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Abstract
Since financial series are usually heavy tailed and skewed, research has formerly 
considered well-known leptokurtic distributions to model these series and, recently, 
has focused on the technique of adjusting the moments of a probability law by using 
its orthogonal polynomials. This paper combines these approaches by modifying 
the moments of the convoluted hyperbolic secant. The resulting density is a Gram–
Charlier-like (GC-like) expansion capable to account for skewness and excess kurto-
sis. Multivariate extensions of these expansions are obtained on an argument using 
spherical distributions. Both the univariate and multivariate (GC-like) expansions 
prove to be effective in modeling heavy-tailed series and computing risk measures.

Keywords  Convoluted hyperbolic-secant distribution · Orthogonal polynomials · 
Kurtosis · Skewness · Gram–Charlier-like expansion

1  Introduction

A substantial body of evidence shows that empirical distributions of returns and 
financial data usually exhibit accentuated peakedness, thick tails and frequent skew-
ness. This is duly acknowledged in the financial literature (see e.g., [42] orthogonal, 
and references therein). The well-known Gaussian law fails to accommodate these 
“stylized facts” and thus does not provide a valid paradigm for the representation and 
interpretation of financial data. This explains why research has moved toward lepto-
kurtic distributions such as the Student-t, the Pearson type VII, the normal inverse 
Gaussian and stable distributions (see e.g., [35, 39]), which by and large maintain 
desirable properties like the bell-shapedness. Heavy tailed and peaked distributions 
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have either been modeled by densities generated via a mixed approach (see e.g., [1, 
2, 20]), or kernel estimators obtained by appropriate techniques (see [40]).

Other research has focused on mixtures of distributions built by combining a 
Gaussian density with a heavy-tailed generalized Pareto (GP) density. The former 
is intended to model the bulk of the observations of a series, the latter observations 
falling beyond a certain threshold, which can, or can not, be fixed in advance. The 
papers [8–10, 13, 18, 28, 31, 36, 37] provide contributions along these lines. To 
avoid mixtures that quickly inflate the number of parameters to estimate (see [33]), 
efforts have been made to generate GP-like random variables, either by replacing 
uniform draws in the probability integral transform with draws from other distribu-
tions, or by developing other types of extended GP’s.

A different stream of research has recently come to the fore (see [21]). This is 
based on the idea of increasing the flexibility of a distribution by simply multiply-
ing it by a nonnegative function and re-normalizing the product, thus obtained, to 
get a valid density. The choice of this multiplicative function, which should lead to 
a density with desirable features without introducing heavy computational burdens, 
represents the main hurdle of this approach. In this paper, we solve the problem by 
building a Gram–Charlier-like (GC-like) expansion of a leptokurtic distribution with 
the aim of obtaining a distribution capable of meeting the requirements of possi-
bly severe kurtosis and skewness. A GCl expansion is obtained by multiplying a 
leptokurtic distribution by a function depending on a proper set of its own orthogo-
nal polynomials. No re-normalization is needed as the resulting distribution turns 
out to be a density function with the required kurtosis and skewness. The approach 
here proposed can be viewed as an extension of the one hinging on Gram–Char-
lier expansions (GC in short), which is used to reshape the Gaussian law by using 
its own orthogonal polynomials which are Hermite polynomials (see [11, 26, 43]). 
GC-like expansions of leptokurtic distributions are proved to be more flexible distri-
butions than the standard GC as the admissible value set of their moments is quite 
broader than that of GC laws. In this paper, we suggest reshaping a leptokurtic dis-
tribution, namely the convoluted hyperbolic-secant distribution, (CHS henceforth), 
which arises from the self-convolution of the hyperbolic secant (see e.g., [4, 6, 17]). 
In particular, we investigate the capacity of GC-like expansions of the CHS law to fit 
in with financial data. Furthermore, as risk modeling applications typically require 
that several variables are jointly modeled, a multivariate extension of both the CHS 
distribution and its orthogonal polynomial expansion are provided. The latter is eas-
ily derived from spherical distribution theory (see [15]).

Applications to financial univariate and multivariate asset returns, characterized 
by substantial excess kurtosis, prove the usefulness of this choice by highlighting the 
extent to which the polynomially adjusted convoluted hyperbolic-secant distribution 
matches up with empirical evidence. The goodness of the proposed distributions in 
computing some risk measures, like the value at risk and the expected shortfall, is 
shown.

The paper is organized as follows. In Sect.  2, we design the polynomial shape-
adapter tailored to build GC-like expansions of a CHS law both for the univariate 
and multivariate contexts. In Sect. 3, the performance of these GC-like distributions 
is tested by an application involving both univariate and bivariate financial returns. 
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Section 4 draws the conclusions. An “Appendix,” providing the essentials on orthogo-
nal polynomials, spherical distributions and computations concerning the maximum 
likelihood estimation of GC-like expansions, completes the paper.

2 � Univariate and Multivariate Gram–Charlier‑Like Expansions 
of the Convoluted Hyperbolic‑Distribution

In this section, we will devise a GC-like expansion for the even CHS density

The CHS distribution, which is the self-convolution of the hyperbolic secant law 
and the Fourier image of the logistic function (see, e.g., [19]), enjoys several desir-
able properties like bell-shapedness, leptokurtosis and the existence of moments and 
orthogonal polynomials of every order. As far as even moments are concerned, they 
can be obtained from the following integral (see [23], p. 348, formula 3.523.2)

where B2h denotes the 2h-th Bernoulli number. By setting h = 1, 2, 3, 4, 5 in (2) we 
obtain the first five even moments for this density

These values can be used to determine the coefficients of the polynomial shape 
adapter of the GC-like expansions for the CHS distribution. The term GC-like 
expansion is adopted to indicate a density, g̃(x, 𝛼, 𝛽, ..) hereafter, obtained by reshap-
ing an arbitrary distribution f(x) by using its own orthogonal polynomials that is 
polynomials with coefficients built from the moments of this law. The term can be 
traced back to the well-known Gram–Charlier (GC) expansion referred to the Gauss-
ian law and Hermite polynomials. The GC-like expansion based on the j-th orthogo-
nal polynomial pj(x) associated with a density f(x) takes the form

Here, q(x, �) =
(
1 +

�

�j
pj(x)

)
 is a shape adapter; its role is to increase the j-th 

moment of the density f(x) by a quantity equal to � while �j is the squared norm of 
pj(x) (see “Appendix A1” for more details on orthogonal polynomials and GC-like 
expansions).

In what follows we will focus on GC-like expansions which make use of the third 
and fourth orthogonal polynomials of a given density f(x) in order to account for 
skewness and excess kurtosis. The expansions at stake take the form

(1)f (x) = x

�
sin h

�
�√
2
x

��−1

x ∈ R.

(2)∫
∞

0

x2h−1

sin h(bx)
dx =

22h − 1

2h

(
�

b

)2h|B2h|, h = 1, 2, ...

(3)m0 = 1, m2 = 1, m4 = 4, m6 = 34, m8 = 496 .

(4)g̃(x, 𝛼) = q(x, 𝛼)f (x).

(5)g̃(x, 𝛼, 𝛽) = q(x, 𝛼, 𝛽)f (x),
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where q(x, �, �) is the trinomial

depending on the 3rd and 4th orthogonal polynomials, p3(x) and p4(x) , associated 
with f(x). The parameters � and � represent, respectively, the increase in skew-
ness and kurtosis attainable with the polynomial expansion (5), while �3 and �4 are, 
respectively, the squared norms of p3(x) and p4(x) (see formula (63) in “Appendix 
A1”).

The following theorem shows how to compute the third and fourth degree 
orthogonal polynomials associated with CHS density which paves the way to 
obtaining the family of the GC-like expansion, as defined in (5) for this density.

Theorem  1  The family of the GC-like expansions, as defined in (5) for the CHS 
density is given by

where � and 𝛽 > 0 are parameters and

are the third and fourth degree orthogonal polynomials associated with the CHS 
density. Under suitable conditions on � and � , formula (7) defines a set of densities 
with skewness and kurtosis different from those of the parent CHS density by an 
extent equal to � and � , respectively.

Proof  As the CHS density is a symmetric law, its third and fourth-order orthogonal 
polynomials, p3(x) and p4(x) , are specified as in (67) of “Appendix A1.” The coef-
ficients of these polynomials and their squared norms, �3 , �4 in the trinomial (6), are 
obtained from formulas (64) and (66) of “Appendix A1.” The proof that the skew-
ness and kurtosis of the GC-like expansion in (7) are modified by a quantity equal to 
� and � respectively, is based on Theorem A1 in “Appendix A1.”

The positiveness of q(x, �, �) is mandatory in order for g̃(x, 𝛼, 𝛽) to be a density 
function. It is worth distinguishing the case in which only extra kurtosis has to be 
accounted for, from the case in which both excess kurtosis and skewness are at 
work. Let’s start with the former case. 	�  ◻

Lemma 1  For the binomial

to be nonnegative for all x, it is required that the parameter � satisfies

(6)q(x, �, �) =

(
1 +

�

�3
p3(x) +

�

�4
p4(x)

)

(7)g̃(x, 𝛼, 𝛽) =

�
1 +

𝛼

18
p3(x) +

𝛽

180
p4(x)

�
x

�
sin h

�
𝜋√
2
x

��−1

,

(8)p3(x) = x3 − 4x, p4(x) = x4 − 10x2 + 6

(9)q(x, 0, �) =

(
1 +

�

180

(
x4 − 10x2 + 6

))
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Proof  The proof rests on the argument that p4(x) = x4 − ex2 + g is bounded from 
below that is

This entails that q(x, 0, �) =
(
1 +

�

�4

(
x4 − ex2 + g

))
 is nonnegative, provided

Since q(x, 0, �) is not bounded from above, negative values of � are not allowed. 	� ◻

In light of the foregoing theorem, the GC-like expansions of the CHS density 
(GCCHS hereafter)

prove suitable to model data with kurtosis, K, varying in the range

As for the more general case, when both extra kurtosis and skewness are involved, 
we have

Lemma 2  The trinomial

is positive for all x if the pair of parameters � , � satisfy

where � =
15�2

2�2
+ 2.

Proof  The trinomial q(x, �, �) is a quartic
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whose signature is the same as its leading coefficient (positive in this case), provided 
its roots are complex conjugate in pairs. This occurs when both the coefficients of 
the linear term and the discriminant of the cubic resolvent are negative (see, e.g., 
[7], pp. 119–125). Formulas (16) and (17) provide convenient algebraic representa-
tions of the said conditions.

So far the analysis has focused on a scalar random variable. Next it will be 
extended to the vector case by using the powerful argument of the so called spherical 
distributions (see “Appendix A2”). First we will devise the spherical representation 
of the CHS density that is a multivariate symmetric distribution, whose marginals 
are CHS densities, and then the same representation for its GC-like expansion. The 
following theorem establishes the form of a multivariate extension of a CHS density 
(SCHS henceforth) which depends on its modular variable (see “Appendix A2” for 
a definition of the latter). The second theorem proves that the GC-like expansion of 
the SCHS extension (GCSCHS hereafter) follows from the polynomial extension of 
the same modular variable. 	�  ◻

Theorem 2  The n-dimensional spherical extension of the CHS law, (SCHS) hereaf-
ter, has the representation

where (z)(�) and �(⋅) denote the Pochhammer symbol and the Riemann zeta function, 
respectively.

Proof  The spherical extension of a CHS density hinges on the density, fR , of its 
modular variable, R, which, in turn, depends on the density generator (see formulas 
(72) and (74), “Appendix A2”). Now, taking

as the density generator, whose affiliation from the CHS density is apparent, and by 
using the following integral representation of the Riemann zeta function (see, e.g., 
[23] p. 348, 1980)

where � and � are positive parameters and � (⋅) is the Euler–Gamma function, simple 
computations yield the following expression for fR

(19)

gn(x) =
2

(n−3)

2 �
n

2
+1

�
n

2

�
�

n

2
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��(n − 1)(2n+1 − 1)
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1

2
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2
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(20)g(y) = y
1

2
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�
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2
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1

2
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, y ≥ 0

(21)�(�) = ��� −1(�)
2�−1

2� − 1 ∫
∞

0

x�−1(sin h(�x))−1dx,
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This, bearing in mind formulas (72) and (74) in “Appendix A2,” leads to (19). Trivi-
ally, g1(x) tallies with the CHS distribution. 	�  ◻

The graphs in Fig. 1 compare the (standard) bivariate Gaussian and the bivar-
iate SCHS density. The SCHS (in dark) is overlapped to the Gaussian law (in 
light). As the SCHS density is more peaked and has fatter tails than the Gaussian 
law, the former distribution “covers” the peak and the tails of the latter. Con-
versely, the shoulders of the SCHS density, being slimmer than those of the 
Gaussian law, are covered by those of the latter density. 

The issue of density reshaping, based on orthogonal polynomials, can be 
extended to n-dimensional spherical distributions. In fact, as in the univariate 
case, (even) moments of a spherical distribution can be properly modified by 
using ad hoc orthogonal polynomials with coefficients depending on the moments 
of the modular variable characterizing the spherical law.

The following theorem provides GC-like expansions of SCHS densities 
intended to model heavy-tailed multivariate series.

Theorem 3  Let gn(x) be as in (19) and let qn,4(x, �) be specified in terms of the vec-
tor argument x� = [x1, x2,… , xn] as follows

Here

is a second-order polynomial in the argument (x�x) = r2 , which can be read 
as a fourth-order (incomplete) orthogonal polynomial in the Euclidean norm 
(x�x)1∕2 = r . The coefficients e and g of this polynomial are based on the moments mj

(22)fR(r) =
2
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2 rn�n+1
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sin h

�
�√
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r

��−1

, r ∈ [0,∞).
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(
1 +

�

�4
p4

(
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))

(24)p4

(
(x�x)

1

2
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= (x�x)2 − e(x�x) + g =

(
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)4
− e

(
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)2
+ g

Fig. 1   SCHS (in dark) over-
lapped to the Gaussian law (in 
light)
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of the modular variable R and �4 =
‖‖‖p4((x�x)

1

2 )
‖‖‖.

Furthermore, as gn(x) is spherical and qn,4(x, �) is even, the product

defines a family of GCSCHS densities with kurtosis increased by a quantity equal to

with respect to that of the parent SCHS density.

Proof  Following [22], the Mardia’s kurtosis index for a spherical variable is

According to (28), an increase in the kurtosis of a spherical variable can be attained 
by pushing up the fourth moment of the modular variable R that is by increasing the 
second moment of R2 . 	�  ◻

Now, upon noting that, in light of (72) and (74), the density of a spherical vari-
able is an even function in the argument ||x||2 = R2,

the issue of density reshaping by means of orthogonal polynomials can be extended 
to n dimensional spherical distributions by using polynomials in the variable ||x||2 ; 
in other words orthogonal polynomials associated with the density of R2 , fR2(r) 
hereafter. In this connection observe that, in light of the following relationship

the density of a spherical variable can be directly expressed in terms of fR2(r) as 
follows

Accordingly, the GC-like expansions of gn(x) can be obtained by reshaping the den-
sity fR2(r) with a binomial qn,2(r2, �) in the argument r2 that is

(25)mj = E(Rj) =
∫ ∞

0
y

n+j

2
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g(y)dy

∫ ∞

0
y

n

2
−1
g(y)dy
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(26)g̃n(x, 𝛽) = qn,4(x, 𝛽)gn(x)
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E(R)2
)2
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.
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2

)

(�)
n

2 ∫ ∞
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y

n

2
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g(y)dy
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(

n

2

)

(�)
n

2 ∫ ∞

0
y

n

2
−1
g(y)dy

g(||x||2),

(30)fR(r) = 2rfR2 (r),

(31)gn(x) = 2rkfR2

((
x
�
x
)1∕2)

.
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where qn,2(r2, �) =
(
1 +

�

�2
p2(r

2)
)
 and p2(r2) = (r2)2 − er2 + g . It is worth noting 

that, because R2 is an asymmetric variable, p2(r2) is a complete second-order poly-
nomial in the variable r2.

According to formulas (64) and (67) in “Appendix A2,” the coefficients, e 
and g, of the second-order polynomial p2(r2) can be expressed in terms of the 
moments m̃j of the variable R2 as follows

Taking into account that m̃0 = 1 , the above coefficients can be expressed in terms of 
the moments, mj , of the modular variable R as follows

upon noting that m̃j = m2j . As a similar argument applies to the coefficient �2 , hence, 
the following identity

with qn,4(r, �) as specified in (23), holds true.
In light of the above result, simple computations prove that the spherical vari-

able defined in terms of the reshaped modular variable R̃

tallies with the GC-like expansion (26). In fact, taking into account (72), (30), (31) 
and (35), some computations yield

It follows that the GC-like expansion g̃n(x, 𝛽) can be obtained by reshaping the mod-
ular variable R with the binomial qn,4(r, �) . According to (34), the coefficients of the 
polynomial p4(x�x)1∕2 characterizing this binomial are functions of the moments of 
R as specified in (25), and proved in Theorem 3 on page 349 in [22].

(32)fR̃2 (r, 𝛽) = qn,2(r
2, 𝛽)fR2 (r)

(33)e =
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M3,3
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1

, g =
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2
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1

.

(34)e =
m6 − m2m4
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2

, g =
m6m2 − m2

4
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2

(35)qn,2(r
2, �) = qn,4(r, �),

(36)ĝn(x) = kfR̃

((
x
�
x
)1∕2)

(37)ĝn(x) = kfR̃

((
x
�
x
)1∕2)

= 2rkfR̃2

((
x
�
x
)1∕2)

(38)= 2rkqn,2(r
2, �)fR2
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�
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= 2rkqn,4(r, �)fR2

((
x
�
x
)1∕2)

(39)= kqn,4(r, 𝛽)fR

((
x
�
x
)1∕2)

= g̃n(x, 𝛽).
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3 � Application to Financial Returns Data

In the application which follows, we have considered three daily financial series: the 
Nikkei 225 index, the ESTX50 EUR P index and the FTSE MIB index. The returns 
from these series, computed as the difference between the adjusted closing prices 
of two consecutive periods, divided by the adjusted closing price of the first period, 
will be denoted by ∧N225 , ∧STOXX50E and FTSEMIB.MI, respectively, from now 
on. All these series are recorded from 2009/01/01 to 2014/12/31. The series at stake, 
as many others in finance, are emblematic of the presence of excess kurtosis and 
skewness which are impeding characteristics to refer to the Gaussian and other pop-
ular alternatives for risk evaluations. This provides a strong motivation for creat-
ing a new conduit. Indeed, looking for a distribution tailored to both the kurtosis 
and skewness of the observed data, as proposed in this paper, becomes mandatory 
for an effective and accurate diagnosis of financial risks. The series chosen to illus-
trate the performance of the CHS distribution exhibit kurtosis values, respectively, 
equal to 6.28, 6.32 and 5.42 and skewness values, respectively, equal to − 0.42, 0.14 
and 0.02 for which a Gaussian hypothesis is untenable. Likewise for the multivari-
ate case: the Mardia’s kurtosis indexes of the bivariate series (∧N225,∧ STOXX50E) , 
(∧N225,FTSEMIB.MI) and (∧STOXX50E,FTSEMIB.MI) are 15.48, 14.54 and 
12.74, respectively, and are much greater than the kurtosis (8) of a bivariate Gauss-
ian law. As such, these series provide an indicative case to show the effectiveness 
of GC-like expansions of both CHS and SCHS distributions in fitting the observed 
returns and in duly determining some risk measures, specifically value at risk (VaR) 
and expected shortfall (ES). Let’s start with an analysis focused on univariate finan-
cial series.

3.1 � Univariate Approach

Table 1 reports the main descriptive statistics of all series.
As we can see, all data exhibit excess kurtosis and skewness. The Jarque–Bera 

test (JB) shows that the null hypothesis of normality is strongly rejected for all 
returns. Table 1 shows the estimates of the skewness and extra kurtosis, � and � , 
which have been obtained by using maximum likekihood (see “Appendix A3” for 
details). These estimates have been used to build GCCHS that have been fitted to the 

Table 1   Descriptive statistics of standardized daily returns

Here, n is the number of observations; Min and Max are, respectively, the minimum and the maximum 
value of the series; K is the kurtosis index, � the skewness index and � is the extra kurtosis index; and JB 
is the p value of the Jarque–Bera test

Return n Min Max K � � JB

∧
N225 1480 − 7.3611 3.9015 6.2852 − 0.4265 2.2852 0.0000

∧
STOXX50E 1542 − 4.2841 7.1949 6.3236 0.1483 2.3236 0.0000

FTSEMIB.MI 1547 − 3.9956 6.6057 5.4240 − 0.0281 1.4240 0.0000
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series. Figure 2 shows the Gaussian kernel densities1 of the financial returns super-
imposed by their empirical distributions (the histogram of the empirical frequen-
cies), the (standard) normal and the fitted GCCHS.

Figure  3 shows the QQplots of the quantiles of the financial returns against, 
respectively, the Gaussian (in the first column) and the GCCHS quantiles (in the 
second column).

In order to evaluate the goodness of fit of both GCCHS and Gaussian distribu-
tions to data, reference can be made to some indexes based on the absolute differ-
ences between the frequencies f̂i of the empirical kernels and the corresponding fre-
quencies f (xi) estimated by using the GCCHS and the Gaussian densities, namely

In the above formulas, h represents the width of the histogram rectangles, f̂i is the 
height of the i-th rectangle and f (xi) is the ordinate of the GCCHS, or Gaussian dis-
tribution, at the midpoint of the basis of the i-th rectangle. The latter index has the 
advantage to be bounded that is

with the lower value corresponding to a perfect fit. The fit worsens as the index 
moves toward the upper bound. Table 2 gives the values taken by these indexes for 

(40)A1 =
1

2
h

N∑
i=1

|f (xi) − f̂i|

(41)A2 =
1

N

N∑
i=1

|f (xi) − f̂i|
f̂i + f (xi)

.

(42)0 ≤ A2 ≤ 1
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Fig. 2   Empirical distribution of ∧N225 , ∧STOXX50E and FITSEMIB  :  MI returns approximated by 
GCCHS distribution (solid line), standardized normal distribution (dashed line) and kernel density (dot-
ted line)

1  The kernel densities have been estimated by using the command density in R software which, after 
scattering the probability mass of the empirical distribution on a regular grid, provides a linear approxi-
mation of the kernel.
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the series under examination which prove the better fit of GCCHS to data in com-
parison with the Gaussian law.

In order to gain a deeper insight into the effectiveness of the GCCHS distribu-
tions in fitting financial series, we have compared their performance with those of 
other distributions. These distributions are: the Gaussian, the Student-t, the Skew-
t (see [16]), the normal inverse Gaussian, NIG (see [3]), the Fischer’s generalized 
hyperbolic density, GH, the generalized secant hyperbolic, GSH, and the skew gen-
eralized hyperbolic secant, SGSH (see e.g., [17]). All these distributions have been 
estimated via maximum likelihood with the functions fitdistrplus, and ghyp (for the 
NIG and GH) of the R np package. Table 3 reports the estimates of the parameters 
of all these distributions once fitted to returns.
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Fig. 3   QQplot of the empirical quantiles of ∧N225 , ∧STOXX50E and FITSEMIB  :  MI returns against 
with the standardized normal quantiles (left column) and the GCCHS quantiles (right column)

Table 2   Values of the indexes 
A
1
 and A

2
 in the three returns

Return A
1
 Gaussian A

1
 GCCHS A

2
 Gaussian A

2
 GCCHS

∧
N225 0.0807 0.0478 0.0020 0.0012

∧
STOXX50E 0.1119 0.0478 0.0028 0.0012

FTSEMIB.MI 0.0981 0.0597 0.0025 0.0015
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Then, the test for equality of univariate densities, proposed by [34], and based on 
metric entropy, has been implemented. The function npunitest in the R np pack-
age (see [25]) has been used for testing the null of equality of two densities. The test 
statistic is given by

where f(x) and g(x) are the two densities being compared, that is, they are the kernel 
density of a return series and the corresponding fitting distribution, which is one of 
the aforementioned densities.2 The test has been carried out for each of the three 
returns by assuming as a fitting distribution each of the densities introduced before 
(GCCHS, Gaussian, Student’s t, Skew t, GSH, SGSH, NIG and GH distribution). 

(43)S� =
1

2 ∫
∞

−∞

(
f (x)

1

2 − g(x)
1

2

)2

dx

Table 3   Parameter estimates for the fitted distributions

Parameter ∧
N225 ∧

STOXX50E FTSEMIB.MI

Gaussian
� 0 0 0
� 1 1 1

Student’s t ( �)
� 14.08 11.74 13.58

Skew t ( � ; �)
� 14.14 11.74 13.67
� 0.9959 0.9961 0.9901

Generalized secant hyperbolic (GSH) ( �)
� − 1.4234 −1.98330 − 1.6528

Skew generalized secant hyperbolic (SGSH) ( � ; �)
� − 1.4232 − 1.9835 − 1.6517
� 1.0004 0.9988 1.0016

Normal inverse Gaussian (NIG) ( � ; � ; 𝛼̄ ; �)
� 0.0469 0.0180 0.0885
� 0.9923 1.0031 0.9986
𝛼̄ 1.5433 0.8872 1.2406
� − 0.0729 − 0.0180 − 0.0884

Generalized hyperbolic (GH) ( � ; � ; 𝛼̄ ; � ; �)
� 0.0469 − 0.01101 0.0792
� 0.9923 0.9964 0.9975
𝛼̄ 0.4287 0.0003 0.9643
� − 0.0473 0.0110 − 0.0797
� 1.7059 1.2563 0.8223

2  The integral 1
2
∫ ∞

−∞

(
f (x)

1

2 − g(x)
1

2

)2

dx is known as the Hellinger distance. Since it satisfies the trian-
gular inequality, it is a proper measures of distance.
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Trivially, under the null hypothesis it is assumed that the two distributions are the 
same S� = 0 , otherwise S𝜌 > 0 . Table  4 displays the test statistics and the corre-
sponding p values (in brackets) for the above mentioned distributions.

According to the results shown in Table 4, the null hypothesis cannot be rejected 
for the GCCHS, GSH, SGSH, NIG and GH distributions when � = 0.01 . This con-
firms that the empirical and the fitting distributions are not significantly different for 
these series.

To gain a better insight into the fitting of the GCCHS densities, we have also 
computed, for each of them, the relative densities with respect to their empirical 
counterpart (or kernel densities, see [24]). In our case, each relative density is the 
ratio between a given GCCHS density and a return kernel density, each evaluated in 
correspondence to the empirical quantiles. They have been estimated as in [24] with 

Table 4   The entropy measure S� and corresponding p values (in brackets)

Return GCCHS Gaussian Student’s t Skew t GSH SGSH NIG GH

∧
N225 0.0057

(0.7875)
0.0600
(0.0500)

0.0493
(0.2424)

0.0495
(0.2828)

0.0049
(0.86)

0.0038
( 0.1500)

0.0313
(0.8981)

0.0145
(0.9896)

∧
STOXX50E 0.0032

(0.1625)
0.0760
( 0.0000)

0.0562
(0.0707)

0.0568
(0.0404)

0.0042
(0.3900)

0.0034
(0.5100)

0.0289
(0.8717)

0.0381
(0.8934)

FTSEMIB.MI 0.0028
(0.2875)

0.0641
(0.0000)

0.0546
(0.0101)

0.0544
(0.0000)

0.0034
(0.2700)

0,0031
(0.4000)

0.0083
(0.7893)

0.01617
(0.7992)
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Fig. 4   Relative densities and confidence intervals for ∧N225 , ∧STOXX50E and FTSEMIB : MI returns
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the command reldist in the R reldist package. Since a relative density is distributed 
as a uniform variable, when the compared densities are identical, values of this dis-
tribution above (below) 1 provide evidence that the fitted distribution overestimate 
(underestimate) the frequency of the corresponding outcome. The graphs in Fig. 4 
show these relative densities together with their 95% confidence intervals.

Looking at Fig.  4, we can see that GCCHS densities neither overestimate nor 
underestimate the kernel densities at hand. We can therefore draw the conclusion 
that the CHS distribution, once adjusted by its orthogonal polynomials, proves effec-
tive in fitting leptokurtic and skewed series.

The validity of a GCCHS distribution in computing some risk measures, like 
the value at risk (VaR) and the expected shortfall (ES), has been also evaluated. As 
is well known, VaR provides the minor loss we can expect to run within a certain 
period for a given probability (see [38]). The expected shortfall provides informa-
tion about the size of losses exceeding VaR, namely the possible average loss (see 
[30]). Table 5 shows both VaR and ES estimates, computed at different significance 
levels � , by using GCCHS, Normal, Student t, Skew t, GSH, SGSH, NIG and GH 
densities. In this table, the estimated VaR and ES are compared with their corre-
sponding empirical values. Empirical VaR has been computed as �-quantile of the 
empirical distribution, while the empirical ES as average of losses exceeding empiri-
cal VaR. Looking at Table 5, we see that GCCHS densities provide estimates of both 
VaR and ES that are very close to the empirical values.

Table 5 reports also the lower and upper bounds of percentage-bootstrap intervals 
( CIboot ) for VaRemp and ESemp , which have been built by selecting 10,000 bootstrap 
samples from the empirical density of each series. The results shown in this table 
confirm the validity of VaR� and ES� obtained by using GCCHS densities which 
never fall outside the bootstrap intervals for the corresponding empirical values. The 
same does not occur when these risk measures are computed via other densities.

3.2 � Multivariate Approach

Finally, in order to evaluate the goodness of fit of GCSCHS densities in a multivari-
ate context, we have considered three bivariate daily series: ( ∧N225 - ∧STOXX50E ), 
( ∧N225-FTSEMIB.MI) and (FTSEMIB.MI - ∧STOXX50E ). The scatter-plots of these 
series in the period 2009/01/01-2014/12/31 are reported in Fig. 5.

As in the univariate case, we have used the GCSCHS and the bivariate Student t 
densities in order to represent the empirical distributions. Table 6 shows the lengths, 
N, the Mardia’s kurtosis indexes, K, of the bivariate GC-like expansions of these 
series and the degree of freedom of the bivariate Student’s t distribution. Both these 
parameters have been estimated via the maximum likelihood method.

The function MVN of the R package has been used to evaluate the Mardia’s mul-
tivariate kurtosis index. The parameters of the GCSCHS expansions have been esti-
mated with the maximum likelihood.

To determine the log-likelihood function to be maximized, reference has been 
made to the density of an elliptical variable �
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where � denotes its mean vector, � = (���)−1 its variance/covariance matrix and � 
represents the spherical counterpart of � . The density function of the latter variable 
is given by

where cn =
� (

n

2
)

�n∕2 ∫ ∞

0
yn∕2−1g(y)dy

.
Accordingly, the log-likelihood function to be maximized with respect to � , � 

and � turns out to be

(44)� = � + ���

(45)gn(�) = cndet(�)−1∕2g
(
(� − �)��−1(� − �)

)
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Fig. 5   Scatter-plots of the bivariate empirical returns ∧N225 , ∧STOXX50E and FTSEMIB : MI returns

Table 6   Length (N), Mardia’s 
kurtosis index, K, the parameter 
� of the GCSCHS density and 
the parameter � of the Student’s 
t distribution

Return N K � �

∧
N225-∧STOXX50E 1390 15.480 6.8109 11.8388

∧
N225-FTSEMIB.MI 1395 14.5433 5.5485 13.2615

∧
STOXX50E-FTSEMIB.MI 1521 12.746 3.1243 12.4738
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where ft(�t,�,�, �) , shortened in ft , is given by

and

Here the coefficients e, g, and �4 are as specified in Theorem 3. Furthermore, we 
have

To make the maximization of (46) unconstrained, in what follows � = (���)−1 is 
meant to be the Cholesky decomposition of � , so that the elements in the lower 
triangular matrix � are free to move from minus to plus infinity. Moreover, for com-
putational convenience, in order to bypass the inequality constraint (12), the scalar � 
in (47) has been parametrized as follows

where �max is the upper bound of � in (12) and � is an unrestricted parameter.
Accordingly, the function (46) can be rewritten as

Some computations (see “Appendix A3”) show that the first-order conditions for the 
maximization of (52) are

(46)l(�,�, �) =

T∑
t=1

log ft(�t,�,�, �)

(47)ft =

{
1 +

�

�4
p4(qt)

}
gn(qt)

(48)qt =(�t − �)��−1(�t − �) = tr(�−1(�t − �)(�t − �)�)

(49)p4(qt) =q
2
t
− eqt + g

(50)gn(qt) = qt

�
sin h

�
�qt√
2

��

(51)� = �max

1

1 + �2
,

(52)l =

T∑
t=1

log

(
1 +

�

�4
p4(qt)

)
+

T∑
t=1

log gn(qt),

(53)�l

��
= −2

T∑
t=1

�−1(�t − �)�t = �

(54)
𝜕l

𝜕vech�
= −��

n
(�−1 ⊗�−1)vec(� − T�) = �
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Here, �t =
(
ht +

(
1 +

�

�4
p4(qt)

)−1
�

�4
(2qt − e)

)
 where ht =

1

qt
− cot h

�
�qt√
2

�
�√
2
 , �n is 

the duplication matrix (see [32]), and � =
∑T

t=1
(�t − �)(�t − �)��t.

The graphs in Fig.  6 show the GCSCHS densities fitted to the three bivari-
ate series: ((∧N225 - ∧STOXX50E ), ( ∧N225-FTSEMIB.MI) and (FTSEMIB.MI 
- ∧STOXX50E)).

Following [27], the VaR at a given level � , VaR� , of a linear portfolio represented 
by a spherical variable r , can be evaluated as follows

where � is a weighting vector that, in this case, is the unit vector and � is the vari-
ance/covariance matrix of r . The scalar q�,n is the unique positive solution of the 
trascendal equation

where gn(u) is defined as in (26) and � (⋅) is the Euler–Gamma function.
According to (56), the theoretical ES at a given level � , ( ES� ), can be evaluated as 

follows

(55)𝜕l

𝜕𝜙
= −

T∑
t=1

(
1 +

𝛽

𝛾4
p4(qt)

)−1
p4(qt)

𝛾4
𝛽max

2𝜙

[1 + 𝜙2]2
= 0

(56)VaR� = q�,n

√
����

(57)� =
2�

n−1

2

�
(

n−1

2

) ∫
∞

q�,n
∫

∞

z2
1

(u − z2
1
)
n−1

2 gn(u)dudz1,
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Fig. 6   GCSCHS densities fitted to the three bivariate series
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where

As benchmarks for VaR� and ES� , we have evaluated the corresponding empirical 
measures in two different ways. Firstly, we have computed the empirical VaR as 
follows

where VaRj is the VaR of the j-th univariate series and cov(⋅) denotes the covariance 
of the bivariate series Xi,Xj . The function VARES of the R package has been used 
for this scope. Then, after computing the ESj of each univariate series Xj by using 
VaRe1

 as the critical level, we have computed the empirical ES of the bivariate series 
as follows

Other measures of empirical VaR and ES, VaRe2
 and ESe2 hereafter, have been 

obtained by applying Kandem’s formulas (56) and (58) with gn(u) replaced by the 
empirical density of the bivariate series and q�,n by the empirical quantile. Tables 7 
and 8 compare both the theoretical values of these risk measures, VaRGC

�
 and ESGC

�
 , 

under the GCSCHS and the bivariate Student’s t models, VaRt
�
 and ESt

�
 , with the 

corresponding empirical values ( VaRe1
 , VaRe2

 ), and ( ESe1 , ESe2 ), respectively.
Just like in the univariate case, also in the bivariate case GCSCHS densi-

ties provide good estimates for both VaR and ES. Looking at Tables  7 and 8, we 
see that the estimates of these risk measures provided by GCSCHS densities are 
always close to the corresponding empirical values and they always lie inside the 

(58)ES� = KES

√
����

(59)KES =
𝜋

n−1

2

𝛼𝛤
(

n+1

2

) ∫
∞

q2
𝛼,n

(u − q2
𝛼,n
)
n−1

2 g̃n(u, 𝛽)du.

(60)VaRe1
=

√
VaR2

1
+ VaR2

2
− 2cov(X1,X2)

(61)ESe1 = ES1 + ES2.

Table 7   Empirical VaR with associated percentage-bootstrap intervals and theoretical VaR computed 
with GCSCHS and Student t, VaRGC

�
 and VaRt

�

Returns � VaR
e1

VaR
e2

CI
boot

(VaR
e1
)� VaR

GC

�
VaR

t

�

∧
N225 - ∧STOXX50E 0.01 3.8542 3.6278 (3.0318–4.6149) 3.7359 3.7993

0.05 2.3028 2.2813 (2.1264–2.4809) 2.2060 2.5234
0.1 1.6231 1.6805 (1.5444–1.7410) 1.6276 1.9195

∧
N225 - FTSEMIB.MI 0.01 3.8803 3.5706 (3.0382–4.2823) 3.6898 3.7380

0.05 2.3558 2.2859 (2.1121–2.4880) 2.2270 2.5007
0.1 1.6399 1.7044 (1.5348–1.7272) 1.6476 1.9074

∧
STOXX50E - FTSEMIB.MI 0.01 3.7720 3.7080 (3.3763–4.7502) 3.6149 3.7700

0.05 2.3784 2.3122 (2.1367–2.5634) 2.2651 2.5126
0.1 1.7208 1.7003 (1.5549–1.7081) 1.6855 1.9137
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percentage-bootstrap intervals ( CIboot ) built for VaRemp and ESemp by selecting 
10,000 block bootstrap samples from the empirical density of each series. This 
is not true for the theoretical values under the Student’s t distribution. In particu-
lar, the VaRt

�
 always overestimates the empirical values because it falls outside the 

bootstrap interval when � = 0.05 and � = 0.1 . The ESt
�
 follows the same trend as it 

falls always outside the bootstrap interval � = 0, 1 and, in the case of the pair return 
“‘STOXX50E-FTSEMIB.MI,” is always outside the percentage-bootstrap bounds 
for every � level. Hence, we can draw the conclusion that GCSCHS densities pro-
vide precautionary estimates of the risk measures here considered.

4 � Conclusion

This paper proposes a family of leptokurtic distributions obtained via a polynomial 
transformation of a leptokurtic density, called convoluted hyperbolic secant (CHS). 
The CHS density shares several desirable properties with the logistic and hyperbolic 
secant laws, to which it is connected by some intriguing relationships. Reshaping 
the CHS by using its own orthogonal polynomials yields Gram–Charlier-like expan-
sions (GCCHS) able to account for skewness and kurtosis found in empirical data. 
The multivariate extension of both CHS and its GCCHS expansions (GCSCHS) 
can be obtained on a spherical distribution argument. The possibility of encoding 
both excess kurtosis and skewness, by using the orthogonal polynomial technique, 
makes GCCHS densities and their spherical version, a valuable resource for mod-
eling financial asset return distributions. This considerably broadens the application 
domain of the previous approach based on the transformation of the Gaussian law by 
Hermite polynomials (see e.g., [43]). An application to empirical financial returns 
data provides practical evidence of the effectiveness of the proposed densities to fit 
both univariate and multivariate leptokurtic, skewed distributions. The capability of 
both GCCHS and GCSCHS densities in assessing some risk measures, like the value 
at risk and the expected shortfall, is also evaluated and leads to the conclusion that 
they are more effective than standard alternatives considered by the extant literature.

Table 8   Empirical ES with associated percentage-bootstrap intervals and theoretical ES computed with 
GCSCHS and Student t, ESGC

�
 and ESt

�

Returns � ES
e1

ES
e2

CI
boot

(ES
e1
)� ES

GC

�
ES

t

�

∧
N225 - ∧STOXX50E 0.01 10.2197 9.5000 (4.5445–11.0215) 9.7810 9.1473

0.05 6.1143 6.3431 (5.4950–6.9698) 6.3393 6.6388
0.1 4.6465 5.1221 (4.3440–5.0704) 5.0532 5.5109

∧
N225 - FTSEMIB.MI 0.01 9.6302 9.2846 (4.0386–10.6990) 9.5533 8.9454

0.05 6.2981 6.2710 (5.3995–6.9376) 6.3052 6.5417
0.1 4.6596 5.1031 (4.3281–4.9788) 5.0572 5.4459

∧
STOXX50E - FTSEMIB.MI 0.01 8.1508 9.2411 (5.7912–8.5969) 9.1050 9.0505

0.05 5.8875 6.3621 (5.4456–6.3319) 6.2364 6.5924
0.1 4.6811 5.1539 (4.3198–4.7627) 5.0622 5.4798
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Appendix

A1: Orthogonal Polynomials

A sequence of polynomials

where a0, a1,… , an−1 are reals and n is a nonnegative integer, is orthogonal with 
respect to a density function f(x) with finite moments if the following holds

Here 𝛾n > 0 , �nd is the Kronecker symbol ( �nd = 1 if n = d , and zero otherwise) 
and p0(x) = 1 by convention. Condition (63) determines pn(x) . The coefficients 
a0, a1,… , an−1 of pn(x) are functions of the moments mj of the density f(x)

where Mn+1,i is the cofactor of the (n + 1, i) entry of the (n + 1, n + 1) moment matrix

The quantity �n is given by

where reference is made to a moment matrix of dimensions (n + 2, n + 2) (see, e.g., 
[12, 41]).

For even densities, odd moments are null and orthogonal polynomials pn(x) are 
even functions if n is even, and odd otherwise (see [41]). In particular, the third and 
fourth-order orthogonal polynomials associated with an even density f(x) turn out to 
be of the form

where d, g and e are functions of moments of the random variable x.
For our purposes, the following trinomial

is of particular interest because it can be used to alter the third and fourth moments 
of f(x) to an extent equal to � and � , respectively. To this end, consider the function

(62)pn(x) = xn + an−1x
n−1 + an−2x

n−2 +⋯ + a0

(63)∫
∞

−∞

pn(x)pd(x)f (x)dx = �n�nd, d = 0, 1, ..., n − 1, n ∈ N ∪ {0}.

(64)aj = (Mn+1,n+1)
−1Mn+1,j+1,

(65)

⎡⎢⎢⎢⎣

m0 m1 m2 … mn

⋮ ⋮ ⋮ ⋮

mn−1 mn mn+1 … m2n−1

1 x x2 … xn

⎤⎥⎥⎥⎦
.

(66)�n =
Mn+2,n+2

Mn+1,n+1

,

(67)p3(x) = x3 − dx, p4(x) = x4 − ex2 + g,

(68)q(x, �, �) = 1 +
�

�3
p3(x) +

�

�4
p4(x)
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where (q(x, �, �)) is subject to be positive. The function g̃(x, 𝛼, 𝛽) is called 
Gram–Charlier-like (GC-like) expansion of f(x). The following theorem proves a 
fundamental result on moments of GC-like expansions defined as in (69).

Theorem A1  The moments �j up to the 4-th order of the GC-like expansion in (69) 
are related to the moments mj of the parent density f(x) as follows

Higher moments of g̃(x, 𝛼, 𝛽) turn out to be algebraic functions of the moments of 
f(x).

Proof  The proof follows from the properties of orthogonal polynomials as shown in 
[14, 43]. 	�  ◻

A2: Spherical Distributions

Spherical distributions and the corresponding random vectors are also called 
“radial” (see [29]), or “isotropic” (see [5]), because they correspond to the class 
of rotationally symmetric distributions. Accordingly, any spherical random vector 
admits a stochastic representation of the form

where U(n) is a random vector uniformly distributed on the unit hypersphere with 
n-1 topological dimensions and R = (x�x)

1

2 is a nonnegative random variable, called 
modular variable, independent of U(n) . An interesting property of spherical distribu-
tions is that their densities may be expressed via the density function of the modular 
variable, provided it is absolutely continuous.

Theorem A2  An n-dimensional spherical random vector x has a density, gn(x) , of 
the form

where fR is the density of the modular variable R = (x�x)
1

2,

(69)g̃(x, 𝛼, 𝛽) = q(x, 𝛼, 𝛽)f (x),

(70)

⎧
⎪⎨⎪⎩

𝜇j = mj for j < 3

𝜇j = mj + 𝛼 for j = 3

𝜇j = mj + 𝛽 for j = 4.

(71)x = RU(n),

(72)gn(x) = kfR

(
(x�x)

1

2

)
,

(73)k =
�
(

n

2

)

2(�)
n

2

r1−n
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and � (⋅) is the Euler–Gamma function. Furthermore, the density fR has the integral 
representation

in terms of a nonnegative Lebesgue measurable function g(⋅) called density 
generator.

Proof  For the proof see [15, 22]. 	�  ◻

A3: Maximum Likelihood Estimation of GCSCHS Laws

In the univariate case, in light of (5), the log-likelihood function to maximize is

were

and

with x̃t denoting the standardized variable: x̃t =
xt−�

�
.

In the multivariate case, bearing in mind (47), the log-likelihood function is as 
in (75) with lt specified as follows where

and qt , p4(qt) , gn(qt) and � are defined as in (48), (49), (45) and (51), respectively. 
In the latter case, the procedure to obtain the maximum likelihood estimate of � , 
vech(�) and v, hinges on the gradient vector

and the Hessian matrix

where

(74)fR(r) =
2rn−1

∫ ∞

0
y

n

2
−1
g(y)dy

g(r2)

(75)
N∑
i=1

lt

(76)lt = log(q(xt,�, �, �, �)) + logf (xt)

(77)q(xt,�, �, �, �) =

(
1 +

�

�3
p3(̃xt) +

�

�4
p4 (̃xt)

)

(78)lt = log ft = log gn(qt) + log

(
1 +

�

�4
p4(qt)

)

(79)� =
�lt

��

(80)� =
�2lt

�����
=

��

���



	 Journal of Statistical Theory and Practice           (2020) 14:15 

1 3

   15   Page 26 of 29

As for the gradient, we need the following derivatives

where

As far as derivatives (82) and (83) are concerned, some computations yield

where �n denotes the duplication matrix (see [32]), �t = �−1(�t − �)(�t − �)��−1 , 
and

Equations (88) and (89) have been worked out upon noting that

(81)�� =
[
��, vech(�)�,�

]

(82)
𝜕 log g̃n(qt)

𝜕�

(83)
𝜕 log g̃n(qt)

𝜕vech�

(84)
𝜕 log

(
1 +

𝛽

𝛾4
p4(qt)

)

𝜕�

(85)
𝜕 log

(
1 +

𝛽

𝛾4
p4(qt)

)

𝜕vech�

(86)
𝜕 log

(
1 +

𝛽

𝛾4
p4(qt)

)

𝜕𝜙

(87)g(qt) = qt(sin h(
�qt√
2
))−1.

(88)
𝜕 log g̃n(qt)

𝜕�
=

𝜕 log g(qt)

𝜕�
=

𝜕 log g(qt)

𝜕qt

𝜕qt

𝜕�
= −2�−1(xt − �)ht

(89)

𝜕 log g̃n(qt)

𝜕vech�
= −

1

2

𝜕 log |�|
𝜕 vech�

+
𝜕 log g(qt)

qt

𝜕(qt)

vech�
= −

1

2
��

n
vec �−1 − ht�

�
n
vec �� ,

(90)ht =
� log g(qt)

�qt
= (g(qt))

−1
�g(qt)

qt
=

1

qt
− cot h

�
�qt√
2

�
�√
2

(91)
�qt

��
= −2�−1(�t − �)
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Derivatives (84) and (85) turn out to be

where 𝜆t = −
(
1 +

𝛽

𝛾4
p4(qt)

)−1
𝛽

𝛾4
(2qt − e).

Derivatives (94) and (95) have been computed by taking in to account (91)–(93), 
as well as

Lastly, derivative (86) is given by

where dt = −
(
1 +

𝛽

𝛾4
p4(qt)

)−1
p4(qt)

𝛾4
𝛽max.

Second-order derivatives, necessary to obtain the Hessian matrix, can be worked 
out by using the procedure so far followed.
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