator A : H → H as

A = −∆ with domain D(A) = H1
0 (Ω) ∩H2(Ω).

Accordingly, denoting by ⟨·, ·⟩ and ∥ · ∥ the standard scalar product and norm in H,
respectively, for any r > 0 we set

Hr = D(Ar/2),

endowed with the scalar product and norm

⟨u, v⟩r = ⟨Ar/2u,Ar/2v⟩ and ∥u∥r = ∥Ar/2u∥.

In particular, H1 = H1
0 (Ω) and H2 = H1

0 (Ω) ∩ H2(Ω). Next, we consider the product
Hilbert space

H = H2 × H2 × H× H1 × H.

Accordingly, we rewrite our system in the abstract form{
τϱuttt + ϱutt = −A(k∗Au+ kAut −mαt),

cαtt = −A(l∗α + lαt +mτutt +mut).

Introducing the state vector

U(t) = (u(t), v(t), w(t), α(t), θ(t)),

we obtain the ODE in H
d

dt
U(t) = AU(t),

with initial condition

U(0) = (u0, v0, w0, α0, θ0) ∈ H.
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Here, A is the linear operator given by

A


u
v
w
α
θ

 =


v
w

− 1
τϱ

[
ϱw + A(k∗Au+ kAv −mθ)

]
θ

−1
c
A
[
l∗α + lθ +mτw +mv

]

 ,

with domain

D(A) =

U ∈ H

∣∣∣∣∣∣∣∣
w ∈ H2

θ ∈ H1

k∗Au+ kAv −mθ ∈ H2

l∗α+ lθ ∈ H2

 .

As in the previous case, the operator A is densely defined and is closed.

Remark 5.1. Although we wrote ∆u = 0 on ∂Ω, as commonly done, the domain of the
operator actually dictates the correct boundary conditions for u, that should be more
properly given in the form k∗Au + kAut = 0 on ∂Ω. By the same token, it is implicitly
assumed that αt = 0 on ∂Ω.

Theorem 5.2. The operator A is the infinitesimal generator of a strongly continuous
linear semigroup S(t) = etA on the phase space H. Besides, S(t) is a contraction with
respect to the (equivalent) norm of H

∥(u, v, w, α, θ)∥2H = ϱ∥v + τw∥2 + k∗∥u+ τv∥22 + τK∥v∥22 + c∥θ∥2 + l∗∥α∥21,
where we recall that K = k − τk∗ > 0.

Similarly to the Fourier case, the operator A is dissipative. Indeed, for U = (u, v, w, α, θ),
by direct calculations we have

(5.1) Re(AU ,U)H = −K∥v∥22 − l∥θ∥21 ≤ 0.

Accordingly, as A is closed, and with reference to Theorem 2.2, the proof of Theorem 5.2
follows from the next lemma.

Lemma 5.3. We have Range(A) = H.

Proof. Given any F = (f, g, h, r, q) ∈ H, we look for a solution (u, v, w, α, θ) ∈ D(A) to
the system 

v = f,

w = g,

A(k∗Au+ kAv −mθ) + ϱw = −τϱh,

θ = r,

A(l∗α + lθ) +mτAw +mAv = −cq.

Plugging w = g ∈ H2 into the third equation, we obtain

A(k∗Au+ kAv −mθ) = −ϱg − τϱh.

Note that the right-hand side (call it b) belongs to H, so the equation

Ax = b



12

has a unique solution x = A−1b ∈ H2. Accordingly, we look for u such that

k∗Au+ kAv −mθ = x.

Taking advantage of the equalities v = f ∈ H2 and θ = r ∈ H1, we readily obtain

u =
1

k∗A
−1
(
− kAf +mr + x) ∈ H2.

Once u is found, k∗Au+ kAv −mθ ∈ H2 by construction. Analogously, the last equation
reads

A(l∗α + lθ) = b̂,

where
b̂ = −mτAg −mAf − cq ∈ H.

Hence, x̂ = A−1b̂ ∈ H2, and using once more the equality θ = r we end up with

α =
1

l∗
(x̂− lr) ∈ H1.

Again, the relation l∗α + lθ ∈ H2 follows by construction.

6. Analyticity of the Type III Heat Conduction Model

As in the Fourier case, the coupling of the MGT-viscoelastic plate equation with the type
III heat conduction produces a regularizing effect on the solutions. Indeed, the following
theorem holds.

Theorem 6.1. The semigroup S(t) = etA on H is analytic and exponentially stable.

Remark 6.2. As in the previous case (cf. Corollary 2.4), this implies the impossibility of
the localization of solutions.

On account of Theorem 2.3 (and the subsequent Theorem 2.5), the proof of Theorem 6.1
is a consequence of the next two lemmas.

Lemma 6.3. The operator A satisfies condition (2.1), that is, iR ⊂ ρ(A).

Proof. As in the proof of Lemma 4.3, assume by contradiction the existence of λ ̸= 0
along with a sequence Un = (un, vn, wn, αn, θn) ∈ D(A) of unit H-norm such that

(6.1) iλUn − AUn → 0 in H.

Multiplying (6.1) by Un in H, and using the dissipation inequality (5.1), we infer that

vn → 0 in H2, θn → 0 in H1.

Besides, by (6.1) componentwise, we get

iλun − vn → 0 in H2,

iλvn − wn → 0 in H2,

iλαn − θn → 0 in H1.

Therefore,
un → 0 in H2, wn → 0 in H2, αn → 0 in H1,

meaning that Un → 0 in H.
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Lemma 6.4. The operator A satisfies condition (2.2).

Proof. In the same spirit of the proof of Lemma 4.4, by contradiction let λn ∈ R, with
|λn| → ∞, and Un = (un, vn, wn, αn, θn) ∈ D(A), with ∥Un∥H = 1, satisfy

(6.2) iUn − λ−1
n AUn → 0 in H.

Multiplying (6.2) by Un in H, we learn from (5.1) that

(6.3) λ−1/2
n θn → 0 in H1.

Writing (6.2) componentwise, we get

iun − λ−1
n vn → 0 in H2,(6.4)

ivn − λ−1
n wn → 0 in H2,(6.5)

iτϱwn + λ−1
n A(k∗Aun + kAvn) + ϱλ−1

n wn −mλ−1
n Aθn → 0 in H,(6.6)

iαn − λ−1
n θn → 0 in H1,(6.7)

icθn +mλ−1
n Avn +mτλ−1

n Awn + lλ−1
n Aθn + l∗λ−1

n Aαn → 0 in H.(6.8)

Since vn is bounded in H2, we see at once from (6.4) that

un → 0 in H2.

Besides, in light of (6.3) and (6.7),

αn → 0 in H1.

At this point, exploiting the information obtained so far, the inner product of (6.8) with
θn gives

ic∥θn∥2 +mτ⟨λ−1/2
n wn, λ

−1/2
n θn⟩1 → 0.

On the other hand, due to (6.5), the term λ
−1/2
n wn is bounded in H1, for

λ−1
n ∥wn∥21 ≤ λ−1

n ∥wn∥2∥wn∥.

Hence, using again (6.3), we infer that

θn → 0 in H.

At this point, we denote

ṽn = vn + k∗k−1un,

and we claim that

(6.9) sup
n

λ−1
n ∥ṽn∥23 < ∞.

Indeed, observing that λ−1
n wn → 0 in H (as wn is bounded in H), we can rewrite (6.6) in

the form

(6.10) iτϱwn + kλ−1
n A2ṽn −mλ−1

n Aθn → 0 in H,

and a multiplication by Aṽn (which is bounded in H) yields

iτϱ⟨wn, Aṽn⟩+ kλ−1
n ∥ṽn∥23 −m⟨λ−1/2

n θn, λ
−1/2
n Aṽn⟩1 → 0.
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The first term above is clearly bounded. Moreover, we have the estimate

m|⟨λ−1/2
n θn, λ

−1/2
n Aṽn)⟩1| ≤

k

2
λ−1
n ∥ṽn∥23 +

m2

2k
λ−1
n ∥θn∥21,

where the latter term goes to zero in light of (6.3). This establishes the sought estimate
(6.9). We are now in a position to handle (6.8). Exploiting the convergence θn → 0 in H
along with (6.4)-(6.5), we transform (6.8) into

imAun + imτAvn + lλ−1
n Aθn + l∗λ−1

n Aαn → 0 in H.

On the other hand, Avn = Aṽn − k∗k−1Aun, and recalling that un → 0 in H2, the
convergence above can be equivalently written as

imτAṽn + lλ−1
n Aθn + l∗λ−1

n Aαn → 0 in H.

Now, multiplying by Aṽn, we obtain

imτϱ∥ṽn∥22 + l∗⟨λ−1/2
n αn, λ

−1/2
n Aṽn⟩1 + l⟨λ−1/2

n θn, λ
−1/2
n Aṽn⟩1 → 0.

Since both αn and λ
−1/2
n θn go to zero in H1, taking advantage of (6.9) we conclude that

ṽn → 0 in H2, in turn implying (as we already know that un → 0 in H2)

vn → 0 in H2.

The last step is showing the convergence to zero of wn in H. But this can be easily drawn 
by multiplying (6.10) by wn, giving

iϱ∥wn∥2 + k⟨Aṽn, λn
−1Awn⟩ − m⟨θn, λn

−1Awn⟩ → 0 in H.

By (6.5) we know that λn
−1Awn is bounded in H, and the convergences Aṽn, θn → 0 in H 

readily imply

wn → 0 in H.

In summary, we proved that un, vn → 0 in H2, αn → 0 in H1 and wn, θn → 0 in H, meaning 
that Un → 0 in H. This contradicts the assumption ∥Un∥H = 1. 
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(MTM2016-74934-P), (AEI/FEDER, UE) of the Spanish Ministry of Economy and Com-
petitiveness. M. Pellicer is part of the Catalan Research group 2017 SGR 1392 and has 
been supported by the MINECO grant MTM2017-84214-C2-2-P (Spain). This work is 
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haviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math.
Anal. Appl. 399 (2) (2013), 472–479.

[2] I. Chueshov, I. Lasiecka, Von Karman evolution equations. Well-posedness and long-time dynamics,
Springer, New York, 2010.
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