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A B S T R A C T

This paper presents a novel GIS-based (Geographic Information System) approach, integrated with graph theory
algorithms to predict the additional power demand from EVs (Electric Vehicles) on electric distribution grids.
The energy consumption of an EV is primarily influenced by distance travelled, which is affected by factors such
as traffic congestion and road network design. To consider all these factors, a weighted graph is constructed
using the layout of Lombardy’s traffic network in northern Italy. The traffic flow patterns are simulated utilizing
a regional travel survey that provides the trips between the 1450 different travel zones of the region. The
trips are simulated within the roads graph using Dijkstra’s algorithm to find the fastest paths. The spatial
resolution of the trips’ origins and destinations is increased using a further sectionalization of the region and
gravity model using GIS-empowered probability density functions. The output from the traffic simulation is
overlaid with the service areas of primary substations to estimate the added load from EVs. This integration
of the two layers enables the identification of when, where, and to what extent electric mobility will impact
the electric distribution grids. The novelties of the research work encompass the following key contributions:
modelling a large-scale and real-world transportation network represented in graph theory and integration
with the corresponding primary substation service areas, consequently enabling the estimation of added load
from EVs with a high spatial–temporal resolution.
1. Introduction

In recent years, the escalating issue of mass production of green-
house gas (GHG) emissions has garnered significant concerns on a
global scale. Recognizing the direct impact of these emissions on cli-
mate change and the subsequent adverse environmental consequences,
governments worldwide have taken the initiative to develop com-
prehensive regulative frameworks aimed at minimizing GHG emis-
sions [1].

Among the sectors contributing to GHG emissions, the transporta-
tion sector holds a considerable share, accounting for approximately
one-quarter of total emissions [2]. In 2021, the road transport sector
accounted for 77% of all EU transport greenhouse gas emissions [3].
One promising solution to mitigate these emissions is the widespread
adoption of electric mobility [4,5]. This transition to electric trans-
portation is projected to yield a significant reduction in GHG emissions,
especially when coupled with the integration of cleaner and greener
primary energy sources [6,7].

There are various methods for achieving greenhouse gas emission
reductions in the transportation sector and mitigating climate impacts,
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such as boosting active travel, improving the public transportation
infrastructure, and widespread adoption of electric vehicles [8]. Active
travel, defined as walking or cycling for transportation purposes, and
public transit will favourably influence greenhouse gas emissions, but
their acceptance depends on travellers’ behaviour and perception of
comfort. Consequently, the overall impact of these solutions can be
seen as uncertain [9]. Therefore, the promotion of electric vehicles
seems to be the most promising deterministic alternative to reduce the
emissions of GHG in the transportation sector [10]. For these reasons,
authorities in the industrialized world have been actively promoting
and subsidizing the trend of EVs over traditional internal combustion
engine vehicles (ICEV) [11]. The support comes in the form of tax
incentives, purchase subsidies, and other special measures such as free
public parking, free use of motorways and free charging [11].

Indeed, this has been the case in recent years, with the sales of EVs
in Europe showing a yearly increase of more than 15% in 2022 relative
to 2021, reaching 2.7 million. Moreover, 25% of all automobiles sold
in Europe were electric, with this percentage varying significantly
between different countries. This trend is dominated by the Nordic
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countries, with Norway (88%), Iceland (70%) and Sweden (54%) [12].
The growth and development of the electrical grid should be considered
when analysing the long-term prospects for EV usage. The rising trend
of EV sales and usage will reach saturation without a growth strategy
for the electrical grid. Depending on the scenario, EVs could acquire an
11%–28% share of the world’s fleet of roads by 2040. The consequence
will be an additional 11%–20% rise in world electricity usage. The
difficulty, however, lies in getting the electricity infrastructure to adjust
to the rising demand peaks brought on by EV charging habits [13].

The positive impact of EVs on reducing GHG emissions is condi-
tioned by overcoming challenges related to the capacity of the existing
electric grid to accommodate a significant number of EVs [14]. The
increased number of electric vehicles and the added electric power de-
mand necessitate coordinated planning between transportation and the
electric grid [8]. Increased EV penetration will impose a new power de-
mand pattern for the electric grid, which could vary depending on time
and geographical location [8]. The additional load could put stress on
transformers [15] and feeders [16], increase system loss, cause voltage
drops [17], and inject harmonics into the grid [18]. The power system’s
operation will be significantly impacted by a new peak load comprised
of EV charging and the original load profile [19,20]. Therefore, it
is crucial to develop spatial–temporal-energy models to simulate the
behaviour of EV fleets in both transportation and electricity networks
to detect the criticalities imposed by the widespread adoption of EVs.
The results from these models could be used to upgrade power systems
to host a large number of EVs [20].

Electric vehicles are driven within the transportation network, and
their energy is sourced from the electric grid. Building accurate models
to predict EVs power demand requires considering the integrated func-
tioning of transportation and the electricity power network [8]. The
primary goal of this research is to develop a methodology to estimate
the additional power demand imposed by electric vehicles on the
electricity grid. The motivation behind developing a temporal–spatial
simulation was the requirement for a detailed and high-resolution
model that considers the integrated functioning of both the traffic
and electric grids. This research aims to fill the gap in conducting a
large-scale integrated electric grid and transportation network analysis.

In particular, this research proposes a methodology that integrates
GIS datasets with a travel survey to simulate the traffic flow patterns
in a large-scale and real-world transportation network. Travel surveys
contain information regarding vehicle movement within a specific ge-
ographical region. Depending on the precision of the travel survey,
it could include detailed data about travel purposes, the geographical
location of the start and end of the travel, the initiation time, and the
travel medium [21,22].

Nevertheless, travel surveys are typically available in low spatial
resolution, where origin and destination pairs may correspond to a wide
area. To address this shortcoming, this work develops a gravity model
that increases the spatial resolution of the travel survey. Unlike classic
gravity models that rely solely on the population as a determinant for
a location’s attractiveness for a trip [23], our model considers multiple
factors to enhance spatial resolution in travel surveys. The results from
the traffic flow model provide information about the route choice,
distance travelled, and arrival times of the cars to the destinations.

The outcomes derived from the traffic model serve as the basis to
project the number of vehicles approaching a specific geographical cell
within a designated time frame (e.g., 5 min). In this methodology, the
fundamental geographical cells correspond to the administrative area
clustering, as delineated by ISTAT. Once the flow of cars is simulated,
it is possible to estimate the additional power demand for e-mobility by
adopting proper assumptions on those trips that could be undertaken
by electric cars.

To model the electric grid layer, this study uses the concept of sub-
station service areas, or areas of influence of each substation. Starting
from georeferenced data on HV/MV substations, the Italian territory
2

is divided into polygons that represent service areas of individual
substations, which are affirmed by the national regulatory authority
and utilized at a national scale [24]. The main goal of these areas
is to provide a spatial correlation between distributed resources, and
their substation of origin. Even though the areas were not obtained by
accurately tracking the MV distribution lines due to their complexity
and meshed structure, the correspondence of the areas and distributed
resources has been validated by the regulatory authority. This cluster-
ing of geographical areas facilitates the seamless integration of traffic
and electric grid layers. Combining traffic-electric layers establishes
an integrated network of traffic and electric grids. This allows for a
more accurate assessment of electric vehicles’ charging impact within
real-world traffic conditions and facilitates informed decision-making
regarding grid management and infrastructure planning.

It is important to emphasize that detailed information regarding the
MV grid structure is publically unavailable due to legal constraints,
and it is restricted solely to the Distribution System Operators (DSOs).
For this reason, the evaluation of the impact on the distribution grid
is confined to the primary substations, portrayed by the substation
service areas which introduce only a minor approximation in the
representation of the electric grid layer.

In summary, the proposed methodology first uses a travel survey to
simulate the flow of passenger vehicles in the Lombardy region. The
traffic model is recreated using the real layout of the traffic network,
preserving the main characteristics of the roads, such as the flow speed,
capacity and length. A further division of the national territory in
smaller cells by ISTAT and a gravity model is applied to the travel sur-
vey in order to increase its spatial resolution, allowing for more certain
and accurate estimate regarding the origin and destination of the trips.
Then, Dijkstra’s algorithm is utilized to obtain the quickest path and
obtain the total distance travelled and arrival time of each trip. Given
the spatial distribution of arrivals and subsequently charging requests,
effectively allows the estimation of the additional load requested for
EV charging within each primary substation service area.

The paper is structured as follows: in Section 2, a comprehensive
literature review is conducted to analyse prior methodologies employed
by researchers in the assessment of the e-mobility impact on electric
grids. Subsequently, in Section 3, a detailed explanation of the selected
case study is provided. Section 4 outlines the methodologies employed
to estimate EVs incremental load. Results and discussion concerning the
outcome of the simulation are presented in Section 5.

Nomenclature

Symbol Description
𝐶 Road capacity
𝑉𝑖 Flow speed matrix in timeframe 𝑖
𝐹𝐶 Flow over Capacity ratio
𝐿 Length matrix
𝑆𝑀 State Matrix
𝐶𝑀 Capacity Matrix
PAR Peak-to-average ratio

2. Literature review

New technologies, intelligent transportation systems (ITS), GIS, and
real-time data collection, have revolutionized transportation research.
They provide access to historical and current traffic data, particularly
in urban areas via Origin–Destination matrices or travel surveys [20].
Some research works relied solely on travel surveys to derive the
pattern of travel in specific areas to estimate the power demand from
EVs. For instance, in [25], the authors used travel surveys to generate
EV driving patterns, enabling the calculation of energy consumption,
plug-in/plug-out times, and their effects on one specific distribution
network. The work in [26] investigated the future challenges imposed
by electric vehicles in 2040, outlining the differences in rural and urban

areas. The driving patterns are acquired using the travel survey in
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Germany, constituting 900000 individual trips. In [20], a Monte Carlo
simulation and a travel survey were utilized to assess the impact of
electric vehicle load on each bus bar under different charging scenarios.
This evaluation was conducted for a generic urban distribution network
in the UK.

Using GIS tools in combination with travel data is a common
approach to assessing the impact of electric mobility. The methodology
presented in [27] combines travel surveys with demographic factors
in each municipal section of Berlin to generate vehicle-based mobility
profiles for estimating energy demand from electric vehicles, assuming
a 100% EV adoption rate. Additionally, some studies have utilized GPS-
based trip data to simulate traffic flow, although these GPS data are
typically collected from a limited number of vehicles, it is necessary
to extend it to cover the entire study area. For example, in [28], data
collected from onboard GPS devices was used to derive driving patterns
for cars in two Italian provinces, with an evaluation of the spatial
distribution of electricity demand from EVs. However, the number of
samples used to create these driving patterns was limited to 3.7% and
1.8% of the fleet size in the analysed provinces. In a similar vein,
researchers in [29] employed GPS-based floating car data from 3% of
registered cars in Turin, Italy, to generalize parking and driving habits
across the entire city. This expanded dataset was then leveraged to
estimate the added load from the e-mobility sector within 258 traffic
zones of the city. Furthermore, in [30], an assessment was conducted
on the impact of EV charging demand on the entire low voltage grid of
Sweden, which was modelled using 1 km2 square cells. In that case, GIS
data and GPS-measured driving patterns were utilized to identify power
system violations within the low-voltage grid under different charging
scenarios imposed by residential charging.

In the absence of comprehensive travel surveys, GIS tools are a
valuable alternative for estimating driving patterns and assessing the
impact of electric mobility. In [31] authors examined the impact of
EV integration into an urban distribution network. This analysis was
carried out on a segment of the distribution network located in Skopje,
North Macedonia. Based on demographic and geographical features
driven by open-source data, a Gaussian distribution function is fitted
to generate the travel distances. Researchers in [32] developed an
approach that overcomes the availability of travel surveys to create
activity-based vehicle mobility profiles. They demonstrated the model’s
applicability in assessing the added load from e-mobility in municipal
sections of Berlin, Germany. Another large-scale study made extensive
use of GIS data to initially estimate the distribution of various EV
types within 25 km2 square grids covering Thailand. Then, the added
V load is calculated by assuming an average distance and energy
onsumption rate for each EV type within transformer service areas,
hich are represented using Voronoi diagrams [33].

Few studies have delved into the simulation of transportation net-
orks in conjunction with electric networks to understand the impact
f electric vehicles. For example, [34], the authors assessed the spatial–
emporal distribution of EVs’ power demand in a 77-node transporta-
ion network within a Chinese city, accounting for factors such as speed,
istance, traffic congestion, and temperature. Another study, [19],
ntegrated a 30-node transportation system with a 33-bus electric dis-
ribution network to evaluate EV charging demand at varying penetra-
ion rates. This integration involved creating a two-way transportation
etwork using graph theory and implementing the shortest path al-
orithm for trip routing. In [35] introduced a two-layer optimization
odel for routing decisions and assessing the impact of electrifying

ong-range semi-trucks on local marginal prices. The model utilized
tandard test networks, specifically the 24-node Sioux Falls network for
ransportation and the 5-bus PJM network for the electric grid.

This literature review offers an overview of current approaches in
he field and highlights existing research gaps. Many studies often rely
n travel surveys or GIS data to evaluate the impact of EV charging,
ocusing either on specific network segments or broader perspectives.
3

However, there is a significant research gap in developing method-
ologies that transcend small-scale networks to encompass real-world
large-scale scenarios [8]. Additionally, there is a need to integrate
transportation and electric grid modelling to understand their intricate
interplay. The transportation networks examined in previous literature
are typically limited to test networks or specific segments of larger
networks. Given the mobile nature of EV loads and the varying regional
characteristics that influence charging patterns, it becomes imperative
to encompass a wider geographical area. Furthermore, the lack of a dy-
namic routing algorithm for large-scale transport networks, considering
factors like traffic congestion and road characteristics, is evident in the
current literature [34].

The novelties of the research work encompass the following key
contributions: (i) Modelling a large-scale and real-world transportation
network represented in graph structure which preserves the character-
istics of the real traffic network within the study case. (ii) Implementing
a fastest path algorithm that accounts for network congestion. (iii)
Overlaying the result from traffic flow simulation on primary substation
service areas to estimate additional load from electric vehicles.

3. Case study: Lombardy region, Italy

To thoroughly investigate a complex issue such as the integrated
analysis of the electric and traffic networks, a real-life case study has
been utilized. The aim was to incorporate real-world data as inputs and
to illustrate how this information can be used to effectively approach
the problem. The Lombardy region, located in the northwest of Italy,
has been chosen as the study case. This choice was motivated by
several factors, among which the particularity of the region, both
in national and European contexts, and the availability of the dif-
ferent datasets for conducting comprehensive research. The regional
authorities of Lombardy published an Origin & Destination matrix,
which contains detailed travel information. This matrix serves as the
foundational dataset for the procedure outlined in Section 4. The Origin
and Destination Matrix refers to a data structure that represents the
patterns of travel between different origin and destination zone pairs
within a given geographic area [36]. The matrix typically includes the
number of trips or travellers between each origin–destination pair and
may also incorporate additional attributes like trip purpose, mode of
transportation, and time of travel. The travel matrix could be analysed
and processed to develop accurate models to simulate regional traffic
flow. With its high spatial–temporal resolution, the Lombardy travel
matrix offers greater certainty in predicting traffic patterns.

Unfortunately, not every region in Italy, or other European coun-
tries, possesses an Origin & Destination matrix as comprehensive as
the one in Lombardy. Instead, each region may offer varying subsets
of data, which can range from highly detailed, as seen in Lombardy, to
more simplified versions. Focusing on the Lombardy region, according
to Eurostat data [37], almost 10 million residents are hosted, account-
ing for 16.8% of the Italian population. Lombardy region is the third
most populated region in the EU [38] and ranks second in GDP among
the European regions [39]. The high population density and economic
capacity indicate a higher probability of electric vehicle adoption [27].
The region has the highest number of passenger cars in the NUTS
−2 region in the EU, with a count of 6.22 million automobiles [40].
This figure accounts for approximately 15.6% of the Italian vehicle
fleet [41].

According to the European Air Quality Index, the Lombardy region,
especially the city of Milan, is one of the most polluted areas in Eu-
rope [42,43]. The region of Lombardy is home to numerous industrial
facilities and small to medium companies, which are highly dependent
on road transport for economic sustainability [44]. In terms of air pollu-
tant emissions, data from the INEMAR Emission Inventory of Lombardy
2017 [44] reveals that industrial and non-industrial combustion plants,
along with road transport, contribute to over 73% of particulate matter
emissions and more than 76% of nitrogen oxide emissions in the region.
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Table 1
An overview of Origin & Destination Matrix.

Origin zone Destination zone Travel start time Work Study Return home Leisure

. . . . . . . . . . . . . . . . . . . . .
Milano 8 Milano 10 7:00–8:00 22 14 4 2
. . . . . . . . . . . . . . . . . . . . .
Fig. 1. Travel zones within Provinces.

Notably, the emission levels of carbon dioxide, nitrogen oxides, and
particulate matter in road transport significantly exceed the European
Union average [44]. These environmental problems stemming from
road transport could be the main drivers for officials to mandate leg-
islative acts to speed up the transformation from ICEs to EVs, especially
in polluted regions.

The current status of electric vehicles in the Lombardy region is not
significant. E-mobility accounts for 0.38% of total cars [41]. The low
penetration rate of EVs in Lombardy may not have a considerable im-
pact on the electric grid yet. However, with EVs’ inevitably increasing
adoption rate, the infrastructure planning for the electric grid is crucial.

3.1. Origin & destination matrix

The car flow patterns in the traffic model are derived from the
origin & destination matrix of the Lombardy region, which serves as the
primary database for the analysis [45]. It is a complete travel dataset
for various means of transportation that provides a statistical overview
of the trips within the Lombardy region. It is the officially endorsed
commuter dataset supported by regional authorities for widespread
adoption. The passenger vehicle trips which are of interest for this
paper are obtained by a comprehensive model that aggregates commute
questionnaires from the most recent national census, socio-economic
factors on the municipal level, online questionnaires about movement
within the region, as well as in-person questionnaires conducted within
public entities and enterprises. The dataset provides information about
the start time interval of each travel, the travel reason, the medium
and the start and destination zone. The trips are categorized into four
main groups regarding travel reasons denoted by Work (W), Study
(S), Return home (H) and Leisure (L). In the Lombardy region, the
travel matrix is obtained at a zonal resolution, dividing the region
into 1450 zones. Fig. 1 shows the positioning of the travel zones with
black-coloured borders within the provinces of the region.

For a given reference working day, the original travel matrix con-
tains 7936824 individual trips. The two columns of the origin and
the destination zones in the matrix represent the municipality areas
where the trip could either start or end. The trip initiation time is
available within the 1 hour time intervals and for each travel reason, an
integer number indicates the frequency of trips between 2 zones. (See
Table 1.)
4

Fig. 2. Transportation network.

Fig. 3. Conventional areas belonging to the HV/MV substations.

3.2. Transportation network

To obtain the road network, corresponding shape files were down-
loaded from OpenStreetMap for Lombardy. A shape file is a standard
geospatial vector data format containing geometric information (such
as points, lines, and polygons) and the attributed data. The road net-
work data in the shape file is represented as Linestrings, which are
sequences of connected points. Each point in the line string has coor-
dinates that correspond to the actual geographical location of the road
segments in real life. The shape file for the road network in Lombardy
consists of a total of 867,258 Linestrings representing different road
segments. One specific road or street could be represented as one
or more Linestrings. However, for the purpose of the traffic model,
certain road types, such as pedestrian walkways or bicycle paths, are
not relevant. Therefore, a filtering process is applied to retain only the
roads that are suitable for driving passenger cars. This ensures that
the traffic model’s road network consists of roads relevant to vehicular
traffic. Fig. 2 depicts the positioning of main roads within the study
area.

The roads in the OpenStreetMap are categorized into seven main
groups. Each type is featured with one maximum flow speed and
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Table 2
Road types and their characteristics.

Road type Nominal flow speed (km/h) Capacity

Trunk 90 510
Motorway 95 460
Primary 65 320
Secondary 45 120
Tertiary 30 80
Residential 25 60
Living Street 25 60

one maximum capacity. Capacity for a road is defined as the max-
imum number of vehicles that can pass a cross-section of the road
within a given time period [46]. In this study, the time interval for
capacity determination is 5 min. Table 2 describes the road types and
corresponding features.

3.3. Primary substations

In order to model the local distribution grid, as pointed out in
the introduction, in Italy, the conventional areas of influence for each
HV/MV substation are made publicly available by GSE (Gestore Servizi
Energetici) which is the Italian public body in charge of managing
renewable sources and energy efficiency [24]. The distribution grid
of Lombardy is fed by 332 primary substations. The depicted conven-
tional area in Fig. 3 accurately considers the geographical disparities
between metropolitan and peripheral areas. In metropolitan areas, the
higher load density leads to a greater number of substations, resulting
in smaller conventional areas. Conversely, in peripheral areas, lower
energy demands lead to a dispersed distribution of HV/MV substations,
causing the conventional areas to be larger.

4. Methodology

The methodological approach of our study is comprised of four
levels. First, the input data is used to create the representative graph
network for the transportation system and estimate the origin and
destination section for each trip in the travel matrix. In the second step,
a gravity model is developed to enhance the detail of the raw travel
matrix, and promote higher attractiveness to certain sections of each
travel zone for being the trips’ origins or destinations. Then, the output
from the previous levels is used to simulate the traffic flow within
the graph network, acquiring a tempo-spatial representation of the
vehicles’ arrivals and potential energy demand. Finally, the additional
loading of primary substations is determined based on the results from
the traffic flow simulation. The overview of the procedure is illustrated
in Fig. 4. In the following subsections, the procedure for each step is
described.

4.1. The road graph

The framework of the graph network utilized in this study is con-
structed using the shapefile containing the road network data for the
Lombardy region. As stated before, the shapefile for the transportation
network contains Linestrings representing each road within the study
case. Each Linestring is composed of a set of consecutive points. A
straightforward method is to transform the Linestrings into a graph
network, whereby the points along each line string are assigned as
nodes, and connections (branches) are established between them. How-
ever, employing this approach would result in a complex and extensive
graph, posing significant computational challenges when applying the
fastest path algorithms. A solution is proposed to reach the minimum
possible size of the graph for the transportation network. In this solu-
tion, the points are categorized based on their connection state in the
5

network.
Table 3
Point types and descriptions.

Point type Description Occurrence

Start The first point in the point list of a Linestring. 1 ≤
End The last point in the point list of a Linestring. 1 ≤
Junction It connects one Linestring to the other Linestring(s). 2 ≤
Internal It only connects the internal segments of a Linestring. 1

Table 3 provides information about the types of points and their
respective occurrence frequency in the dataset. The occurrence value
indicates the frequency of a point with specific coordinates appearing
in the Linestrings throughout the whole dataset. In other words, it
represents how many times a particular set of point coordinates is
repeated among the points of the Linestrings in the dataset. If a spe-
cific coordinate point is repeated three times, it indicates that three
Linestrings in the dataset share that point and they are connected
through that particular point.

Internal points exclusively link internal segments of a Linestring
without connecting to another Linestring. Reducing the graph’s size
necessitates the identification of the internal points of the Linestrings.
Specifically, internal points have a frequency of 1 and are neither start
nor endpoints. This can be achieved by first excluding the first and last
elements of Linestring point sets, and then, examining the occurrence
frequency of remaining points. To create the graph with the minimum
size object the procedure is to establish a connection between points of
a Linestring if points are start, end or junction type (see Fig. 5).

Algorithm 1 Create Nodes and Branches from the Linestrings
1: for each Linestring 𝑖 in the dataset do
2: Establish the first point 𝑃𝐿𝑖

0 as a node 𝑁𝐿𝑖
0

3: for each point in the Linestring 𝑖 do
4: if the point j is a junction then
5: Establish the point 𝑃𝐿𝑖

𝑗 as a node 𝑁𝐿𝑖
1

6: Establish a branch between 𝑁𝐿𝑖
0 & 𝑁𝐿𝑖

1
7: Measure the length of the Linestring 𝑖 from 𝑁𝐿𝑖

0 to 𝑃𝐿𝑖
𝑗

8: Set 𝑁𝐿𝑖
0 = 𝑁𝐿𝑖

1
9: end if
0: end for
1: Establish the last point 𝑃𝐿𝑖

𝑛 as the node 𝑁𝐿𝑖
1

2: Establish a branch between 𝑁𝐿𝑖
0 & 𝑁𝐿𝑖

1
3: Measure the length of the Linestring 𝑖 from 𝑁𝐿𝑖

0 to 𝑃𝐿𝑖
𝑛

4: end for

The branch length of the simplified graph is determined based
on the geometry of the Linestrings before the simplification process.
It is essential to emphasize that branch length is a specific attribute
associated with each branch, and it differs from its geometric length.
This attribute can be compared to other line characteristics, such as
its name, maximum speed, or road type. Algorithm 1 summarizes
the graph creation and simplification from the input data. The graph
network comprises 567,193 branches and 446,427 nodes. The dataset
initially contained approximately 1.8 million internal points, which
were filtered out during the processing phase.

4.2. Gravity model

The routing algorithms used for traffic purposes require input in the
form of points with coordinates to calculate the paths between start and
destination locations. Uncertainties could arise as the origin & destina-
tion zones could contain numerous potential start or destination points.
To address this, a gravity model is developed using the census section
layer; this allows for a significant increase in the granularity of the

model compared to the raw data reported in the origin & destination
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Fig. 4. Overview of the input data and the developed methodology.
Fig. 5. Graph simplification.
Table 4
Factors affecting origin/destination estimation.

Factors Description

Population Population of the section
Number of workers Number of workers in the section
Parking area Availability of parking area
University areas Presence of university campuses
Workers around Proximity of parking areas to workers
University around Proximity of parking areas to university campuses
Number of Amenities Count of amenities (e.g., bars, restaurants, shops) in the section
matrix. Gravity models are mathematical representations used to esti-
mate the flow of trips or movements between different locations within
a transportation network [23,47]. The census sections are divisions
within municipalities (travel zones) which have similar characteristics.
Not only do census sections increase the spatial resolution by dividing
Lombardy into 52832 sections, but also the information available for
each section, such as population, workplace area, university area, and
the number of workers numbers is used to build probability functions
for the gravity model to estimate the start and end section of each trip
within the corresponding zones.

The gravity model takes the travel matrix as an input and based on
the trip’s purpose, estimates the start and destination census sections
within the start and end zones. For each travel reason, one or more
factors have been selected that are likely to influence the start or
destination section. For example, consider a work trip arriving at zone
Milano 1. A criterion for selecting a destination section for that trip
could be the number of workers present in each section of Milano 1
zone, i.e. the sections with more workers will have a higher probability
of being selected as the arrival section for the trip. Table 4 shows the
factors chosen to estimate the origin and destination sections of the
trips.
6

Table 5 shows the influential factors which are adopted to create
discrete probability density functions for the gravity model. For a zone
with 𝑖 number of sections:
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𝑋 ∈ {𝑂,𝐷}, 𝑅 ∈ {𝑊 ,𝑆,𝐻,𝐿}
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Table 5
Influential factors for section estimation.

Reason Origin factors Destination factors

Work 1. Population 1. Number of workers
2. Parking area
3. Workers around

Study 1. Population 1. University area
2. Parking area
3. University around

Leisure 1. Number of workers 1. Number of amenities
2. Population 2. Parking area
3. University area
4. Workers around
5. University around

Return home 1. Number of workers 1. Population
2. Number of amenities
3. University area
4. Parking area
5. Workers around
6. University around

Table 6
Weights for origin & destination estimation.

Trip reason Section type Weights

Work Origin 𝑤1
(𝑂,𝑊 ) = 1

Destination 𝑤1
(𝐷,𝑊 ) = 0.4;𝑤2

(𝐷,𝑊 ) = 0.3;𝑤3
(𝐷,𝑊 ) = 0.3

Study Origin 𝑤1
(𝑂,𝑆) = 1

Destination 𝑤1
(𝐷,𝑆) = 0.4;𝑤2

(𝐷,𝑆) = 0.3;𝑤3
(𝐷,𝑆) = 0.3

Leisure Origin 𝑤1
(𝑂,𝐿) = 0.1;𝑤2

(𝑂,𝐿) = 0.15;𝑤3
(𝑂,𝐿) = 0.15

𝑤4
(𝑂,𝐿) = 0.2;𝑤5

(𝑂,𝐿) = 0.2;𝑤6
(𝑂,𝐿) = 0.2

Destination 𝑤1
(𝐷,𝐿) = 0.5;𝑤2

(𝐷,𝐿) = 0.5

Return Home Origin 𝑤1
(𝑂,𝐻) = 0.1;𝑤2

(𝑂,𝐻) = 0.15;𝑤3
(𝑂,𝐻) = 0.15

𝑤4
(𝑂,𝐻) = 0.2;𝑤5

(𝑂,𝐻) = 0.2;𝑤6
(𝑂,𝐻) = 0.2

Destination 𝑤1
(𝐷,𝐻) = 1

Parameter 𝑋 denotes the section to be an origin (O) or destination (D)
section for a trip, 𝑃 (𝑗,𝑋)

𝑅 represents the probability that section 𝑗 with
a given 𝑋 could be either the origin or destination section of a trip
with reason 𝑅. 𝐸𝑃𝑋

𝑅 is the subset of parameters affecting the trip’s
origin or destination estimation based on Table 5. 𝐸𝑃 𝑘

𝑗,𝑅 is the value
of the parameter 𝑘 in section 𝑗 for the trip reason 𝑅. The denominator
is the sum of the values of parameter 𝑘 in all sections within the zone.
The sum of the probabilities for sections in a zone to be the origin or
destination of a trip with a specific reason is 1, as shown in Eq. (2).

The parameters outlined in Table 5 are subject to weighting denoted
by 𝑤𝑘

(𝑋,𝑅). This weighting mechanism acknowledges that the influence
of parameters varies for different travel reasons. (See Table 6.) For
instance, in estimating a destination section for a work trip, the number
of workers has a more pronounced impact compared to the other
two parameters. Despite these variations, the differences in weights
are deliberately kept minimal to prevent one parameter from exerting
undue influence over the others.

As already pointed out, the application of the gravity model en-
hances the spatial resolution of the travel matrix. This involves re-
placing the original origin and destination zones with smaller sections,
significantly reducing their respective areas. This adjustment enables
the simulation of traffic flow, leveraging routing algorithms within the
transportation network.

4.3. Traffic flow simulation

The accurate estimation of the distance is a critical factor in deter-
mining the energy requirement of an EV, as the energy is positively
correlated with the distance [19]. The graph created in Section 4.1, is
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Table 7
Relationship between 𝐹𝐶, and speed reduction of roads [46,51].
𝐹𝐶 Speed Reduction

0–0.60 0%
0.61–0.70 10%
0.71–0.80 25%
0.81–0.90 50%
0.91–1.00 75%
> 1.00 90%

used along with Dijkstra’s algorithm [48] to determine the distance for
the trips of the travel matrix. The weight of the graph for the routing
algorithm is set to be the travel time between two nodes as a result the
output of Dijkstra’s algorithm is the fastest path.

A time resolution of 5 minutes is chosen to route each trip for a
whole day, starting at 00:05 at midnight. The weight matrix (𝑊𝑖) for
the graph during the 𝑖th time frame is acquired by dividing the length
matrix over the variable flow speed matrix (𝑉𝑖) using Eq. (3). The initial
weight matrix (𝑊0) is calculated using the nominal flow speed from the
data in Table 2.

𝑊𝑖 =
𝐿
𝑉𝑖

(3)

Using the fastest path algorithm and travel time as weights for
the branches, it is possible to integrate the traffic congestion impact
on route choice. The important factor in modelling traffic congestion
utilizing the variable nature of the flow speed of branches to update
the weight matrix for the graph.

It is evident that the number of passing cars could not affect the
flow speed of the roads to the same extent for all road types. Thus,
to simplify the modelling, the effect on the flow speed of a road is
correlated to the car flow over capacity ratio (𝐹𝐶) [46,49,50]. Utilizing
the 𝐹𝐶 allows the determination of the flow speed of the road without
taking into account the road type. To better explain this, the 𝐹𝐶
ormalizes the congestion state of the road based on the car flow
egardless of the road type. For example, the capacity for the highways
s more than a living street, so for the same amount of car flow, 𝐹𝐶 for
ighways will be lower than for residential streets.

Based on the data in Table 7, the flow speed of a road is expressed
n Eq. (4). The flow speed of a road equals the nominal flow speed (𝑉𝑛)
or the 𝐹𝐶 value up to 0.6, and then the speed reduction follows a
rd-degree polynomial function.

=

⎧

⎪

⎨

⎪

⎩

𝑉𝑛 0 ≤ 𝐹𝐶 < 0.6
𝑉𝑛(0.751 (𝐹𝐶)3 − 5.482 (𝐹𝐶)2

+5.288 (𝐹𝐶) − 0.3678) 0.6 ≤ 𝐹𝐶 ≤ 1.05
(4)

To acquire flow speed in branches in each 5-minute time interval,
state matrix (𝑆𝑀) with 567193 rows and 288 columns is created.

ach row indicates one branch in the network, and the corresponding
olumns represent each 5-minute time window (288 5-minute intervals
or a day). Each element indicates the number of passing cars in the
orresponding branches and time interval. Capacity matrix (𝐶𝑀) is
reated from the data in Table 2 expressing the capacity of each branch.
he 𝐹𝐶𝑖 matrix for the 𝑖th time frame could be acquired by dividing
he column ‘‘i’’ of state matrix 𝑆𝑀𝑖 over 𝐶𝑀 .

Algorithm 2 summarizes the procedure to route the trips within the
raph network considering the congestion. The principal outcomes of
he traffic flow algorithm involve the computation of distances for each
rip using the fastest path algorithm, along with the overall duration of
he trips, thereby allowing the determination of arrival times.

Fig. 6 shows the main stages of the proposed methodology. In the
ast step, the processed travel matrix is used to determine the additional

oading from EVs on each primary substation area.
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Fig. 6. Different steps of proposed methodology.
Algorithm 2 Traffic flow
1: for each trip within the travel matrix starting from 00:05 do
2: Run the fastest path algorithm for the trip.
3: Determine passed branches [𝑥𝑚,… , 𝑥𝑛], where 𝑥𝑗 ∈ [0, 567192].
4: Determine the time slots during the trip [𝑡𝑥𝑚𝑚 ,… , 𝑡𝑥𝑛𝑛 ], where

𝑡
𝑥𝑗
𝑗 ∈ [0, 287]

5: Add 1 to the elements in rows [𝑥𝑚,… , 𝑥𝑛] and columns
[𝑡𝑥𝑚𝑚 ,… , 𝑡𝑥𝑛𝑛 ] in 𝑆𝑀 .

6: for each 10 trip in the ith time interval do
7: Calculate 𝐹𝐶𝑖 = 𝑆𝑀𝑖 / 𝐶𝑀
8: Determine new flow speed matrix 𝑉𝑖 using (4)
9: Update weight matrix 𝑊𝑖 using (3)

10: end for
11: end for

4.4. Charging requests simulation and load estimation

The origin and destination matrix lacks information about the fuel
type of passenger cars used for the travels, necessitating the establish-
ment of a selection procedure to distinguish between EVs and ICEV
vehicles. To address this, a specific penetration rate is established,
assuming that a certain proportion of trips (e.g., 2.5%) are conducted
using EVs. Consequently, an equivalent share of trips from the travel
survey is selected, forming an electric trip set that represents the
specified penetration rate.

Three main outputs of previous stages namely, arrival time, desti-
nation and distance are used to estimate the additional EVs loading.
It is assumed that the charging procedure will start upon arrival for
the trips in the electric trip set. The trips designated as EV trips will
request an amount of energy equivalent to their consumption during
the journey. The average energy consumption rate is assumed equal to
0.2 kWh/km [33,34], and depending on the destination of each trip,
the requested energy will be aggregated into the power profile of the
corresponding substation. The subset of trips that will require charging,
i.e. conducted by an electric vehicle, is selected with a probabilistic
approach directly correlated to the penetration of EVs. The result of this
procedure is the additional charging profile requested in each cell of the
region. Then, the additional load of each HV/MV substation is obtained
by aggregating the cells that geospatially fall within its service area.
Moreover, for the charging scenarios, a charging power of 6 kW, typical
for residential chargers, is set for return home trips. Meanwhile, for
leisure, work, and study trips, it is assumed that individuals will utilize
public chargers with a higher power capacity, equal to 22 kW. This
distinction in charging power reflects the varied charging infrastructure
commonly associated with different trip purposes. Fig. 7 illustrates the
EVs charging demand estimation.

The proposed approach also enables more sophisticated simulations
of e-mobility evolutions. It allows for the creation of scenarios wherein
specific classes of trips (e.g., short trips in urban areas, and long trips
in rural areas) exhibit varying probabilities of transitioning to electric
vehicles. Additionally, the simulation encompasses fast-charging solu-
tions. These aspects constitute the ongoing focus of the research group’s
8

current endeavours. These assumptions are motivated by the notably
limited integration of fast charging processes within the Italian context
and the absence of comprehensive travel-related information conducive
to a more plausible identification of conversions to electric vehicles.
As of 2023, electric vehicle penetration in Italy stood at approximately
0.5% [52]. Consequently, this paper primarily emphasizes the approach
utilized for simulating and routing individual trips, while maintaining
a uniform distribution in the e-mobility penetration model. This sim-
plification facilitates the evaluation of simulated outcomes and serves
as a proxy for future investigations.

5. Results

In this chapter, the outcomes of the traffic model are examined
and validated through a comprehensive comparison with real-life data.
The performance of the gravity model is subsequently demonstrated
through insightful figures. Moreover, we showcase the temporal–spatial
distribution of the electric vehicle load across the Lombardy region.
Finally, an assessment of the additional EV demand is provided for
each substation in Lombardy, allowing the evaluation of the necessity
for upgrades and effectively contributing to the future planning of the
distribution grid.

5.1. Traffic model outcome

The model was applied to the Lombardy region, simulating all eight
million trips outlined in the previously presented origin and destination
matrix. Each journey was linked to an initial and a terminal node
through the utilization of the gravity model. To inspect the performance
of the gravity model a comparison has been drawn between distribution
parameters from Table 5 and the number of cars arriving at each section
within the zone ’Milano 6’. Milano 6 zone is one of the municipalities
situated near the city centre of Milan, the capital of Lombardy. With a
total population of approximately 92,000 residents, it encompasses an
area of 15.5 square kilometres. The zone hosts university campuses and
different commercial and working places. The zone is divided into 520
census sections.

Fig. 8(a) to (d), shows the normalized distribution of four influential
parameters, and (e) to (h) presents the total number of arriving cars
in each section at four different times. Results from the gravity model
show that sections with the availability of parking areas host cars more
than the other sections all over the day. However, sections with higher
study areas and worker numbers are chosen as destinations during the
morning. During the late afternoon and evening, the distribution of cars
is more sparse rather than concentrated in some sections, which are
mostly return-home trips determined by the population parameter.

To validate the outcome of the traffic model, it is necessary to
visualize the results and compare them to real-life data. Modelling a
perfect transportation system for an area as large as the Lombardy
region is complex. So many factors are neglected, such as driver’s route
choice preference, different car sizes, traffic queues, and traffic lights.
However, as the main goal of developing a traffic model for this study
is estimating the energy consumption of the EV fleet, the developed
model represents enough accuracy. First, some comparisons are drawn
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Fig. 7. Flowchart of EVs charging load estimation on the primary substations.
Fig. 8. (a) to (d) Normalized distribution of four parameters of the gravity model, (e) to (h) number of arriving cars at each section in 4 different times.
between the results from our model and Google Maps, to evaluate to
which extent the developed model corresponds to real-life records.

The examples from Google Maps are for a particular day in Milan
City. The behaviour of the traffic flow could be very different based
on weather, date, time of year etc. So, the differences between the
model developed by us and the indicators of Google Maps could not be
concluded as a flaw in the model. The model works almost accurately
both spatially and temporarily. It should be noted that the traffic
indicators for Google Maps and this study are different.

The interpretation of traffic conditions on Google Maps is quali-
tative, providing indicators such as green for no delays, orange for
medium traffic, and red for traffic delays, with darker shades of red
indicating slower speeds [53]. However, there is no specific numeric
relationship between colour and speed reduction. In contrast, our traffic
model employs a more quantitative approach, using the flow-over
capacity ratio as an indicator. As outlined in Table 7, an FC higher than
0.8 corresponds to a 50 to 90% speed reduction, while a ratio between
0.6 and 0.8 represents a 10 to 25% speed reduction. The traffic model
is capable of capturing traffic patterns both spatially and temporally.
Fig. 9 illustrates this by comparing traffic congestion at three different
times of the day. Our model reveals two instances of congestion during
a typical workday, primarily in urban areas and on main roads—first
in the morning when people commute to work or study, and later in
the afternoon when they return home.

Fig. 10 provides insights into the morning rush hour traffic, display-
ing the incoming trips to census sections between 8 to 9 am. The model
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provides the spatial–temporal distribution of the incoming trips within
each census section across Lombardy. This information proves valuable
for transportation planning and the effective management of charging
infrastructure within the region. Fig. 11 illustrates the fastest paths
chosen by trips to the Milano 6 zone. Unlike the shortest paths, the
fastest paths show a preference to choose main roads over secondary
or tertiary routes.

5.2. Temporal–spatial estimation of EV load

The output of the gravity and traffic flow model provides the means
to estimate the destination, required energy, and arrival time for each
trip. With this information and a specified penetration rate for electric
vehicles, the additional EV load on each primary substation service area
is calculated.

For a comprehensive overview of the electric vehicles’ load im-
pact, Fig. 12 illustrates the total added load arising from EV charging
processes across Lombardy. The figure reveals two prominent peaks,
the first between 8:00 and 9:00, which are primarily attributed to the
charging from workplaces and study areas. The second peak is due to
the return home trips, which peak between 19:00 and 20:00. The result
of the analysis shows that having a 2.5% penetration rate, the total
power demand could increase up to 240 megawatts during the evening
and 170 megawatts during the morning.

Fig. 13 shows the peak load magnitude in each primary substation,
marked by a unique ID, and the colour of the bars indicates the peak
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Fig. 9. Comparison of results from traffic model with Google Maps at different times of day. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
load occurrence time frame. The figure reveals that the peak load
in substations occurs either during the morning or in the evening.
However, the number of peaks in the evening is more than double those
in the morning. In contrast, the magnitude of peaks in the morning is
higher.

Fig. 14 illustrates the average additional loads in 4 different
1 hourly time frames. EV charging between 8:00 and 9:00 impacts
the substations mainly in urban areas which encompass workplaces.
Concentration of workplaces in urban parts and having 22kw chargers,
results in a higher average and peak load during the morning. The
average load from 11:00 to 12:00 and 14:00 to 15:00 is significantly
lower than the 8:00 to 9:00 time frame. Between 19:00 and 20:00,
the average additional is as high as 3 MW, mainly due to the return
home trips. In contrast to the 8 to 9 time frame, the EV charging load
involves a higher number of substations. The dispersed distribution of
the population and residents across Lombardy, as opposed to being
10
concentrated mainly in urban areas such as workplaces, contributes to
the observed patterns in electric vehicle charging demand.

The peak-to-average ratio (PAR) in a load profile signifies the
relationship between the highest load value and the average load value
over a specific time period. This metric provides insights into the tem-
poral dynamics of load profiles during peak periods, with a higher peak
deviation suggesting a more concentrated peak occurrence. Analysing
power profiles for substations reveals that, on average, morning peaks
exhibit a higher PAR compared to afternoon peaks. Morning peaks,
driven by workplace charging at 22 kW, are characterized by high
magnitude but shorter duration. In contrast, evening peaks, with a more
flattened shape, may coincide with the base load’s evening peak, posing
a risk of grid congestion due to their lower PAR and longer duration.
To better show this, Fig. 15 displays the load profile of one of the
substations, despite having a higher magnitude during the morning, the
peak load in the evening is more persistent.
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Fig. 10. Cars arriving in census sections between 8:00 to 9:00.

Fig. 11. Fastest paths chosen to travel to zone Milano 6 from other provinces excluding
Milan province.

Fig. 12. Overall profile of additional EV load.

Fig. 13. Magnitude and occurrence time of peak loads in primary substations.
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The procedure proposed proved effective in simulating traffic flow
across a large area, providing estimations regarding the potential im-
pact of emerging charging requests on the electric grid. The out-
comes include detailed incremental power profiles associated with each
HV/MV substation. The calculated outcome effectively supports the
planning procedures for both the DSO, aiding in the design of electric
grid reinforcement, and the e-mobility operator in optimally locating
charging stations.

6. Conclusion

To identify infrastructural criticalities and future planning of dis-
tribution systems, it is essential to employ accurate models that can
estimate potential power demand arising from the electrification of
transportation. In addressing this, we bridge the gap in electric vehicle
impact assessment by transitioning from small-scale test networks to
large real-life cases. The main strength of this approach is that it
uniquely considers the integration between transportation and electric
grids, providing a holistic approach to accurately estimate the addi-
tional power demand resulting from the electrification of urban private
cars.

The traffic flow model utilizes a regional travel matrix as its primary
dataset, containing nearly 8 million trips for a typical working day.
Adopting a gravity model to enhance the spatial resolution of the trips’
origins and destinations, and a detailed graph representing the road
network, the passenger vehicle trips are simulated to obtain a traffic
simulation of a standard day in Lombardy, qualitatively validated with
the aid of Google Maps. Using the trips’ destinations, distance travelled
by each car and arrival time, as well as the EV penetration level, each
spatial cell is assigned an additional EV charging profile. Then, utilizing
the accurate service areas of each substation in Lombardy, the cells
are aggregated to obtain the substations’ load profiles. This approach
differs from previous studies that employed unrealistic partitioning
methods, such as Voronoi diagrams [33].

The results of the simulation reveal two main peaks in additional
load for EV charging. The first peak occurs between 8:00 and 9:00 am,
primarily attributed to charging sessions at workplaces. In contrast, the
second peak takes place between 19:00 and 20:00 and is predominantly
associated with home charging activities. The analysis indicates that
morning peaks in EV charging exhibit a higher magnitude than evening
peaks. Morning peaks are concentrated in substation areas covering
workplaces, while evening peaks, although of lower magnitude, are
observed in a greater number of substations due to the dispersed
distribution of residential areas throughout Lombardy. Based on the
results, the EV power demand for Lombardy could reach up to 240 MW
in the evening and 170 MW in the morning, with individual substation
peaks ranging from 2 to 8 MW.

For future improvements, three main strategies can be pursued.
First, transforming individual trips into trip chains would allow for a
more accurate depiction of passenger car usage, as this is a limitation
of the dataset used as input. This approach facilitates the creation of a
better charging behaviour model since the energy consumption of the
last and upcoming trip could impact the charging behaviour. However,
the travel surveys generally present individual trips between zones,
creating trip chains might change the traffic flow pattern compared
to real-life conditions. Secondly, incorporating public transportation
vehicles, electric bikes, and scooters into both the traffic and electri-
cal layers could yield more comprehensive results, as it would help
overcome the limitation of considering only passenger EVs and the
additional load would not be trivial. The main challenges that come
with incorporating electrification of public transport is to access the
details regarding their routes, terminal stations and schedules. Finally,
diversifying the assumption of a single electric vehicle type to include
various models with unique energy consumption patterns could en-
hance accuracy. In this case, specific statistics regarding the mix of
electric cars in the region of interest should be gathered in advance.
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Fig. 14. The average additional load from EVs.
Fig. 15. An example of additional EV load on one substation.
Abbreviations

BEV Battery Electric Vehicle
EV Electric Vehicle
HV/MV High Voltage/Medium Voltage
ICEV Internal Combustion Engine Vehicle
GIS Geographic Information System
GHTS German Household Travel Survey
LOR Lebensweltlich Orientierter Raum
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ISTAT Italian National Institute of Statistics
DSO Distribution System Operator
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