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Abstract: Axially loaded beam-like structures represent a challenging case study for unsupervised
learning vibration-based damage detection. Under real environmental and operational conditions,
changes in axial load cause changes in the characteristics of the dynamic response that are significantly
greater than those due to damage at an early stage. In previous works, the authors proposed the
adoption of a multivariate damage feature composed of eigenfrequencies of multiple vibration
modes. Successful results were obtained by framing the problem of damage detection as that of
unsupervised outlier detection, adopting the well-known Mahalanobis squared distance (MSD) to
define an effective damage index. Starting from these promising results, a novel approach based on
unsupervised learning data clustering is proposed in this work, which increases the sensitivity to
damage and significantly reduces the uncertainty associated with the results, allowing for earlier
damage detection. The novel approach, which is based on Gaussian mixture model, is compared
with the benchmark one based on the MSD, under the effects of an uncontrolled environment and,
most importantly, in the presence of real damage due to corrosion.

Keywords: structural health monitoring; tie-rods; beam-like structures; unsupervised learning;
unsupervised data clustering; gaussian mixture model; mahalanobis squared distance; real damage

1. Introduction

Structural Health Monitoring (SHM) is certainly one of the most-discussed topics in
the literature of mechanical, civil and aerospace engineering, due to the central relevance
of safety, maintenance and quality. By adopting the most general definition, damage is
the loss of a structure to perform its intended functions [1,2] due to unwanted changes
of the geometric and material properties, boundary conditions and system connectivity
with respect to an initial reference condition. An early detection of these changes plays
a crucial role to carry out prompt maintenance actions [3]. For this reason, structures are
monitored over time by adopting sensors to measure physical quantities that are related to
the structural properties [4].

According to a data-driven approach, data coming from sensors are used to extract
damage-sensitive features that can be statistically analysed to determine the current state
of the system health. In many real applications, damage conditions and locations greatly
vary from structure to structure and databases containing monitoring data related to all
the possible damage conditions are not available. As a result, damage detection must be
carried out by adopting an unsupervised learning approach (i.e., an approach that does
not require damage-related data). First, monitoring data are acquired during a reference
period, to statistically characterize the system response under healthy condition; damage is
then assessed when a meaningful deviation from what is considered the normal behaviour
is observed [2]. In real applications, unsupervised learning approaches are limited by the
effects of environmental and operational variations that cause changes in the structural
behaviour that, in turn, reflect in changes of the damage feature. Often, these changes are
greater than those caused by damage at an early stage and they must be properly accounted
for [5].
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In this context, this paper is devoted to the development of unsupervised learning
damage-detection approaches for beam-like structures. Beams are widely adopted in
engineering structures, often representing fundamental elements of complex systems.
Examples can be tie-rods of arches and vaults, diagonal braces of truss girders, struts and
ties of space truss structures. More specifically, the main attention is here focused on axially
loaded beams, i.e., tensioned beams. A vibration-based damage detection approach is
used in this work, particularly suitable for slender structures which undergo significant
vibration levels under operational conditions. Vibration-based damage detection relies on a
basic assumption: the presence of damage alters the structural properties of a system (mass,
stiffness, damping), which in turn, changes the dynamic response of the system [6]. Axially
loaded beam-like structures can serve as a challenging case study: indeed, during their
normal operation, these structures undergo dramatic changes of the axial load that reflect
into significant changes of the dynamic response, thus making vibration-based damage
detection a hard task.

A specific case study will be presented, which is the case of tie-rods (nevertheless, the
proposed damage detection strategy can be adopted on any beam-like structure subject
to axial load). Tie-rods are metallic beam elements adopted to balance the lateral force
transmitted to the base of arches and vaults, both in modern and historical civil structures.
The integrity of these elements is important for the overall structural equilibrium, since
a tie-rod failure may result in a global failure. To fulfil their function, tie-rods are subject
to a tension at the time of the installation. During their life, temperature variations cause
changes in the thermal coefficients of both the tie-rod and the structure, which reflects into
changes of the axial load. Other tension variations are due to deformation and displacement
of the connecting walls, that may be caused by terrain crawl, subsidence of foundations or
seismic events [7].

Many authors focused their attention on the axial load estimation, considering only
two possible failure types: a low tension, that points out a loosen tie-rod, not exerting its
intended function and therefore requiring replacement, or a high tension, pointing at a risk
of overloading, due to an abnormal structural deformation. In this latter case, the tie-rod
axial load can provide information about changes in the overall structural health.

When operating tie-rods are considered, there is a high uncertainty related to the real
axial-load, which can be directly measured only by strain gauges or load cells, installed and
calibrated prior to the initial tensioning procedure. This, of course, is not a viable solution for
already installed tie-rods. For this reason, many researchers focused on indirect approaches
for the identification of the tensile force [8], based on static [9,10], static–dynamic [11] or fully
dynamic [12,13] in situ indirect measurements. While the main shortcomings of static and
static–dynamic approaches are related to the complicated experimental procedures, fully
dynamic methods are based on the estimation of the tie-rod modal parameters, which can
be more easily estimated due to the slenderness of these structural elements that allows,
for instance, the adoption of output-only operational modal analysis [14]. However, the
problem is complex because modal parameters are not only related to the axial load but also
to a number of other physical variables which are affected by a high uncertainty, such as
geometrical and material properties and constraint characteristics. The inverse problem is
non-linear and potentially ill-conditioned [15]; thus, many approaches that can be found in
the literature are based on analytical solutions [16,17], minimization between the theoretical
and the measured modal parameters [18,19], model updating [20] and genetic algorithm
optimization [21].

From a review of the state of the art, all the above-mentioned references consider the
excessive load or deformation as the only critical problem, neglecting any possible presence
of damage in the tie-rod. On the other hand, experience shows that cracks due to ageing or
corrosion phenomena can lead to high-risk situations. Often, these types of damage are
hard to be detected through visual inspections, which are even made more complex by the
difficulties to access tie-rods and carry out in situ tests. Moreover, as already mentioned, a
change of the axial load cannot be directly related to the presence of a crack in the tie-rod,
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since the axial load exhibits a high sensitivity to other physical variables which are not
correlated to the state of health of the tie-rod (e.g., temperature).

Recently, a strategy for damage identification in tie-rods was presented in [7], where
an analysis of the tie-rod dynamic behaviour is shown and the estimate of the flexural
compliance is proposed as a way to highlight the differences between a healthy and a
damaged tie-rod. The potential of the approach was proved with a laboratory test where
the effect of a breathing crack was reproduced by a bolted joint between two beam sections.
The approach can highlight the presence of a crack but it requires a comparison with a
reference tie-rod under known health conditions. Moreover, environmental and operational
effects were not considered, thus the validity of the approach in field applications was
not verified.

To overcome the current limitations, in previous works [22,23], the authors proposed
the adoption of a vibration-based data-driven approach that does not require knowledge of
any physical variable of the problem, that does not require specific in situ tests and that can
be adopted continuously, without human supervision. The statistical pattern recognition
approach was adopted, framing the problem of tie-rod damage detection as a multivariate
outlier detection one, by adopting damage feature vectors based on modal parameters. The
motivations behind the potential of the strategy are described in [22]: the most important
point is that the effects of damage can be distinguished from those of the environmental
variations, because they cause different changes in the pattern of modal parameters of
multiple vibration modes. Consequently, a damage index was defined using a well-known
multivariate metrics, the Mahalanobis squared distance (MSD). The proposed damage
index showed the potential to be used for automatic outlier detection.

Starting from these observations, in [23] the authors further developed the process,
focusing on the automatisation of the algorithm. A multivariate damage feature based on
a collection of eigenfrequencies associated with multiple vibration modes was adopted
and an automatic data cleansing algorithm was proposed, to develop a robust algorithm
that can be used in real applications. The proposed strategy was validated on long term
monitoring data, coming from a one-of-a-kind test case in the research field of SHM:
nominally identical full-scale tie-rods, monitored for several months under the effects of
uncontrolled operational and environmental conditions. Moreover, while the majority of
works found in the literature consider simulated damage scenarios, a peculiarity of this
work lies in the validation on data acquired during an ongoing real damage, carefully
generated through a corrosion process, which realistically evolved throughout different
months. The results were promising and allowed for the automatic detection of damage
coming from two corrosion attacks in two different sections of the tie-rod.

This work proposes a different approach that is aimed at accounting for the dispersion
associated with the data acquired under real operating conditions, through the adoption
of Gaussian Mixture Model (GMM). GMM is a class of finite mixture models widely
used for unsupervised data clustering, successfully adopted for applications related to
sound/speech recognition [24,25] and image processing [26,27]. In the context of SHM,
GMMs have been adopted for crack detection in reinforced concrete [28–30] and laminated
composites [31] based on Acoustic Emission technique. Furthermore, GMMs have been
adopted to automatically cluster features extracted from Lamb wave signals in both the
time and frequency domains for aircraft wing spar damage detection under time-varying
boundary condition [32]. An application to bridge monitoring is that of [33], where a
GMM-based algorithm for stay cables condition monitoring is presented. The authors
of [33] used GMM on a damage feature which is the ratio between the tension of multiple
cables, measured through load-cells. The authors of [34] proposed the adoption of GMM
based on coefficients of an autoregressive model with moving average used to fit simu-
lated vibration data of the ASCE Benchmark Structure [35]. In [36], GMM were adopted
on eigenfrequencies of the Z-24 Bridge in Switzerland, observing that the approach can
outperform other state-of-the-art algorithms (principal component analysis or Mahalanobis
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squared distance) in the presence of non-linear effects caused by the operational and
environmental conditions.

As mentioned, this paper presents a novel GMM-based damage index for SHM of
axially loaded beam-like structures. To summarize, the main challenges are related to the
development of a damage detection strategy that:

• Does not require knowledge of physical variables (above all, does not require axial
load estimate);

• Requires a simple and cost effective set-up;
• Is automatic;
• Is validated under real environmental and operational conditions;
• Is validated in the presence of real damage.

The innovative aspects of this research are:

• The unsupervised data clustering approach to damage detection is applied for the
first time to the case study of tie-rods;

• A comparison between GMM-based and MSD-based approaches is shown in the
presence of a real damage condition which evolves over time. It will be shown that
the proposed GMM-based approach outperforms the benchmark one, based on the
classical MSD, both in terms of sensitivity and uncertainty associated with the results.

The paper is organized as it follows. In Section 2, the theoretical background and the
experimental set-up are described. The damage feature based on tie-rod eigenfrequencies
and the benchmark damage index are recalled in Sections 2.2 and 2.3.1, respectively. The
theoretical background on GMM and the novel damage index are described in Section 2.3.2.
Results are presented in Section 3 and discussed in Section 4. The general conclusions are
drawn in Section 5.

2. Materials and Methods
2.1. The Experimental Case Study

In this section, the case study is introduced. The data that will be discussed in
the following come from an experimental set-up located in the Mechanical Engineering
laboratory at Politecnico di Milano, in Italy. The set-up (see Figure 1) is composed by
a series of nominally identical tie-rods, monitored for long time by an SHM system, for
research purposes (e.g., [22,23,37,38]).

The tie-rods are made of aluminium and they are characterized by a free length W of
4 m, and a cross-section of 0.015 mm × 0.025 mm. At the two ends of the beam, there are
clamps made from two steel plates, in contact with the upper and lower face of the beam,
held together by bolts. During the installation, the bolted joints of one of the two clamps
(clamp 1 in Figure 1) are tightened, while those of the other clamp (clamp 2 in Figure 1) are
left loose: in this way, the beam is not fully constrained along the axial direction, allowing
traction to be applied. After the axial load is applied through a tensioner, also the bolted
joints of clamp 2 are tightened, obtaining a “clamped–clamped” configuration.

The beams are equipped with general purpose industrial accelerometers, model
PCB603C01, characterized by a sensitivity of 10.2 mV/(m/s2) and a full scale of±490 m/s2.
Vibration data, laboratory temperature and the axial load (which is measured through a cali-
brated Wheatstone full bridge) are acquired with NI9234 modules, with anti-aliasing filter on
board, at a sampling frequency of 512 Hz. The resulting bandwidth of 200 Hz is appropriate
to acquire the range of frequency significantly excited by the operational environment.

Indeed, the tie-rods are subject to environmental vibrations, in a laboratory where
human activities take place and where other testing benches and machineries are working.
The operating environment usually provides a broadband excitation that significantly
decreases above 200 Hz. The temperature is not controlled: as an example, during the first
year of monitoring, the temperature ranged from a minimum of 6 °C during winter, to a
maximum of 29 °C during summer, with minimum and maximum daily thermal excursions
approximately equal to 3 and 8 °C, respectively. The operating loads and the temperature
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conditions were intentionally uncontrolled, to obtain a challenging environment to test the
developed unsupervised learning damage detection algorithms.

Figure 1. The experimental set-up in the laboratories of Politecnico di Milano.

On some of the specimen, a chemical attack was carried out to intentionally introduce
a corrosion process which progressively evolved through several months. A general
corrosion caused a decrease of the nominal section of the tie-rod, due to a progressive
electrochemical reaction between the metal and concentrated solutions of sodium hydroxide
and hydrofluoric acids (more details on the corrosion process can be found in reference [23]).
The data acquired during the deteriorative process will be used in Section 3, to compare
the damage detection indexes.

As it will be explained in Section 2.2, this work focuses on a vibration based damage
feature based on tie-rod eigenfrequencies. Before going into detail of the theory, some
aspects are discussed about the eigenfrequency database that will be used in the following.
Different operational modal analysis algorithms can be adopted to estimate the tie-rod
modal parameters. Since the proposed approach is based on eigenfrequencies only, the
choice was for the adoption of a simple single-output approach. This choice was made
to develop a damage detection strategy that requires a very simple implementation and
that could be easily translated to real applications. Eigenfrequencies were identified from
the power spectrum of the response, adopting a single-degree-of-freedom (SDOF) modal
identification technique [39], around every resonance of the tie-rod. The best fitting between
the experimental power spectrum of the response, and the analytical power spectrum of
the response of an SDOF system excited by white noise was carried out (see Appendix A).
For this specific case, the tie-rods showed lightly coupled modes, not closely spaced in
frequency and not heavily damped; thus, such simple and fast approach is a viable solution.
However, it must be pointed out that the theory and approach developed in the following
could be adopted regardless the operational modal analysis algorithm chosen.

The identification was carried out using vibration data acquired by a sensor that was
placed at a distance approximately equal to 1/10 of the free length. This position was
chosen because it is not a vibration node for the first six bending vibration modes. Despite
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being close to the constraints, where the eigenvector components are generally low, the
signal-to-noise ratio allowed a sufficiently stable identification of the eigenfrequencies. The
frequency averaging approach [40,41] was adopted to calculate the experimental power
spectrum every hour, with a duration of the sub-records for the averaging procedure equal
to 40 s (with an overlap of 50%), and adopting a Hanning window.

Being in an uncontrolled environment, it is not always that the averaging procedure
allows obtaining a good reconstruction of the power spectrum, mainly due to the presence
of disturbances. In such cases, the best fitting procedure may fail or converge to wrong
solutions. For this reason, an automatic data cleansing approach was used to automatically
discard the corrupted eigenfrequency estimates. The data cleansing algorithm is presented
and discussed in detail in Ref. [23]; however, since the data adopted in the following are
those obtained after the removal of wrong identifications, some details are provided also
here, for the sake of completeness.

The data cleansing algorithm is performed at two stages, where two checks are carried
out. The first check is carried out every time an eigenfrequency is identified, considering vi-
bration modes one at a time. Outliers are discarded when a poor fit is observed between the
analytical power spectrum of the response of a single-degree-of-freedom mechanical sys-
tem excited by white noise [39] and the experimental power spectrum, estimated through
Welch’s approach [40,41]. This can be performed by setting an acceptance threshold on the
value of the R2 coefficient (identifications associated with an R2 < 0.9 were discarded in
this case).

At the second stage, multiple observations of the eigenfrequencies related to all the
considered vibration modes are considered, assuming that damage-related phenomena
are characterized by a long-term evolution, i.e., they do not significantly evolve in a
short period, e.g., one or two weeks. From analytical formulations [42,43], every tie-rod
squared eigenfrequency is linearly dependent on the axial load and, consequently, squared
eigenfrequencies of vibration modes are linearly dependent to each other, if the axial
load is the only changing variable. This linear dependency between couples of squared
eigenfrequencies is exploited, removing observations that significantly deviate from the
mentioned linear trend.

2.2. Vibration-Based Damage Feature for Beam-Like Structures

In the statistical pattern recognition approach [2], each pattern is a collection of a
number C of parameters, or features, extracted from the monitoring data and can be
thought of as a point in a C-dimensional space. Feature selection is a very important
step: the goal is to select a damage feature that allows pattern vectors associated with
different structural states to occupy disjoint regions in the C-dimensional space, such that
decision boundaries can be established to detect abnormal structural conditions [44]. This
means that a good damage feature must be highly correlated with the severity of damage,
and, ideally, lowly correlated to confounding effects, i.e., environmental and operational
variations. Moreover, it is important to assess that little changes in the structural condition
reflect into detectable changes in the damage feature.

Modal parameters are arguably among the most commonly adopted vibration-based
damage features [45], mainly eigenfrequencies and mode shapes [46,47] (few successful
examples about the use of modal damping as a damage feature can be found in the
literature [48], mainly due to the complexity of the damping mechanism and the uncertainty
associated with its estimate [49,50]). This paper focuses on eigenfrequencies, which can
be easily estimated relying on few sensors and are usually less affected by experimental
noise with respect to mode shapes [51]. The main drawback of adopting eigenfrequencies
as damage features is related to the fact that they are highly sensitive to environmental
variations [52]. Indeed, temperature variations can cause changes in eigenfrequency values
which are greater than those caused by damage at an early stage. Moreover, usually only
few low eigenfrequencies can be identified, which might not be sensitive enough to local
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damage (e.g., the presence of a crack), because local damage reflects on high vibration
modes [2].

In the paper [22], the authors showed how a feature vector composed by the eigen-
frequencies of multiple vibration modes of a tie-rod can be used to detect damage and in
paper [23] the conclusions were validated in the presence of real damage. The multivariate
feature vector f based on eigenfrequencies is defined as it follows:

f =



f1
f2
...

fm
...

fM


(1)

where fm (with m = 1, · · · , M) are the eigenfrequencies of M considered vibration modes.
The key point of the proposed approach is that eigenfrequencies are used to syn-

thetically represent the state of the monitored tie-rod, since they are representative of the
physical variables that mostly influence its dynamic behaviour (e.g., the axial load). Al-
though these variables change due to environmental and operational conditions, variations
associated with the confounding effects (e.g., temperature) give rise to different patterns
with respect to those due to damage, in the multivariate feature space. As an example,
the eigenfrequencies of the first three bending vertical modes of a healthy tie-rod are con-
sidered: a decrease of temperature would cause an increase in the values of all three the
eigenfrequencies and the lower the vibration mode considered, the higher the effect [22]. If
the temperature does not change but damage (e.g., a reduction of cross-section) is present at
midspan, only the eigenfrequencies of the odd vibration modes would change (midspan is a
vibration node for the even vibration modes) and the higher the vibration mode considered,
the higher the effect [22]. The damage feature f can be adopted to exploit this observation:
in the multivariate feature space defined by the eigenfrequencies of multiple vibration
modes, patterns related to temperature variations differ from those related to damage.
Thus, the damage feature f allows for the separation between damaged and undamaged
states even in the presence of environmental and operational variations, and, for this reason,
it will be adopted to define a novel damage index based on unsupervised learning data
clustering, as it will be discussed in the next subsection.

2.3. Damage Indexes Based on Unsupervised Learning Approach

Once the damage feature is selected, a training phase is needed to learn the relationship
between a pattern and the health condition of the monitored structure. Labelled data must
be used for this scope, i.e., data for which the health state of the structure is known. If
training data are available for all structural conditions (healthy as well as damaged), the
problem is in the area of supervised learning. In the context of real operating structures,
training data related to damage conditions are often not available. In this case, the problem
is of unsupervised learning: the objective is learning the intrinsic relationship between
the pattern and the normal structural condition only, defining a single class (undamaged
state) and then test whether new data are still consistent with that class. According to this
approach, damage detection can be framed as a problem of outlier detection (or novelty
detection) or, alternatively, of unsupervised data clustering. These two approaches are
compared in this work, where a novel damage index based on GMM is introduced. In
more detail, the benchmark model will be the one based on the classical MSD, which is
often adopted for unsupervised learning outlier detection, and it will be introduced in
Section 2.3.1. The novel damage index will be introduced in Section 2.3.2, where the basics
of GMM are also recalled.
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2.3.1. The Benchmark Approach Based on Outlier Detection

The outlier analysis is based on computing a discordancy measure between the damage
feature calculated on new data and a reference training set of damage features calculated
when the structure is in what is assumed to be a healthy condition. If the discordancy
measure exceeds a threshold, an abnormal condition is detected. The case of interest
for this work is the multivariate outlier detection, since f is a feature vector. In case
the damage feature is multivariate, the discordancy measure is given by the MSD. For a
generic multivariate feature vector f new, its MSD from a generic matrix [ f ] where every row
contains an observation of the feature vector, can be calculated according to the following
formula [53]:

MSD
(

f new, [ f ]
)
=
(

f new − µ
f

)T[
Σ f

]−1(
f new − µ

f

)
(2)

where µ
f

and
[
Σ f

]
are the multivariate mean vector and the covariance matrix of [ f ]

respectively, and the suffix “−1” means the inverse.
In case the MSD is adopted, a damage index can be obtained calculating the MSD

between the candidate feature vector f new and the baseline matrix [ f ]base containing the
normal condition features, i.e.,:

DI = MSD( f new, [ f ]base) (3)

Using the Gaussian assumption for the normal condition, the threshold can be cal-
culated in terms of chi-squared-statistic [54] or adopting a numerical method. The latter
approach is here adopted, based on the Monte Carlo method described in [53], and consist-
ing in the following steps:

1. Populate a (R× C) matrix with randomly generated numbers from a zero-mean and
unit-standard-deviation normal distribution, where R is the number of samples in the
baseline matrix and C is the number of variables of the damage feature.

2. Calculate the MSD between every row of the matrix and the matrix itself and store
the maximum distance.

3. Repeat the first two steps for a high number of trials (e.g., 1000) and store the resulting
maxima in an array. The critical values for 1% or 5% tests of discordancy are given
by the MSDs in the array above which 1% or 5% of the trials occurs, obtaining the so-
called “inclusive threshold” tinc (i.e., the presence of data coming from the damaged
structure in the baseline set is admitted).

4. If the baseline set only includes data coming from the undamaged structure (as in
the case considered in this work), the so-called exclusive threshold can be calculated
according to the following expression [2]:

texc =
(R− 1)(R + 1)2tinc

R(R2 − (R + 1)tinc)
(4)

MSD-based damage detection is one of the most popular methods in SHM due to its
ease of use and computational efficiency [55,56]. One of the major advantages of the MSD
is that it can be used to filter out the environmental effects on damage features, provided
that the baseline set contains a wide range of environmental conditions [57].

2.3.2. The New Approach Based on Unsupervised Data Clustering

A new approach to damage detection in tie-rods is proposed in this section, by framing
the problem as unsupervised data clustering. As mentioned above, a damage feature can
be thought of as a point in a C-dimensional space. If an appropriate damage feature is
selected, in a way that feature vectors associated with different structural states occupy
disjoint regions in the C-dimensional domain, a data clustering approach can be adopted
to carry out damage detection. The main premise is that there is a migration of groups (or
clusters) of feature vectors as damage occurs to the structure. In this work, for the first time
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in the literature of tie-rod damage detection, the deterministic physics-based behaviour
of tie-rod natural frequencies is exploited: a new multivariate domain is defined where
the existence of clusters of damage-related data can be automatically spotted, setting the
stage for unsupervised data clustering algorithms to be successfully adopted. Before going
into details of the specific case-study, a brief recall of the theory related to the adopted
algorithm (i.e., GMM) is presented.

Unsupervised data clustering can be carried out according to different approaches,
e.g., statistical, neural and syntactic methods [58]. As all SHM problems are subject to
various degrees of uncertainty, the statistical approaches appear to stand out as a natural
choice for damage detection in real operating structures. Finite mixtures allow addressing
the problem in a probabilistic way, since they inherently account for the uncertain nature of
the problem. According to these approaches, every observation of the damage feature is
considered as generated by one among a set of alternative random sources. Inferring the
parameters of these sources allows one associating a given observation to the probability
to have been generated by one specific source. In this way, data can be automatically
clustered [59].

A GMM is a parametric probability density function made by a weighted sum of a
number K of Gaussian densities (as it will be shown in the following, this probability density
function is particularly suitable to fit the probability density function of the adopted damage
feature). In the following, the generic matrix [x] is considered, which is a random sample
set composed by a number R of independent random samples. A generic C-dimensional
sample in the sample set is indicated by xr, with r = 1, . . . , R; xr is a row of the matrix [x]
and it is one observation of the feature vector. By assuming that xr follows a GMM, the
probability density function can be written as a mixture of Gaussian distributions according
to the following expression:

p(xr|λ) =
K

∑
i=1

θiNi

(
xr|µi

, [Σ]i
)

(5)

where θi are the weights and each Ni

(
xr|µi

, [Σ]i
)

is a C-variate Gaussian density defined
as it follows:

Ni

(
xr|µi

, [Σ]i
)
=

1

(2π)C/2|[Σ]i|
1/2 exp

{
−1

2

(
xr − µ

i

)T
[Σ]−1

i

(
xr − µ

i

)}
(6)

fully characterized by the i-th mean vector µ
i
and i-th covariance matrix [Σ]i. The weights θi

must satisfy the conditions θi ≥ 0 for i = 1, . . . , K and ∑K
i=1 θi = 1. For notation convenience,

all the parameters that specify the mixture are collected in the set of parameters λ, defined
as it follows:

λ ≡
{

θ1, µ
1
, [Σ]1, . . . , θK, µ

K
, [Σ]K

}
(7)

In order to adopt GMM for unsupervised data clustering, a set of parameters λ must
be estimated so that the probability density function of the GMM best fits the distribution
of the samples in the sample set [x]. The maximum likelihood estimate of the parameters
can be obtained by maximizing the following expression:

L(λ) = p([x]|λ) =
R

∏
r=1

p(xr|λ) (8)

which is the likelihood of the GMM, given a population containing a number R of feature
vectors (a (R× C) matrix [x]), assuming independence among different observations. The
maximization of the term in Equation (8) cannot be carried out analytically and, for this
reason, an iterative procedure called expectation maximization (EM) algorithm [60] (see
Appendix B) is adopted.
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Now that the basics of GMM have been recalled for a general case, the proposed
damage index is discussed for the specific application. First, the assumed hypothesis is
that squared eigenfrequencies of different vibration modes are related to each other with
a linear relationship, if the axial load is the only changing variable. If a number M of
vibration modes is considered, the baseline matrix set [ f ]base matrix contains a number M
of columns. Each column, represents the trend in time of the m-th eigenfrequency, with
m = 1, . . . , M (m = 1 indicates the lowest considered vibration mode, not necessarily the
first). If all the elements in [ f ]base are squared, each column represents the trend in time of
the squared m-th eigenfrequency, and it will be indicated as sbase

m .
A number M − 1 of couples can be defined by choosing the lowest squared eigen-

frequency sbase
1 and one of the other sbase

m squared eigenfrequency, with 1 < m ≤ M. The
coefficients of the linear regression a1m and b1m can be estimated from the least squares
solution of the linear problem defined in the following equation:

sbase
m = a1m · sbase

1 + b1m · 1 (9)

where 1 is an all-ones column vector of the same size as sbase
m or sbase

1 . Once the coefficients
a1m and b1m are known, the residuals of the linear regression can be calculated according to
next equation:

εbase
1m = sbase

m − a1m · sbase
1 − b1m · 1 (10)

which, if the hypothesis of linear relationship is verified, are Gaussian distributed.
Starting from a baseline matrix [ f ]base with M columns, solving the linear problem

of Equation (9) and calculating the residuals according to Equation (10) for all the M− 1
couples of columns, a matrix [ε]base can be obtained with M− 1 columns.

The same procedure can be applied to the data contained in a matrix [ f ]new, containing
the eigenfrequencies of the M considered vibration modes, in a period different from that
of the baseline. In this case, the coefficients a1m and b1m, which are those estimated by
considering the baseline set, will be used to calculate the residuals, i.e.,:

εnew
1m = snew

m − a1m · snew
1 − b1m · 1 (11)

finally obtaining a matrix [ε]new.
The residuals calculated on the baseline set and those calculated on the new data can

be put together in the same matrix [ε], according to the next expression:

[ε] =

[
[ε]base

[ε]new

]
(12)

which is a population containing a number R of observations of the C-dimensional feature
vector εr, where C = M− 1.

The problem of damage detection can now be framed under a probabilistic point of
view, studying the probability density function of the generic C-dimensional sample εr.
When no damage is present, the hypothesis is that the probability density function of εr
follows a single C-variate Gaussian density, i.e.,

p(εr|γ) = N
(

εr|µ, [Σ]
)

(13)

where:
γ ≡

{
µ, [Σ]

}
(14)

are the parameters that maximize the likelihood of the model:

L(γ) = p([ε]|γ) =
R

∏
r=1

p(εr|γ) (15)
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When the set [ε]new contains data coming from the damaged structure, the hypothesis
is that the probability density function of εr follows a GMM composed by a mixture of two
C-variate Gaussian densities: one that best fits the baseline residuals [ε]base and the other
that best fits the damaged set [ε]new. According to Equation (5), εr has a probability density
function that can be written as:

p(εr|λ) =
2

∑
i=1

θiNi

(
εr|µi

, [Σ]i
)

(16)

fully characterized by the parameters

λ ≡
{

θ1, µ
1
, [Σ]1, θ2, µ

2
, [Σ]2

}
(17)

which can be estimated adopting the EM algorithm. The parameters contained in λ
maximize the likelihood of the GMM made by two Gaussian distributions given the
population of features [ε], which can be calculated as:

L(λ) = p([ε]|λ) =
R

∏
r=1

p(εr|λ) (18)

The validity of the two hypotheses (single versus double C-variate Gaussian distri-
bution) can be assessed by comparing L(γ) and L(λ). To do so, the parameters γ and λ,
estimated adopting the EM algorithm, are used to calculate L(γ) and L(λ) given the data
[ε] through Equations (15) and (18), respectively. For numerical convenience, the logarithm
is used to transform products of potentially small likelihoods into a sum of logarithmic
values, which are easier to distinguish from 0, in computation. Furthermore, optimization
algorithms often search for the minima of functions; thus, the negative log-likelihood values
will be adopted hereinafter, defined by the following Equations (19) and (20).

L1 = − log(L(γ)) (19)

L2 = − log(L(λ)) (20)

The general idea is that if L(λ) is significantly higher than L(γ) or, equivalently, L2 is
significantly lower than L1, there is a high likelihood of damage. To show the validity of the
approach, data coming from the experimental set-up are now discussed. In the following, a
real damage condition is considered, which is that associated with the effects of general
corrosion close to the constraints.

In this case, three eigenfrequencies are considered, which are those associated with
the bending vertical modes number 4, 5 and 6. The use of three eigenfrequencies (M = 3)
returns a matrix of residuals with two columns (C = M − 1 = 2), which allows for a
convenient representation adopting two-dimensional scatterplots.

First, the set of [ε]base is considered, with data referring to 1646 hours collected in the
periods 19 December 2019 to 3 January 2020, and 22 April 2020 to 14 August 2020, after the
adoption of the data cleansing algorithm described in [23]. A scatterplot of εbase

12 versus εbase
13

is reported in Figure 2. Below the x-axis and to the left side of the y-axis, the histograms of
the data of εbase

12 and εbase
13 are reported, respectively.

The histograms of Figure 2 suggest that the residuals in ε12 and ε13 are Gaussian
distributed, as confirmed by a visual comparison between the empirical cumulative dis-
tribution function (CDF) and the Gaussian CDF for ε12 and ε13, reported in Figure 3a,b,
respectively. Thus, the data set contained in [ε]base is characterized by a bi-variate Gaussian
probability density function.
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Figure 2. Scatterplot of the data contained in [ε]base for the baseline period and histograms of εbase
12

and εbase
13 .
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Figure 3. Comparison between the Empirical CDF and the Gaussian CDF, using the data in εbase
12 (a)

and εbase
13 (b).

The proposed damage detection strategy is explained through three figures (Figures 4–6),
which are representative of three different tie-rod conditions. Each of the three figures is
composed of three sub-plots, “a”, “b” and “c”. The sub-plot “a” shows the data in the
matrix [ε], adopting black crosses and red triangles to indicate data belonging to [ε]base and
[ε]new, respectively. The sub-plot “b” shows the probability density function of a single bi-
variate Gaussian distribution, adopting contour lines to help visualizing the single centroid
of the distribution; the value of L1 is reported above the figure (in the following, L1 and
L2 will be used to define a damage index). The sub-plot “c” shows the probability density
function resulted from the adoption of the EM algorithm, again adopting contour lines to
help visualizing the centroids of the two bi-variate Gaussian distributions composing the
mixture. Data are divided into two clusters: data belonging to “cluster 1” are represented
with black crosses, while data belonging to “cluster 2” are represented with red triangles.
The value for L2 is reported above the figure.
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When data contained in [ε]new are associated with a period when no damage is present
(see Figure 4), the hypothesis of a single bi-variate Gaussian distribution that was observed
for [ε]base is still valid. Indeed, data of [ε]new seems to be generated by the same probability
density function of [ε]base, as confirmed by the fact that red triangles and black crosses are
overlapped and mixed in Figure 4a. By comparing the probability density functions of
the single bi-variate Gaussian distribution (Figure 4b) with that of the mixture (Figure 4c),
the clustering solution proposed in Figure 4c seems to be due to over fitting. Moreover, it
is worth noting that the value of L2 is almost the same of that of L1 (L2 is 0.16% smaller
than L1).

Data presented in Figure 5 are associated with the presence of damage at an early
stage. By a visual check of data in Figure 5a, the hypothesis that data of [ε]new belong
to a different cluster with respect to that of the baseline data seems more likely. The EM
algorithm proposes the clustering reported in Figure 5c. The value of L2 is a 2% smaller
than that of L1.

When data in [ε]new are associated with a period when a severe state of damage is
present, points of [ε]new and [ε]base are disjointed (see Figure 6a). The EM converges to
the solution presented in Figure 6c, showing that data in [ε]new and [ε]base belong to two
different clusters. In this case, the value of L2 is a 9% smaller than that of L1.

The three cases discussed here suggest that the strategy can be automatized by using a
measure of the likelihood increment obtained by adopting a mixture of bi-variate Gaussian
distributions in place of a single bi-variate Gaussian distribution to model the probability
density function of [ε].
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(b)
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100

L
2
 = 16,990
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Cluster 1

Cluster 2

Figure 4. Scatterplots of [ε]base and [ε]new when no damage is present: labelled data (a), single
bi-variate Gaussian distribution (b) and mixture of two bi-variate Gaussian distributions (c).
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Figure 5. Scatterplots of [ε]base and [ε]new when damage at an early stage is present: labelled data (a),
single bi-variate Gaussian distribution (b) and mixture of two bi-variate Gaussian distributions (c).



Sensors 2022, 22, 8336 14 of 27

0 50

0

100
Labelled data

(a)

0 50

0

100

L
1
 = 18,054

(b)

0 50

0

100

L
2
 = 16,568

(c)

Cluster 1

Cluster 2

Figure 6. Scatterplots of [ε]base and [ε]new when a severe damage condition is present: labelled data (a),
single bi-variate Gaussian distribution (b) and mixture of two bi-variate Gaussian distributions (c).

According to this idea, in a more general framework, the evaluation of the state of the
structure can be carried out by assembling a matrix [ε], running the EM algorithm to fit
a GMM with two components and calculating the values of L1 and L2. A novel damage
index is defined, according to the following Equation (21):

LI =
L1 − L2

L2
(21)

LI can be adopted to quantify the likelihood increment obtained by passing from a single
C-variate Gaussian distribution to a mixture of two C-variate Gaussian distributions (the
procedure to calculate the index LI is described in the flowchart of Figure 7). The difference
between L1 and L2 is normalized by dividing its value by L2, which is that associated
with the model that is always able to best fit the underlying probability density function
and, thus, set as reference. Indeed, the mixture can also approximate the single bi-variate
Gaussian distribution (see the contour lines of Figure 4c as an example). On the contrary,
the model based on a single C-variate Gaussian distribution fails to describe the probability
density function of [ε], when more than one cluster exists in the data (see the contour lines
of Figure 6b as an example).

In the following section, DI (see Equation (3) in Section 2.3.1) and LI will be compared,
to assess which approach can allow for an earlier damage detection, considering long term
monitoring data and the effects of real damage on a tie-rod.
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Figure 7. Flowchart of the procedure to calculate the damage index LI.

3. Results

The two damage indexes are compared considering two case studies. The first is the
most challenging one since damage occurs close to the constraints, at a distance equal
to 1

10 W (W is the beam free length) from one of the fixed ends of the tie-rod. Indeed,
when damage is close to the constraints, the eigenfrequencies are less sensitive, as already
observed in [22]. The damage scenario is associated with the real effects of the corrosive
attack induced on the tie-rod surface, that affected a length of the tie-rod of approximately
5 cm. Some pictures of different stages of the corrosion process are reported in Table 1, and
they are labelled with letters A1, B1, C1 and D1. To provide not just a qualitative picture,
but also a quantitative one, the different cross-section reductions ∆h are reported (e.g.,
∆h = 6% means a reduction of 6% of the cross-section height, measured at the centre of the
corroded area).

Data are divided into “Baseline”, “Validation” (i.e., data not included in the baseline
set, but still related to a condition when no damage is present) and “Corrosion” sets,
according to the timeline of Figure 8. For both damage indexes, the results presented are
obtained considering the eigenfrequencies associated with three vibration modes, more
specifically those of the fourth, fifth and sixth bending vibration modes in the vertical plane
(see Figure 9). It is recalled that the eigenfrequencies are obtained by adopting operational
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modal analysis, thus exploiting the excitation coming from the operational environment
(see Section 2.1).

Table 1. First case study: different stages of the corrosion process.

Label Date ∆h [%] Photo

A1 24 November 2020 6

B1 8 February 2021 8

C1 8 April 2021 22

D1 25 May 2021 28
Version October 3, 2022 submitted to Sensors 15 of 20

Figure 7. Timeline of the test on the tie-rod, corroded at a distance of 9
10 L from the constraints.
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Figure 8. Damage index LI for tie-rod 1

As it is possible to see, the damage index LI, based on the likelihood increment, 438

outperforms the benchmark DI, based on the MSD, in terms of sensitivity to damage 439

(compare the trend of the moving average on normalised DI, in figure 9a, with that of 440

normalised LI in figure 9b). The index LI exceeds the unitary threshold earlier than DI, 441

thus potentially allowing for a prompter damage detection. Moreover, the fluctuations 442

of DI, highlighted by the moving averaged trend in figure 9a, cause the damage index 443

to be scattered around the damage detection threshold for a long time before it remains 444

stable above the threshold. On the contrary, LI shows a clear trend that points out the 445

presence of damage and its evolution over time, thanks to a higher robustness to the effects 446

of environmental and operational variations. 447

4. Conclusions 448

This paper presented a novel damage index for automatic damage detection in operat- 449

ing tie-rods, based on unsupervised learning data clustering through GMM. The damage 450

index was compared with a benchmark one, estimated through one of the most adopted 451

multivariate metrics for outlier detection: the MSD. Both damage indexes are calculated 452

on the same database containing multiple observations of the feature vector composed by 453

tie-rod eigenfrequencies. Although the MSD is effective in detecting damage, as already 454

Figure 8. Timeline of the test on the tie-rod, corroded at a distance of 1
10 W from the constraints.
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Figure 9. Case 1: time trends of the considered eigenfrequencies, i.e., those of the fourth (a), fifth (b)
and sixth (c) bending vibration modes in the vertical plane.

The damage index LI is evaluated every time a new set of frequencies is available,
assembling the matrix composed by the last month of data [ε]new with the entire baseline set
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[ε]base (see Section 2.3.2). The results are reported Figure 10, where vertical lines are labelled
according to Table 1, to point at the different tie-rod conditions. The damage threshold is
indicated with a black-dashed horizontal line, and it indicates the 99th percentile of the
baseline set, considering that no damage was present herein.
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Figure 10. Damage index LI for tie-rod 1.

In Figure 11, a comparison with the benchmark approach (DI, based on the MSD) is
shown. To allow for a direct comparison of the two trends, both DI and LI are normalized
to the respective damage detection threshold and they are shown in Figure 9a and Figure 9b,
respectively. In more detail, the damage threshold for DI is calculated according to the
procedure explained in 2.3.1, adopting Equation (4), where tinc is obtained considering
the critical value for 1% test of discordancy. For both LI and DI, black asterisks are used
to represent the damage index; due to the scatter of DI, significantly higher than that
of LI, also the trend obtained with a moving average (window of one day, overlap 1
hour) is reported with green points in Figure 9a, to allow for a clearer visualization and a
direct comparison of the two trends. A zoom is made on the data sets “Validation” and
“Corrosion”: a black-dashed vertical line indicates the start of the corrosion attack and,
again, vertical lines labelled according to Table 1 are used to point at different tie-rod
conditions. A dot-dashed-black horizontal line is used to indicate the unitary threshold.
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Figure 11. Cont.
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Figure 11. Case 1: comparison of the two automatic damage detection approaches on the same data.
(a) MSD-based damage index DI, normalized on its damage threshold. (b) GMM-based damage
index LI, normalized on its damage threshold (black asterisks) and MSD-based damage index DI
obtained through a moving average process (green points).

The results related to another case study are reported in the following. In this second
example, a different specimen is considered, where the corrosive attack was induced at
a distance equal to 5

8 W from one of the fixed ends. As for the previous case, different
stages of the deteriorative process are reported in Table 2, together with the labels and
cross-section reductions.

Table 2. Second case study: different stages of the corrosion process.

Label Date ∆h [%] Photo

A2 15 March 2021 2

B2 9 April 2021 5

C2 29 April 2021 6

D2 25 May 2021 10



Sensors 2022, 22, 8336 20 of 27

Data are divided into “Baseline”, “Validation” and “Corrosion” sets, according to the
timeline of Figure 12. For both damage indexes, the results presented are obtained con-
sidering the eigenfrequencies associated with the fourth, fifth and sixth bending vibration
modes in the vertical plane (see Figure 13). The comparison between DI and LI, both
normalized to the respective damage detection threshold, is shown in Figure 14.

Sensors 2022, 1, 0 20 of 28

Figure 12. Timeline of the test on the tie-rod, corroded at a distance of 5
8 W from the constraints.

Data are divided into "Baseline", "Validation" and "Corrosion" sets, according to
the timeline of figure 12. For both damage indexes, the results presented are obtained
considering the eigenfrequencies associated to the fourth, fifth and sixth bending vibration
modes in the vertical plane (see figure 13). The comparison between DI and LI, both
normalized to the respective damage detection threshold, is shown in figure 14.

Figure 12. Timeline of the test on the tie-rod, corroded at a distance of 5
8 W from the constraints.
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Figure 13. Case 2: time trends of the considered eigenfrequencies, i.e., those of the fourth (a), fifth (b)
and sixth (c) bending vibration modes in the vertical plane.
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Figure 14. Case 2: comparison of the two automatic damage detection approaches on the same data.
(a) MSD-based damage index DI, normalized on its damage threshold. (b) GMM-based damage
index LI, normalized on its damage threshold (black asterisks) and MSD-based damage index DI
obtained through a moving average process (green points).
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4. Discussion

A first consideration that is worth mentioning is related to the eigenfrequency trends
reported in Figures 9 and 13: a high variability can be observed, characterized by both
daily and long-term trends related to temperature conditions. The magnitude of these
fluctuations does not allow spotting the existence of damage, even when the eigenfrequency
associated with the highest vibration mode (i.e., the sixth vibration mode) is considered.
Indeed, even if the final stage of the corrosion process is considered (condition D1 in
Figure 13c and condition D2 in Figure 9c), the eigenfrequency values are compatible with
those observed in the previous year and they seem to follow the seasonal trend.

The effectiveness of the proposed approach is shown by the trend of LI in Figure 10:
as it is possible to see, LI is exceeding the damage threshold when damage is present (red
triangles in Figure 10). Damage is detected way before when the tie-rod is in condition
B1 (see Table 1), which is remarkable considering that the corroded portion of the tie-rod
is close to the fixed end. Furthermore, the blue circles associated with the validation set
remain below the threshold, and this is consistent with the fact that the tie-rod is still in the
same condition of the baseline set.

Coming to the comparison with the benchmark model, the damage index LI, based
on the GMM, outperforms DI, based on the MSD, as it is shown in Figure 11. Indeed, DI is
characterized by a higher variability (compare the black asterisks in Figure 11a with those
of Figure 11b) which causes the damage index to be scattered around the damage detection
threshold for a long time before it remains steadily above the threshold (approximately,
between conditions C1 and D1). If the averaged trend of DI (green points in Figure 11b)
is compared with LI (black asterisks in Figure 11b), it is clear how the novel GMM-based
damage index has a higher sensitivity to damage, potentially allowing for a prompter
damage detection. LI shows a clear trend that points out the presence of damage and
its evolution over time, thanks to a higher robustness to the effects of environmental and
operational variations.

The same remarks can be made regarding the second example here discussed, i.e.,
damage farther from the constraints. The adoption of a multivariate damage feature based
on tie-rod eigenfrequencies allows spotting the presence of damage, with both DI and
LI that cross the respective damage detection threshold, in Figure 14a and Figure 14b,
respectively. LI is clearly detecting damage when the tie-rod is not yet in condition B2. It is
worth noting that, at this stage, the damage effects are barely noticeable through a visual
inspection (see Table 2). Once again, DI detects damage later than LI, staying constantly
above the damage detection threshold approximately between conditions C2 and D2 (see
Figure 14a).

In this second case study, the different performances between the two damage indexes
can be clearly highlighted. First, if the averaged time-trend of DI is considered (green points
in Figure 14b), fluctuations can be detected, while the time-trend of LI (black asterisks in
Figure 14b) shows a more stable trend, again proving that the GMM-based damage index
is more robust to environmental variations than the MSD-based one. Second, regarding the
comparison between the trend of DI with no moving average and LI, DI is more sensitive
to noise in the data than LI. If the black asterisks in Figure 14a are considered, the scatter
of the results is partially associated with the uncertainty related to the modal identification
(e.g., errors due to a poor signal-to-noise ratio of the original vibration data), which plays a
significant role when the MSD is calculated between a single observation of the damage
feature and the baseline set. On the contrary, when LI is estimated, the uncertainty is
actually modelled by the GMM: the uncertainty in the data causes the spread of the damage
features in the multivariate feature space (e.g., how wide the clouds of Figure 6 are), but
does not reflect on the scatter of LI. Indeed, LI relies on the validity of the hypothesis
related to the underlying probability density function, which significantly changes only
when the deterministic effect of damage causes a migration of the centroid of the population
of new data from the region occupied by the baseline data. So, even if a lower noise in the
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data would make it easier to distinguish different clusters, thus increasing the sensitivity of
the method, the index LI is much more robust to noise in the data than DI.

To resume, the main advantages of the adoption of the GMM-based strategy are related
to a higher sensitivity to damage and a lower uncertainty associated with the results with
respect to the MSD-based strategy, as emerged from the experimental campaign. These
characteristics are crucial when the damage is characterized by a progressive evolution
in time, as in the case of corrosion. On the other hand, the main advantage of the MSD-
based strategy with respect to the the GMM-based one is that it is potentially prompter in
detecting fast events (e.g., a sudden failure of the constraint system). Indeed, if a single
observation of the multivariate damage feature related to a fast damage event is considered,
its effect can cause a high MSD from the baseline set which can immediately make DI cross
the detection threshold. However, this could not be enough to cause a significant migration
of the centroid of the population of new data with respect to the baseline cluster, until a
sufficient number of damage-related observations is available, causing a delay between the
occurrence of the failure and the moment when LI exceeds the threshold.

5. Conclusions

This paper presented a novel damage index for automatic damage detection in operat-
ing tie-rods, based on unsupervised learning data clustering through GMM. The damage
index was compared with a benchmark one, estimated through one of the most adopted
multivariate metrics for outlier detection: the MSD. Both damage indexes are calculated
on the same database containing multiple observations of the feature vector composed by
tie-rod eigenfrequencies. Although the MSD is effective in detecting damage, as already
shown by the authors in previous works, the novel damage index based on GMM proved
to be affected by a significantly lower scatter and to provide a higher sensitivity, which
allows for an earlier damage detection. Indeed, the MSD considers each new observation
of the damage feature against the entire reference population; thus, the results are char-
acterized by a scatter which is mainly related to the variability of each identification of
the damage feature. Consequently, the scatter is higher than that obtained with the GMM-
based approach, where a population of data is tested against the baseline population. The
GMM-based strategy, which can spot the onset of new clusters in the data in a completely
unsupervised way, proved to be suitable to detect evolutive deteriorative phenomena,
such as corrosion, outperforming the MSD-based approach. On the other hand, for other
types of failure associated with faster phenomena (e.g., a sudden failure of the constraint
system), the MSD-based approach should be more suitable to detect abrupt changes in the
structural condition. A further development of this work will be a comparison of the two
approaches on other types of damage. This will require carrying out new experiments,
where other different damage mechanisms are introduced on the tie-rods, e.g., the failure
of the constraints.
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Appendix A

According to the SDOF approach, the modal analysis is aimed at extracting the
properties of one of the vibration modes at a time [39]. The basic assumption is that,
in the vicinity of a resonance, the behaviour of the system is dominated by the dynamics of
the corresponding mode. All the modes in the frequency range of interest are sequentially
analysed, rather than simultaneously. The principal limitation to such simple approach is
that it applies only to structures that show lightly coupled modes, not closely spaced in
frequency and not heavily damped.

The best fitting approach was adopted in this work, between the experimental power
spectrum of the response measured by a single accelerometer and the analytical expression
of the power spectrum of the response of an SDOF mechanical system with eigenfrequency
fm excited by white noise. Considering a range of frequencies ∆m around fm where the
SDOF hypothesis is assumed (∆m is the width of the analysed range of frequencies), the
procedure can be resumed in the following steps:

• The experimental power spectrum of the response Ĝyy(ω), function of the angular
frequency ω (ω = 2π f , where f is the frequency expressed in Hertz) is calculated
through Welch’s method, i.e., a frequency averaging approach. In this work, the
identification was carried out every hour using sub-records duration equal to 40 s,
overlap of 50% and a Hanning window.

• The power spectrum of the response of an SDOF model is considered, which is defined
according to the following expression [39]:

Gyy(ω, fm, ξm, Qm, Bm) =

∣∣∣∣∣ Qm

−ω2 + j2ξm(2π fm)ω + (2π fm)
2 + Bm

∣∣∣∣∣
2

(A1)

where j is the imaginary unit, ξm is the m-th modal damping ratio, Qm is a constant
(function of the white noise level, the eigenvector component at the measurement
point and the modal participation factor) and Bm is the contribution of the out-of-
band modes (for notation convenience, the parameters are grouped in the vector
αm = [ fm, ξm, Qm, Bm], such that Gyy(ω, fm, ξm, Qm, Bm) = Gyy(ω, αm)).

• The simplex search method [61] is adopted to solve the minimization problem de-
scribed by the following expression:

min
αm

=
hmax

∑
h=hmin

(
Ĝyy(ωh)− Gyy(ωh, αm)

)2 (A2)

where hmin and hmax are counters on frequency values which point at the lower and
upper limit of a frequency range of amplitude equal to ∆m around fm, respectively.

For each of the considered eigenfrequencies, the initial values for fm and ∆m can
be defined through a visual inspection of the power spectrum. First attempt values for
the minimization step can be obtained, e.g., by searching for the frequency at which the
maximum of Ĝyy(ω) is observed, for the eigenfrequency, and by adopting the peak-picking
technique [39], for the modal damping ratio.

Appendix B

The EM algorithm starts with an initial model characterized by parameters λ(z) and
estimates a new model characterized by λ(z+1), such that p

(
[x]|λ(z+1)

)
> p

(
[x]|λ(z)

)
,

iterating the procedure until a certain threshold on the model likelihood is reached. The
EM algorithm consists of two steps (expectation and maximization) which guarantee a
monotonic increase in the model likelihood [60,62].
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In the expectation step, the model parameters λ(z) are considered as fixed and the
posterior probability is calculated for every feature vector xr and for every cluster i:

Pri

(
xr|µi

, [Σ]i
)
=

θiN
(

xr|µ
(z)
i , [Σ](z)i

)
∑K

v=1 θvN
(

xr|µ(z)
v

, [Σ](z)v

) (A3)

which is the a posteriori probability that the feature vector xr belongs to the cluster i. The
posterior probability of all the samples in each Gaussian component is calculated according
to the following expression:

Pi =
R

∑
r=1

Pri

(
xr|µi

, [Σ]i
)

(A4)

In the maximization step, the model parameters are updated, obtaining λ(z+1) accord-
ing to the following expressions:

θ
(z+1)
i =

Pi
R

(A5)

µ(z+1)
i

=
∑R

r=1

(
Pri

(
xr|µi

, [Σ]i
)

xr

)
Pi

(A6)

[Σ](z+1)
i =

∑R
r=1

(
Pri

(
xr|µi

, [Σ]i
)(

xr − µ
(z+1)
i

)T(
xr − µ

(z+1)
i

))
Pi

(A7)

A commonly adopted stopping criterion is defined on the log-likelihood increment
between two subsequent iterations, according to the next expression:∣∣∣∣∣∣

log
(
L
(

λ(z+1)
))

log
(
L
(
λ(z)

))
∣∣∣∣∣∣− 1 < ε (A8)

where ε is a user defined tolerance (a tolerance of 1e-6 is adopted in this work); otherwise
the steps are recursively performed until the maximum number of iterations is reached (a
maximum number of iterations equal to 500 is used in this work).

The EM algorithm is strongly dependent on the initialization, i.e., on the choice of
model parameters λ for the first iteration. Common solutions are the use of multiple
random starting points and then choosing the final estimate with the highest likelihood,
or initializing by other clustering algorithms, e.g., the K-means algorithm [63] (the latter
approach is that adopted in this work). Due to the high sensitivity to the initialization, the
convergence of the EM algorithm is guaranteed to a local maximum but not to a global
maximum [60].
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