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Abstract
Manufacturing companies are experiencing a trans-1

formative journey, moving from labor-intensive2

processes to integrating cutting-edge technologies3

such as digitalization and AI. In this demo paper,4

we present a novel AI application to enhance man-5

ufacturing processes. Remarkably, our work has6

been developed in collaboration with Agrati S.p.A.,7

a worldwide leading company in the bolts manu-8

facturing sector. In particular, we propose an AI-9

powered application to address the problem of au-10

tomatically generating the production cycle of a11

bolt. Currently, this decision-making task is per-12

formed by process engineers who spend several13

days to study, draw, and test multiple alternatives14

before finding the desired production cycle. We15

cast this task as a model-based planning problem,16

mapping bolt technical drawings and metal defor-17

mations to, potentially continuous, states and ac-18

tions, respectively. Furthermore, we resort to com-19

puter vision tools and visual transformers to design20

efficient heuristics that make the search affordable21

in concrete applications. Agrati S.p.A.’s process22

engineers extensively validated our tool, and they23

are currently using it to support their work. To the24

best of our knowledge, this is the first example of25

an AI application dealing with production cycle de-26

sign in bolt manufacturing.127

1 Industrial Context28

Agrati S.p.A. S.p.A. is one of the world’s leading compa-29

nies in bolts manufacturing, with 12 production sites spread30

worldwide. Most of their customers ask for customized prod-31

ucts. In particular, a customer produces an RFQ by supply-32

ing Agrati S.p.A. with a technical drawing of what the cus-33

tomized piece should look like, asking for thousands of iden-34

tical units. Then, Agrati S.p.A.’s process engineers are asked35

for defining a novel production pipeline to allow the produc-36

tion of the entire amount of bolts by the time requested by37

the customer. Every batch of bolts is produced starting from38

a steel thread cut into cylinders. Every cylinder is shaped39

1See the video presentation here (YouTube video).

into a bolt through sequential steel-forming operations, such 40

as extrusions. Engineers are called to propose both the start- 41

ing diameter of the thread and which operations (and in what 42

order) have to be performed. There are multiple constraints 43

when deciding on the production pipeline, for example, lim- 44

its on the ratio between radius and length or a maximum 45

length that a machine can manage for a piece. There are 46

more than 10 different forming operations, each deforming 47

a metal piece differently. A set of parameters characterizes 48

an operation, for example, the height at which a cut should 49

be done or how much a radius has to be reduced. Operations 50

can be applied along the sagittal axis on both senses, thus 51

making the effective decision space at least two times bigger. 52
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Figure 1: Example of
RFQ provided by cus-
tomer.

In Figure 1, we report an example 53

of RFQ provided to Agrati S.p.A., 54

representing a bolt and the desired 55

measures. This project’s goal is 56

to obtain both a sequence of op- 57

erations, their parameters, and the 58

radius and height of the starting 59

thread. If the operations are ap- 60

plied in the supplied order to such 61

a thread, the final component is ob- 62

tained as the customer desires with- 63

out violating any constraint. Engi- 64

neers usually study the optimal se- 65

quence of operations by exploiting 66

sequences developed in the past for 67

similar components. However, this 68

task may require several hours, and 69

when the desired component is particularly involved, the en- 70

gineers’ team may fail to find the correct sequence. This may 71

lead to important delays in production or in the loss of com- 72

mercial opportunities. In Figure 2, we report an example of a 73

full production cycle designed by the company’s engineers. 74

2 Solution Outline 75

In Figure 3, we report a screenshot of the demo interface. In 76

this example, we uploaded the RFQ of a component, spec- 77

ified its length, and indicated the presence of a hexagonal 78

head2, and got the full production cycle (image and textual 79

2It is required to specify if the component is drilled or has a
hexagonal head since this is in general, not easy to infer from an

https://www.youtube.com/watch?v=VIbdyFuHxww


Figure 2: Example of full production cycle, where we highlight the
RFQ supplied by the customer and the starting cylinder. The engi-
neers aim to reconstruct the path between the cylinder and the final
bolt, only knowing the latter.

description comprising all operations together with their pa-80

rameters). The component is the same whose cycle has been81

reported in Figure 2. We can observe how the cycle proposed82

by our tool (Fig. 3) is the same that human engineers com-83

puted to produce a large amount of these components (Fig.84

2). For every tested component, the tool returned an output

Use via API · Built with Gradio

Production Cycle Demo

Upload the PNG file of a new project, get the production cycle.
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2)    HEAD UPSETTING, Direction:↑
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Figure 3: Interface of the tool developed for automatic production
cycle computation. On the left, a user can supply the component’s
RFQ and its length in millimeters. Instead, on the right, the algo-
rithm’s output shows a renderization of the proposed cycle and the
ordered list of operations together with the required parameters.

85
in less than 10 seconds, running on a single core of an Intel86

Xeon Platinum 8358 processor with 512 Gigabytes of RAM.87

Additional demonstrations of the tool’s capabilities are88

shown here (YouTube Video).89

3 A Tool for Automatic Production Cycle90

Design91

While scientific literature is rich in AI applications for pro-92

cess planning, there are no examples of AI solutions dealing93

with this specific problem (Kumar [2017]). To the best of our94

knowledge, this is the first attempt at modeling the production95

cycle of a bolt as a model-based planning problem.96

In particular, a finished component is the product of a se-97

quence of operations applied on a metal thread. Different op-98

erations lead to different outcomes. We then search for the99

image, but it’s trivial to observe for a human.

sequence of operations that lead exactly to our component 100

when applied to a certain (and feasible) metal thread. Flip- 101

ping our perspective, the finished component is our starting 102

state, and the inverse of the metal deformations available are 103

the actions we can make. Thus, there’s a sequence of inverted 104

transformations (that, from now on, we will call transforma- 105

tions) that lead to a feasible metal thread, which is our goal 106

state. Operations are deterministic, and the model is, in prin- 107

ciple, fully known. Thus, our goal is to simulate the pro- 108

duction process and search for a successful sequence of ac- 109

tions. Ultimately, we can represent this planning problem as 110

a search in a (recombinant) tree, and an example is reported 111

in Figure 4. However, to search for the production cycle, we

Figure 4: Example of an (inverse) operations tree leading to a metal
thread starting from the finished component.

112
need a complete representation of the model and, thus, a for- 113

mal model for both states and actions. 114

First, we introduce a formal model of a metal component: 115

in particular, we require a model of both the final bolt and the 116

intermediate steps between forming operations (including the 117

starting thread). All the products in our scope possess rota- 118

tional symmetry (possibly discrete), which allows us to model 119

a bolt only using its silhouette. Thus, we encode the image of 120

a metal component using its corners’ coordinates, as in Fig- 121

ure 5. Our available metal deformations are all assumed to be

Figure 5: Mapping of a metal component’s silhouette to cartesian
coordinates.

122

isovolumetric. Moreover, components are assumed to be ro- 123

tationally symmetric. Under these two assumptions (which 124

most components respect), all transformations can be for- 125

mally written as compositions of 2D linear transformations, 126

https://www.youtube.com/watch?v=VIbdyFuHxww


particularly trapezium-to-trapezium transformations. In Fig-127

ure 6, which represents a free extrusion (one of the most128

common forming operations), we can observe this: a thread,129

whose silhouette is a rectangle, is transformed in two cylin-130

ders having the same total volume, and one having a smaller131

radius. Given a height τ and a new radius r, and thanks to the132

isovolumetry, the transformation’s output is uniquely defined.133

Moreover, this transformation is easily invertible, allowing us134

to use the inverse transformation principle for our model. Fi-135

nally, mechanical constraints can be easily ensured by quan-136

tities like τ and r since they can be expressed as relationships137

between such quantities.138

Figure 6: Example of inverse free extrusion.

4 Data-driven Heuristics for Computational139

Feasibility140

There are more than 10 different transformations, most of141

which are parametrized by continuous values. Moreover,142

some components may require more than 6 operations to be143

formed. Due to these reasons, the tree size quickly becomes144

huge, precluding an exhaustive search for the correct produc-145

tion cycle.146

Our solution is to provide a data-driven heuristic to guide147

search and explore fewer nodes. In particular, while perform-148

ing a depth-first search, we want to prioritize actions most149

likely leading to feasible starting threads.150

The available dataset is composed of both successful and151

failed production cycles (i.e., not leading to a thread in few152

operations or where the thread is not feasible due to con-153

straints)3. In a cycle, we isolate all state-action-state triples,154

allowing us to map each state-action couple to the subsequent155

state. However, we encountered two main issues in represent-156

ing states in a tabular fashion as the coordinates of their cor-157

ners. First, the dimension may vary drastically, e.g., a metal158

thread is only characterized by four coordinates while a fin-159

ished piece may have many more corners; and second, since160

the available dataset is mainly composed of past production161

cycle images, it would require a large human effort to individ-162

uate all corners’ coordinates properly or to sanity check the163

correctness of any automated tool doing this. To avoid this164

issue, we decided to split cycle images, extract the images of165

3Even if the dataset is not sufficiently large, fully knowing the
model dynamics allows to generate a large number of synthetic cy-
cles randomly.

Figure 7: This scheme represents the working of our data-driven
heuristic. When exploring the tree, for every encountered state, we
embed it and predict the likelihood of success for every action. Then,
actions are chosen from the most likely to the least likely.

all the states involved, and embed them in equally-sized lower 166

dimensional arrays. To make this conversion, we use as a pre- 167

trained embedder the Vision Transformer (ViT) model trained 168

using the DINO method, a transformer encoder model pre- 169

trained on a large collection of images in a self-supervised 170

fashion (Caron et al. [2021]). 171

Now, for every embedded state, we can associate the ac- 172

tion that has been performed there and the associated out- 173

put, i.e., a binary label indicating whether or not the cycle 174

resulted was successful. Any supervised learning algorithm 175

can use such a labeled dataset to predict the probability of a 176

state-action couple resulting in a successful cycle. In particu- 177

lar, we trained a logistic regression (Hosmer Jr et al. [2013]). 178

For every new state-action couple, even if not present in the 179

historical dataset, we can now assign a weight indicating the 180

likelihood of it conducting a successful cycle. 181

Figure 7 reports the functioning scheme of our data-driven 182

heuristic. Actions most likely to reach a feasible thread are 183

chosen before the others, according to the ordering provided 184

by the supervised model prediction. Even if this real-time 185

inference of embedder plus supervised model brings some 186

additional computational burden to the single-node decision- 187

making, in practice, the reduction in the number of visited 188

nodes is so high that this results in dramatic advantages. 189

5 Conclusions and Future Developments 190

We provided an AI tool to assist engineers in designing the 191

production of custom metal components. To the best of our 192

knowledge, this is the first application of AI in this specific 193

field. An automatic production cycle design allows Agrati 194

S.p.A. to improve in-site operations planning, saving a large 195

amount of money and time. In the future, we plan to extend 196

this approach to different (and possibly harder) manufactur- 197

ing domains. 198
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