
IFAC PapersOnLine 55-2 (2022) 13–18

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.04.162

10.1016/j.ifacol.2022.04.162 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Managing Input Parameter Uncertainty in
Digital Twins

A. Masciarelli, A. Matta

Mechanical Engineering Department, Via La Masa 1, 20156 Milano
(MI) (e-mail: pecmecc(at)cert.polimi.it))

Abstract: Discrete event simulation models can be used in digital twins to support the
design and decision-making process of manufacturing systems. In many industrial contexts,
the collection of real-time data from the system is a costly task and the performance predicted
by digital twins may be affected by input uncertainty, due to the scarcity of data used to
input simulation parameters, thus leading stakeholders to biased decision-making. Literature
approaches treat this problem mainly from a theoretical point of view and are applied on very
simple systems that do not adequately represent real factories.
The aim of this paper is to explore the advantages and drawbacks of an input uncertainty
simulation technique, namely the metamodel–assisted bootstrapping procedure. This technique
is applied and extended to evaluate the production rate of a lab–scale manufacturing system.
We show it is possible, despite the scarcity of data, to build a reliable confidence interval on
the production rate and to identify those parameters whose effect on the performance is most
relevant. Moreover, the marginal contribution of each input parameter to the performance can
be quantitatively assessed, thus enabling stakeholders to identify which parameters to focus on
in data collection activity.
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1. INTRODUCTION

The performance evaluation of manufacturing systems has
been subject of high interest over the last decades. Tak-
ing advantage of the increasing computational power of
computers, a digital representation of a manufacturing
system can now be twinned with its physical counterpart
to provide real time support in the decision making for
production control. Indeed, discrete event simulation mod-
els are proposed to be used as digital twins of production
systems and to provide prediction and what-if analysis
functionalities during the system operation (Lugaresi and
Matta, 2018). An overall review of industrial applications
of digital twins is provided by Liu et al. (2021).

In this context, prediction accuracy of simulation is in-
creasing a major role as the simulation applications get
closer and closer to the physical system. Two types of
error are related with performance estimation of simu-
lated systems: an intrinsic error due to the stochastic
nature of simulation and the finite length of simulation
runs, and an extrinsic error due to wrong estimation of
the parameters used as input to the simulator (Barton
et al., 2014). Input simulation parameters define the input
distributions and they can be estimated in the light of
the collected on-field data. While, on one hand, experts
deal with intrinsic uncertainty defining confidence inter-
vals on the performance instead of point estimates, on the
other hand, the only way to reduce extrinsic uncertainty
is the collection of a larger amount of empirical data.
Therefore, a fundamental aspect to be taken into account
for the correct modelling of a manufacturing system is

the possibility of collecting data to estimate parameters
(such as the reliability of machines or the cycle time of
workstations, etc). However, it is sometimes impossible,
or very costly, to collect sufficient data from which to
properly estimate the values of input parameters. This
problem is emphasized in digital twin applications, where
the simulation is coupled in real time with a system that
may change in its behaviour and design and parameters
estimation must be repeated at every major change of the
real system. In such cases, therefore, extrinsic uncertainty
may lead to misjudgements of the system’s performance.
Ignoring the scarcity of data, and the resulting extrinsic
uncertainty, may lead companies to misjudgements of the
physical system’s performance. This implies wrong control
choices and optimization procedures.

This paper studies the input uncertainty problem in man-
ufacturing systems applications. Existing literature treats
the input uncertainty problem from a theoretical point of
view and demonstrates the analytical asymptotic validity
of the proposed formulations. However, the existing pro-
cedures are tested only on very simple queuing systems
(such as single server M/M/1/q queuing systems) to prove
their reliability and robustness whereas more complex
manufacturing applications are not fully explored yet. In
this work, the metamodel-assisted bootstrapping is applied
(Barton et al. (2014)) and extended in its analysis for
manufacturing systems. Starting from the few data that
can be collected in real-time from the physical system,
we describe how extrinsic uncertainty of input parameters
can be rigorously quantified and the extent to which it
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propagates into performance estimation uncertainty. Using
the proposed procedure, reliable performance estimates
and design insights can be provided to the stakeholders.

This content is organized as follows. In section 2, a brief
literature analysis on the input uncertainty is reported.
Section 3 describes the proposed procedure to deal with
the extrinsic error of simulation models for manufacturing
systems. In section 4, a case of study is presented to
show the applicability of the procedure to a manufacturing
line. Section 5 concludes this work by drawing some
considerations useful for further developments.

2. LITERATURE REVIEW

Traditional simulation approaches for the performance
evaluation of manufacturing systems rely on the hypoth-
esis of known input parameter values. Jahangirian et al.
(2010) and Negahban and Smith (2014) provide a com-
prehensive review of multiple discrete event simulation
approaches with a focus on manufacturing systems’ design.

However, simulation output depends on the input distri-
butions used to drive the model. When these distributions
are fitted using finite samples of real-world data, errors
in the input distributions may arise and these errors in-
evitably propagate into the output estimation. Yet this
error is rarely considered and assessed in simulation output
analysis. In recent years, several methodologies have been
developed in order to keep into account input parameter
uncertainty when estimating the performance of a man-
ufacturing systems. Three main techniques are described
in literature to adapt traditional simulation approaches to
the case in which lack of input data is experienced and the
value of input parameters values has to be inferred: Delta
method, Bayesian approach and Bootstrap resampling.
Barton (2012) presents a discussion of input uncertainty
issues and the developed methodological approaches to
characterize the impact on simulation output arising from
input parameters errors. A description of Delta method,
Bootstrap resampling and Bayesian approach is provided
in his tutorial.

The Delta method (Cheng and Holloand (1997) and
(2004)) makes it possible to evaluate separately the
contribution to performance estimation error of intrin-
sic stochastic uncertainty and extrinsic parameter uncer-
tainty. The overall estimation error is quantified as the
sum of the two contributions. This method exploits the
asymptotic properties of parameters’ maximum likelihood
estimators and the Taylor series approximation of the
expected system’s response. Delta method is used by Corlu
and Biller (2013) to provide a subset selection procedure,
which is a Ranking & Selection optimization process. Their
objective is to provide a decision rule which is able to iden-
tify a subset of system designs whose performance is within
a user-specified distance from the performance of the true
best system. Song and Nelson (2019) use the Delta method
for their optimization procedure which aims at the identi-
fication of the real-world optimal from a finite amount of
system designs being compared. The main concerns about
Delta method are the asymptotic properties of maximum
likelihood estimators (that are not always verified in case
the amount of available data is not sufficient), the Taylor
series approximation on which it is based (which requires

the computationally costly calculation of gradients) and,
finally, the fact that the extrinsic error inflates as the
number of input parameters increases, thus making the
technique ineffective for complex systems involving many
uncertain input parameters.

In Bayesian approach, a simulation experiment is run
at each of many repeated samplings from the posterior
distributions of input parameters to evaluate the impact
of input uncertainty on performance estimation. Bayesian
approach is applied by Zouaoui and Wilson (2003) and
(2004), thanks to the implementation of a Simulation
Replication Algorithm, with the aim of specifying a confi-
dence interval on the performance that keeps rigorously
into account input uncertainty. Xie et al. (2014) intro-
duce a Bayesian framework to measure the overall sim-
ulation error arising from the lack of collectable input
data. Corlu and Biller (2015) develop a subset selection
procedure which identifies a subset of system designs in-
cluding the best with a probability higher than an user-
specified threshold. The decision rule guiding the subset
selection is implemented exploiting the Bayesian approach
and the already mentioned simulation replication algo-
rithm (Zouaoui and Wilson (2004)). The main drawbacks
of Bayesian approach are the computation of the posterior
distributions (which could be a quite complex task) and
the high simulation time required to evaluate the perfor-
mance of the system at each one of the combinations of
input parameters sampled from the posterior distributions.

Finally Bootstrapping is presented by Cheng and Holloand
(1997) and (2004) as a method to estimate the uncertainty
of input parameters, indeed the sampling distributions
of input parameters are identified thanks to bootstrap
resampling of data. How the variability of input parameter
values propagates into the output is then assessed by
means of simulation experiments run at multiple samplings
from the sampling distributions of input parameters. This
technique is known as direct bootstrapping. Also in this
case, as for the Bayesian approach, the simulation effort
required to evaluate the performance of the system in the
multiple combinations of resampled input parameters is
considerable. On the other hand, the main advantage of
bootstrapping is the fact that it does not require the strict
assumptions on input parameters of the Delta method, nor
the complex computations required to build the posterior
distributions characterizing the Bayesian approach.

To overcome the problem of the long required simula-
tion time, Barton et al. (2014) describe a metamodel-
assisted procedure. The metamodel allows the computa-
tion of the output performance as an analytical smooth
function of input parameters, thus overcoming the limita-
tions of traditional bayesian and bootstrapping approaches
which require many simulation experiments. Furthermore,
metamodel-assisted procedures allow for the saving of a
considerable amount of time by computing analytically the
value of the expected performance in the multiple combi-
nations of input parameters sampled from the posterior or
sampling distributions.

The literature cited in this section addresses from a theo-
retical point of view the problem of evaluating the per-
formance of systems subject to input uncertainty. The
proposed techniques are applied to very simple systems,
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analysis. In recent years, several methodologies have been
developed in order to keep into account input parameter
uncertainty when estimating the performance of a man-
ufacturing systems. Three main techniques are described
in literature to adapt traditional simulation approaches to
the case in which lack of input data is experienced and the
value of input parameters values has to be inferred: Delta
method, Bayesian approach and Bootstrap resampling.
Barton (2012) presents a discussion of input uncertainty
issues and the developed methodological approaches to
characterize the impact on simulation output arising from
input parameters errors. A description of Delta method,
Bootstrap resampling and Bayesian approach is provided
in his tutorial.

The Delta method (Cheng and Holloand (1997) and
(2004)) makes it possible to evaluate separately the
contribution to performance estimation error of intrin-
sic stochastic uncertainty and extrinsic parameter uncer-
tainty. The overall estimation error is quantified as the
sum of the two contributions. This method exploits the
asymptotic properties of parameters’ maximum likelihood
estimators and the Taylor series approximation of the
expected system’s response. Delta method is used by Corlu
and Biller (2013) to provide a subset selection procedure,
which is a Ranking & Selection optimization process. Their
objective is to provide a decision rule which is able to iden-
tify a subset of system designs whose performance is within
a user-specified distance from the performance of the true
best system. Song and Nelson (2019) use the Delta method
for their optimization procedure which aims at the identi-
fication of the real-world optimal from a finite amount of
system designs being compared. The main concerns about
Delta method are the asymptotic properties of maximum
likelihood estimators (that are not always verified in case
the amount of available data is not sufficient), the Taylor
series approximation on which it is based (which requires

the computationally costly calculation of gradients) and,
finally, the fact that the extrinsic error inflates as the
number of input parameters increases, thus making the
technique ineffective for complex systems involving many
uncertain input parameters.

In Bayesian approach, a simulation experiment is run
at each of many repeated samplings from the posterior
distributions of input parameters to evaluate the impact
of input uncertainty on performance estimation. Bayesian
approach is applied by Zouaoui and Wilson (2003) and
(2004), thanks to the implementation of a Simulation
Replication Algorithm, with the aim of specifying a confi-
dence interval on the performance that keeps rigorously
into account input uncertainty. Xie et al. (2014) intro-
duce a Bayesian framework to measure the overall sim-
ulation error arising from the lack of collectable input
data. Corlu and Biller (2015) develop a subset selection
procedure which identifies a subset of system designs in-
cluding the best with a probability higher than an user-
specified threshold. The decision rule guiding the subset
selection is implemented exploiting the Bayesian approach
and the already mentioned simulation replication algo-
rithm (Zouaoui and Wilson (2004)). The main drawbacks
of Bayesian approach are the computation of the posterior
distributions (which could be a quite complex task) and
the high simulation time required to evaluate the perfor-
mance of the system at each one of the combinations of
input parameters sampled from the posterior distributions.

Finally Bootstrapping is presented by Cheng and Holloand
(1997) and (2004) as a method to estimate the uncertainty
of input parameters, indeed the sampling distributions
of input parameters are identified thanks to bootstrap
resampling of data. How the variability of input parameter
values propagates into the output is then assessed by
means of simulation experiments run at multiple samplings
from the sampling distributions of input parameters. This
technique is known as direct bootstrapping. Also in this
case, as for the Bayesian approach, the simulation effort
required to evaluate the performance of the system in the
multiple combinations of resampled input parameters is
considerable. On the other hand, the main advantage of
bootstrapping is the fact that it does not require the strict
assumptions on input parameters of the Delta method, nor
the complex computations required to build the posterior
distributions characterizing the Bayesian approach.

To overcome the problem of the long required simula-
tion time, Barton et al. (2014) describe a metamodel-
assisted procedure. The metamodel allows the computa-
tion of the output performance as an analytical smooth
function of input parameters, thus overcoming the limita-
tions of traditional bayesian and bootstrapping approaches
which require many simulation experiments. Furthermore,
metamodel-assisted procedures allow for the saving of a
considerable amount of time by computing analytically the
value of the expected performance in the multiple combi-
nations of input parameters sampled from the posterior or
sampling distributions.

The literature cited in this section addresses from a theo-
retical point of view the problem of evaluating the per-
formance of systems subject to input uncertainty. The
proposed techniques are applied to very simple systems,

typically single-server queueing systems. This work aims,
instead, to apply metamodel-assisted bootstrapping on
more complex systems with the aim to identify a con-
fidence interval for the performance of interest, and to
extend it so that it can be used to guide the process of
decision making of the experts thanks to the identification
of the achievable performance targets and of the parame-
ters whose effect on the performance is more relevant.

3. THE PROCEDURE

Metamodel-assisted bootstrapping is applied and extended
in this section so to evaluate the performance of a manufac-
turing line in the light of few available real-time data. The
ease of construction of sampling distributions of uncertain
parameters, the few required assumptions on the input dis-
tributions and the asymptotic properties of the metamodel
led to the choice of metamodel-assisted bootstrapping for
this study. The procedure is broken down in two stages:
generation of input scenarios and performance evaluation,
which are described in sections 3.1 and 3.2 respectively.
When few data are available, the value of the input pa-
rameters is uncertain, and therefore, in the first step, a
multitude of input parameters’ scenarios that can occur is
generated via bootstrapping. Finally, in the second step,
exploiting a metamodel, the performance of the system
is evaluated in each generated scenario so to keep input
uncertainty into account when providing performance es-
timates. A brief introduction to the notation is provided
in this section.

3.1 Input Uncertainty Quantification

The aim of this first step is to quantify the uncertainty in
the value of parameters. Quantifying means identifying for
each parameter, on the basis of the available information
(real-time data), the range within which its exact value
lies.

Bootstrap resampling is used to obtain the sampling
distribution of each of the parameters. In this way, if M
sets of empirical data are observed, not only the best
estimates of the parameters θ̂ are computed, but also a
measure of uncertainty is defined. P uncertain parameters
θ= {θ1, θ2, ..., θP } for M input distributions have to be
estimated in the light of M sets of input data.

The input uncertainty quantification procedure is identi-
fied by the following steps:

(1) Data collection: observation of M sets of nm real
world variates for the M distributions.

Xm = (xm
1, xm

2, ..., xm
nm) (1)

m=1,2,...,M
(2) Identification of estimators: computation of the max-

imum likelihood estimators of the parameters: θ̂
1
=

{θ̂11, θ̂12, ..., θ̂1P } .The maximum likelihood estimators
of the parameters are the values maximizing the log-
likelihood function (Cheng and Holloand (1997))

(3) Bootstrapping: resampling of the set of empirical data
to obtain

Xm
b = (xm

1,b, xm
2,b, ..., xm

nm,b) m = 1, 2, ...,M
(2)

with b = 2, 3, ..., B. The B resamplings of the orig-
inal data provide experts with B input scenarios in
which all the P input parameters are simultaneously
varying.

(4) Sampling distributions: estimation of the maximum

likelihood estimators θ̂
b
= {θ̂b1, θ̂b2, ..., θ̂bP } with b =

2, 3, ..., B

to obtain: {θ̂1, θ̂2, ..., θ̂P }, where θ̂p = {θ̂1p, θ̂2p, ..., θ̂Bp }
identifies the sampling distributions of the p-th pa-
rameter.

Parameter Scenario 1 Scenario 2 ... Scenario B

θ1 θ̂11 θ̂21 ... θ̂B1
θ2 θ̂12 θ̂22 ... θ̂B2
... ... ... ... ...

θP θ̂1P θ̂2P ... θ̂BP
Metamodel output η̂1 η̂2 ... η̂B

Table 1. The B bootstrapped input scenarios.

The B bootstrap-resampled combinations of input param-

eter values {θ̂
1
, θ̂

2
, ..., θ̂

B
} can be directly used as input

scenarios (where θ̂
b
= {θ̂b1, θ̂b2, ..., θ̂bP } is the b − th input

scenario).

3.2 Output performance evaluation

Bootstrap resampling defines the range and the probability
of input parameter values allowing experts to keep into
consideration that, because of the lack of data, multiple
different input scenarios may occur. This step of the pro-
cedure involves evaluating the performance of the system
in each of the B input scenarios generated in the input
uncertainty quantification step (section 3.1). As already
highlighted in section 2, running B simulation experiments
is computationally too expensive. For this reason it is
often necessary to resort to a metamodel. How to fit the
metamodel η̂ approximating the response function η is out
of the scope of this work (see Barton et al. (2014) and
Xie et al. (2014) in which the metamodel is applied in a
bootstrapping and a Bayesian framework respectively).

The output performance evaluation procedure is described
by the following steps:

(1) Simulation experiments: K design points, character-
ized by a different combination of input parameters’
values, are generated (Barton et al. (2014)) and the
expected performance of the system η̄ is computed
via simulation in each design point {η̄1, η̄2, ..., η̄K}.

(2) Metamodel construction: based on the simulation re-
sults at the design points, the metamodel η̂ approxi-
mating the system’s response function is fitted.

(3) Output performance evaluation: once that the meta-
model η̂(θ) has been built, it is possible to evaluate
the expected performance of the system in the B
generated input scenarios of Table 1 and to finally
compute a quantile confidence interval on the per-
formance of the system which keeps into account
parameter uncertainty:

[βl, βu] = [η̂�Bα/2�, η̂�B(1−α/2)�] (3)
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Parameter Scenario 1 Scenario 2 ... Scenario B

θ1 θ̂11 θ̂21 ... θ̂B1
θ2 θ̂12 θ̂22 ... θ̂B2
... ... ... ... ...

θp θ̄p θ̄p ... θ̄p

... ... ... ... ...

θP θ̂1P θ̂2P ... θ̂BP
Metamodel output η̂1 η̂2 ... η̂B

Table 2. Performance of the system in B input
scenarios in which the value of parameter θp is

fixed to θ̄p.

It is also possible to provide a measure of the achiev-
able performance target ηp:

ηp = η̂�B(1−p)� (4)

where η̂�B(1−p)� is the (1-p) quantile of the B perfor-
mance scenarios. Equation (4) simply reveals which
minimum performance threashold is reached in a
given percentage of input scenarios p%.

The confidence interval in equation (3) informs about
the expected performance that the system is able to
achieve in (1 − α)% of the generated input scenarios.
Although this confidence interval can sometimes be wide
(the lower the amount of data, the wider the interval),
it is consistently able to capture the true performance
of the physical system, whereas a traditional confidence
interval, assuming the correctness of the input parameter
estimators, might not.

Moreover, equation (4) can be used, depending on the
needs of the stakeholders, both to identify the probability
of reaching a given performance target, and also, vice
versa, the performance achievable with a given probability
p.

It is worth pointing out that, in most of the industrial re-
alities, not all the input parameters are equally important
for the sake of the output performance. For a specific input
parameter θp, it is also possible to identify the parameter
value θ̄p that allows to reach a given performance target.
To do so, it is sufficient to generate B input scenar-
ios (from data bootstrap resampling), to set parameter

θp
b = θ̄p for b = 1, 2, ..., B, and to compute the value of the

metamodel in all the scenarios as shown in Table 2. Thus
it is possible to evaluate the achievable performance when
parameter θp is fixed to θ̄p by applying formulas (3) and
(4). Therefore, in the last step of the output performance
evaluation, the parameters whose marginal contribution
to the performance is greater and those parameters whose
contribution to the performance is negligible can be iden-
tified. Specifically, it is possible to determine which value
θ̄p needs to be reached on a specific input parameter θp so
to achieve a given confidence interval on the performance.
These aspects will be discussed further in section 4.

4. LAB–SCALE SYSTEM CASE OF STUDY

In this section, it is shown how the procedure is applied on
a lab–scale manufacturing line installed at the Mechanical
Engineering department of Politecnico di Milano. This
case study is more complex and closer to real applications
with respect to the very simple cases presented in the cited
literature. The analyzed system consists of six worksta-

Input distribution Distribution family parameters

M1 Processing Time Normal (µ1, σ1)

M2 Processing Time LogNormal (µ2, σ2)

M3 MTTR LogNormal (µ3, σ3)

M4 MTTR LogNormal (µ4, σ4)

M5 Processing Time LogNormal (µ5, σ5)

Table 3. Input distributions, they are all 2-
parameters distributions.

Maximum likelihood estimators M1 M2 M3 M4 M5

Mean µ̂p [s] 7.1886 8.8465 16.4534 18.4269 6.7923

Std.Dev. σ̂p [s] 0.8600 3.9453 0.5841 0.7956 2.7198

True parameters’ values M1 M2 M3 M4 M5

Mean µp [s] 7.1655 8.4932 16.6836 18.3586 6.7319

Std.Dev. σp [s] 0.8366 3.9038 0.6038 0.8260 2.4318

Table 4. Maximum likelihood estimators of the
10 input parameters computed in the light
of the nm = 30 observed empirical data and

actually known true parameters’ values.

tions and a quality-check station (Lugaresi et al. (2021)).
The goal is to evaluate the throughput of the line and
to obtain information on achievable performance targets
and about parameters on which to focus to improve it.
This case of study was selected since the true performance
of the workstations is actually known. After generating a
limited availability of data by running the physical system,
it was possible to apply the procedure. The notation in this
section is coherent with the one defined in section 3.

The uncertain input distributions are those defined by
Table 3, therefore M = 5 and P = 10. Ten input
parameters have to be identified, two parameters for
each distributions, mean µ and standard deviation σ are
selected.

Samples of 30 pieces of data were collected from the
physical system for each input distribution n1 = n2 =
... = n5 = 30. Bootstrap resampling procedure described
in section 3.1 was applied:

(1) observation of the 5 sets of 30 real world variates for
the 5 input distributions: Xm = (xm

1, xm
2, ..., xm

30)
m=1,2,...,5

(2) computation of the estimators of parameters: θ̂
1
=

{µ̂1
1, σ̂

1
1 , ..., µ̂

1
5, σ̂

1
5}, results are shown in Table 4.

(3) b-th bootstrap resampling of the set of empirical

data to obtain Xm
b = (xm

1,b, xm
2,b, ..., xm

30,b) m =
1, 2, ..., 5

(4) estimation of the b-th maximum likelihood estimators

θ̂
b
= {µ̂b

1, σ̂
b
1, ..., µ̂

b
5, σ̂

b
5} with b = 2, 3, ..., B to obtain:

{µ̂1, σ̂1, ..., µ̂5, σ̂5} where µ̂1 = {µ̂1
1, µ̂

2
1, ..., µ̂

B
1 } is the

vector of the B = 1000 bootstrap resampled values of
parameter µ1, namely the sampling distribution.

Histograms in Figure 1, representing the sampling distri-
butions of the parameters, make it possible to appreciate
that the parameters’ estimators calculated from the nm

collected empirical data (Table 4) do not necessarily cor-
respond to the actual value of the parameters. In other
words, the estimators computed in Table 4 can be seen
as a sample taken from the sampling distributions and
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Parameter Scenario 1 Scenario 2 ... Scenario B

θ1 θ̂11 θ̂21 ... θ̂B1
θ2 θ̂12 θ̂22 ... θ̂B2
... ... ... ... ...

θp θ̄p θ̄p ... θ̄p

... ... ... ... ...

θP θ̂1P θ̂2P ... θ̂BP
Metamodel output η̂1 η̂2 ... η̂B

Table 2. Performance of the system in B input
scenarios in which the value of parameter θp is

fixed to θ̄p.

It is also possible to provide a measure of the achiev-
able performance target ηp:

ηp = η̂�B(1−p)� (4)

where η̂�B(1−p)� is the (1-p) quantile of the B perfor-
mance scenarios. Equation (4) simply reveals which
minimum performance threashold is reached in a
given percentage of input scenarios p%.

The confidence interval in equation (3) informs about
the expected performance that the system is able to
achieve in (1 − α)% of the generated input scenarios.
Although this confidence interval can sometimes be wide
(the lower the amount of data, the wider the interval),
it is consistently able to capture the true performance
of the physical system, whereas a traditional confidence
interval, assuming the correctness of the input parameter
estimators, might not.

Moreover, equation (4) can be used, depending on the
needs of the stakeholders, both to identify the probability
of reaching a given performance target, and also, vice
versa, the performance achievable with a given probability
p.

It is worth pointing out that, in most of the industrial re-
alities, not all the input parameters are equally important
for the sake of the output performance. For a specific input
parameter θp, it is also possible to identify the parameter
value θ̄p that allows to reach a given performance target.
To do so, it is sufficient to generate B input scenar-
ios (from data bootstrap resampling), to set parameter

θp
b = θ̄p for b = 1, 2, ..., B, and to compute the value of the

metamodel in all the scenarios as shown in Table 2. Thus
it is possible to evaluate the achievable performance when
parameter θp is fixed to θ̄p by applying formulas (3) and
(4). Therefore, in the last step of the output performance
evaluation, the parameters whose marginal contribution
to the performance is greater and those parameters whose
contribution to the performance is negligible can be iden-
tified. Specifically, it is possible to determine which value
θ̄p needs to be reached on a specific input parameter θp so
to achieve a given confidence interval on the performance.
These aspects will be discussed further in section 4.

4. LAB–SCALE SYSTEM CASE OF STUDY

In this section, it is shown how the procedure is applied on
a lab–scale manufacturing line installed at the Mechanical
Engineering department of Politecnico di Milano. This
case study is more complex and closer to real applications
with respect to the very simple cases presented in the cited
literature. The analyzed system consists of six worksta-

Input distribution Distribution family parameters

M1 Processing Time Normal (µ1, σ1)

M2 Processing Time LogNormal (µ2, σ2)

M3 MTTR LogNormal (µ3, σ3)

M4 MTTR LogNormal (µ4, σ4)

M5 Processing Time LogNormal (µ5, σ5)

Table 3. Input distributions, they are all 2-
parameters distributions.

Maximum likelihood estimators M1 M2 M3 M4 M5

Mean µ̂p [s] 7.1886 8.8465 16.4534 18.4269 6.7923

Std.Dev. σ̂p [s] 0.8600 3.9453 0.5841 0.7956 2.7198

True parameters’ values M1 M2 M3 M4 M5

Mean µp [s] 7.1655 8.4932 16.6836 18.3586 6.7319

Std.Dev. σp [s] 0.8366 3.9038 0.6038 0.8260 2.4318

Table 4. Maximum likelihood estimators of the
10 input parameters computed in the light
of the nm = 30 observed empirical data and

actually known true parameters’ values.

tions and a quality-check station (Lugaresi et al. (2021)).
The goal is to evaluate the throughput of the line and
to obtain information on achievable performance targets
and about parameters on which to focus to improve it.
This case of study was selected since the true performance
of the workstations is actually known. After generating a
limited availability of data by running the physical system,
it was possible to apply the procedure. The notation in this
section is coherent with the one defined in section 3.

The uncertain input distributions are those defined by
Table 3, therefore M = 5 and P = 10. Ten input
parameters have to be identified, two parameters for
each distributions, mean µ and standard deviation σ are
selected.

Samples of 30 pieces of data were collected from the
physical system for each input distribution n1 = n2 =
... = n5 = 30. Bootstrap resampling procedure described
in section 3.1 was applied:

(1) observation of the 5 sets of 30 real world variates for
the 5 input distributions: Xm = (xm

1, xm
2, ..., xm

30)
m=1,2,...,5

(2) computation of the estimators of parameters: θ̂
1
=

{µ̂1
1, σ̂

1
1 , ..., µ̂

1
5, σ̂

1
5}, results are shown in Table 4.

(3) b-th bootstrap resampling of the set of empirical

data to obtain Xm
b = (xm

1,b, xm
2,b, ..., xm

30,b) m =
1, 2, ..., 5

(4) estimation of the b-th maximum likelihood estimators

θ̂
b
= {µ̂b

1, σ̂
b
1, ..., µ̂

b
5, σ̂

b
5} with b = 2, 3, ..., B to obtain:

{µ̂1, σ̂1, ..., µ̂5, σ̂5} where µ̂1 = {µ̂1
1, µ̂

2
1, ..., µ̂

B
1 } is the

vector of the B = 1000 bootstrap resampled values of
parameter µ1, namely the sampling distribution.

Histograms in Figure 1, representing the sampling distri-
butions of the parameters, make it possible to appreciate
that the parameters’ estimators calculated from the nm

collected empirical data (Table 4) do not necessarily cor-
respond to the actual value of the parameters. In other
words, the estimators computed in Table 4 can be seen
as a sample taken from the sampling distributions and

Fig. 1. Histogram of the B=1000 boostrap resamplings of
the 10 input parameters in case nm = 30.

assuming the correctness of those estimators could lead to
misjudgements.

Second step of the procedure is performance evaluation.
The B = 1000 bootstrap resampled combinations of input
parameters represented by vector {µ̂1, σ̂1, ..., µ̂5, σ̂5} are
treated as B input scenarios. It is important to stress
once again that, if input uncertainty was neglected, a
single combination of input parameters (therefore a single
scenario) would have been computed and used in the
simulator under the assumption of its correctness, under-
estimating the uncertainty of the output performance.

Once that the B input scenarios have been generated, the
performance of the system has to be evaluated in each of
them by means of the metamodel η̂ to build a quantile con-
fidence interval using formula (3). This updated confidence
interval is able to catch the actual performance of the
system (which can be estimated since the true value of the
parameters is actually known, as already mentioned earlier
in this section). Whereas assuming the correctness of the
estimators computed in the light of the few collected data
(Table 4) would have lead to a biased estimation of the
confidence interval. These results are reported in Figure 2.
The performance target achievable with probability 80%,
according to equation (4), is calculated:

Performance target = 256.80 parts/h

We finally extended metamodel-assisted bootstrapping
so that it also enables experts to identify the parame-
ters whose marginal contribution to the performance is
greater and those parameters whose contribution to the

Fig. 2. Comparison of the confidence intervals computed
using the true parameters’ values, the biased param-
eters’values (Table 4) and the one obtained down-
stream of the procedure.

Fig. 3. Scatter-plot of the throughput in the B = 1000 sce-
narios with respect to 5 uncertain input parameters.

performance is negligible. This can be done by plotting
on a chart the metamodel-computed performance in the
B = 1000 input scenarios with respect to each one of
the input parameters to detect the most relevant ones.
In fact, if one takes a close look at the graphs in Figure
3, it can be seen that, as µ2 and µ4 increase, there is a
decreasing trend in throughput which is not noticeable as
the other parameters increase. This suggests that the mean
processing time of station 2 and the mean time to repair
of station 4 have to be taken into serious consideration for
correct evaluation and optimization of line performance.

Moreover, once that the most critical parameters have
been identified, experts might be interested in understand-
ing the value of the critical parameters needed to reach a
given performance. Focusing on the MTTR of machine 4,
for example, we asked ourselves what performance could
be achieved at increasing values of parameter µ4. B = 1000
input scenarios are generated in which all the parameters



18 A. Masciarelli  et al. / IFAC PapersOnLine 55-2 (2022) 13–18

Fig. 4. Achievable performance at increasing values of µ̄4

change coherently with their sampling distributions except
for the MTTR of station 4 which is fixed at µ̄4. This
procedure is then iterated for multiple values of µ̄4 (within
the interval described by the sampling distribution of the
parameter, as in Figure 1) and formulas (3) and (4) are
applied so to obtain the chart of Figure 4.

5. CONCLUSION

This work shows how it is possible to evaluate the perfor-
mance of a system using a simulation model as a digital
twin with few data available for input modeling. The
strength of this approach lies in the fact that it allows the
construction of robust confidence intervals that take into
account the scarcity of data. Not only the procedure allows
the identification of unbiased confidence intervals on the
performance, it also provides a measure of achievable per-
formance targets and, finally, it allows the identification of
those parameters whose effect on the output performance
of interest is more relevant and of those whose impact is
negligible.

The main drawback of this procedure lies in the effort
required to fit the metamodel, which could be a quite com-
putationally expensive task. The computational burden of
the procedure is reasonable when applied to systems such
as the lab-scale manufacturing line (which are however
more complex than the case studies typically analysed
in the literature). Moreover, the more the uncertain in-
put parameters, the longer the time required to fit the
metamodel. Therefore this procedure, as it is, is still time-
demanding and computationally expensive when dealing
with complex systems with many uncertain input pa-
rameters. Reducing the dimensionality of the problem by
identifying negligible parameters is surely a useful step in
leaning the procedure. Future developments will focus on
coupling the approach with simulation–optimization tech-
niques such as ranking & selection procedures. A limitation
of this work is that only discrete event simulation models
are considered in the digital twin whereas more detailed
models of the equipment (e.g., stress models, geometric
models, etc) are not taken into account. However, the input
uncertainty procedure could be extended also to other kind
of simulation models.
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