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Experiment summary tables – in-domain

QM9

Table S1: Summary of metrics for the different methods (QM9, in-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO 46.72 31.55 31.72 18.79 20.83 17.03 19.18 25.08 19.05
Error drop 1.67 2.55 2.62 6.72 4.93 7.40 6.85 5.23 6.85
Decr. Ratio 0.95 0.98 0.96 1.0 0.99 1.0 1.0 1.0 1.0

AUCE 44.79 29.44 28.74 2.62 19.90 3.62 1.36 31.31 1.69
MCE 0.85 0.50 0.48 0.087 0.33 0.061 0.051 0.53 0.044
ENCE 30.97 3.27 3.11 0.51 2.28 0.27 0.24 4.37 0.20
cv 0.97 0.50 0.49 0.74 0.51 0.67 0.74 0.45 0.71

Alchemy

Table S2: Summary of metrics for the different methods (Alchemy, in-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO 13.15 6.44 6.51 4.53 4.57 4.22 4.54 5.03 4.49
Error drop 3.07 6.48 6.31 7.99 8.71 8.55 7.97 7.20 8.48
Decr. Ratio 0.79 0.89 0.87 0.92 0.91 0.9 0.89 0.93 0.96

AUCE 48.18 36.15 35.91 9.88 17.50 2.46 8.99 32.32 6.99
MCE 0.95 0.63 0.63 0.16 0.28 0.075 0.14 0.55 0.12
ENCE 415.79 8.90 8.85 1.61 2.58 0.96 1.35 6.53 1.20
cv 1.91 1.31 1.33 1.71 1.60 1.75 1.80 1.19 1.75
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PDBbind

Table S3: Summary of metrics for the different methods (PDBbind, in-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO 76.37 67.59 65.92 74.39 64.81 57.47 67.42 65.99 60.87
Error drop 0.92 1.67 1.67 1.82 2.22 2.25 1.47 2.60 2.09
Decr. Ratio 0.29 0.38 0.34 0.21 0.34 0.53 0.47 0.40 0.52

AUCE 34.01 6.53 4.83 30.52 6.10 3.53 26.46 9.20 4.88
MCE 0.57 0.11 0.09 0.52 0.11 0.08 0.44 0.16 0.10
ENCE 3.26 0.20 0.14 2.52 0.26 0.15 1.71 0.37 0.16
cv 0.56 0.23 0.23 0.54 0.33 0.28 0.48 0.28 0.26

Lipophilicity

Table S4: Summary of metrics for the different methods (Lipophilicity, in-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO 30.62 34.56 32.24 25.52 32.50 28.00 24.72 32.05 25.92
Error drop 1.57 0.68 1.14 3.44 0.90 4.41 5.72 1.52 5.89
Decr. Ratio 0.21 0.04 0.11 0.29 0.10 0.26 0.29 0.07 0.29

AUCE 22.33 16.14 9.33 24.17 17.10 10.47 16.18 27.35 11.00
MCE 0.37 0.27 0.16 0.40 0.29 0.17 0.27 0.45 0.19
ENCE 1.63 0.99 0.55 2.04 1.35 0.78 1.07 2.34 0.70
cv 0.49 0.29 0.36 0.49 0.28 0.27 0.52 0.31 0.41
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Experiment summary tables – out-of-domain

QM9 – scaffold split

Table S5: Summary of metrics for the different methods (QM9, out-of-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO 73.35 52.29 52.93 34.12 38.68 33.38 36.27 40.05 35.81
Error drop 1.64 1.67 1.75 3.02 2.02 2.88 2.91 3.18 2.86
Decr. Ratio 0.86 0.90 0.91 0.99 0.95 0.98 0.98 0.99 1.0

AUCE 47.36 37.13 36.70 10.18 32.81 8.10 9.62 32.57 7.50
MCE 0.92 0.65 0.64 0.16 0.56 0.13 0.14 0.55 0.11
ENCE 107.26 5.49 5.38 0.61 3.75 0.48 0.51 3.33 0.40
cv 1.51 0.46 0.47 0.63 0.45 0.59 0.61 0.42 0.58

Table S6: Summary of relative metrics for the different methods (QM9, out-of-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO +57% +66% +67% +82% +86% +96% +89% +60% +88%
Error drop -2% -35% -33% -55% -59% -61% -58% -39% -58%
Decr. Ratio -9% -8% -5% -1% -4% -2% -2% -1% +0%

AUCE +6% +26% +28% +289% +65% +124% +607% +4% +344%
MCE +8% +30% +33% +84% +70% +113% +175% +4% +150%
ENCE +246% +68% +73% +20% +64% +78% +113% -24% +100%
cv +56% -8% -4% -15% -12% -12% -18% -7% -18%

Alchemy – size split

Table S7: Summary of metrics for the different methods (Alchemy, out-of-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO 57.16 57.79 56.86 12.80 20.61 12.13 15.90 28.86 15.73
Error drop 1.91 0.35 0.3 12.29 1.53 11.41 8.65 1.01 8.03
Decr. Ratio 0.68 0.58 0.59 0.92 0.82 0.93 0.92 0.75 0.93

AUCE 49.16 43.08 43.04 1.34 19.72 3.89 5.29 34.01 3.96
MCE 0.98 0.79 0.79 0.06 0.34 0.06 0.09 0.59 0.08
ENCE 2.72e+05 22.78 22.40 0.72 3.67 0.45 0.90 8.90 0.81
cv 4.05 0.84 0.84 1.30 0.93 1.22 1.19 0.87 1.15
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Table S8: Summary of relative metrics for the different methods (Alchemy, out-of-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO +335% +797% +773% +183% +351% +187% +250% +474% +250%
Error drop -38% -95% -95% +54% -82% +33% +9% -86% -5%
Decr. Ratio -14% -35% -32% +0% -10% +3% +3% -19% -3%

AUCE +2% +19% +20% -86% +13% +58% -41% +5% -43%
MCE +3% +25% +25% -62% +21% -20% -36% +7% -33%
ENCE +65318% +156% +153% -55% +42% -53% -33% +36% -32%
cv +112% -36% -37% -24% -42% -30% -34% -27% -34%

PDBbind – time split

Table S9: Summary of metrics for the different methods (PDBbind, out-of-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO 26.11 14.14 14.37 31.15 14.67 12.56 23.05 12.96 11.52
Error drop 1.12 1.36 1.38 1.40 1.79 1.57 1.24 1.58 1.74
Decr. Ratio 0.64 0.87 0.87 0.65 0.96 0.89 0.80 0.95 0.94

AUCE 49.5 48.1 47.76 49.50 49.09 48.62 49.47 49.12 48.32
MCE 0.99 0.92 0.92 0.99 0.95 0.92 0.98 0.95 0.92
ENCE 11.22 1.49 1.42 6.57 2.16 1.81 4.62 2.14 1.66
cv 0.60 0.18 0.20 0.46 0.31 0.36 0.45 0.25 0.29

Table S10: Summary of relative metrics for the different methods (PDBbind, out-of-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO -66% -79% -78% -58% -77% -78% -66% -80% -81%
Error drop +22% -19% -17% -23% -19% -30% -16% -39% -17%
Decr. Ratio +121% +129% +156% +210% +182% +68% +70% +137% +81%

AUCE +46% +637% +889% +62% +705% +1277% +87% +434% +890%
MCE +74% +736% +922% +90% +764% +1050% +123% +494% +820%
ENCE +244% +645% +914% +161% +731% +1107% +170% +478% +938%
cv +7% -22% -13% -15% -6% +29% -6% -11% +12%
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Lipophilicity – chemical element split

Table S11: Summary of metrics for the different methods (Lipophilicity, out-of-domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO 33.07 35.97 33.54 31.29 35.38 30.86 29.44 34.53 29.26
Error drop 1.12 0.95 1.09 1.22 1.05 1.57 1.73 1.05 1.65
Decr. Ratio 0.53 0.27 0.42 0.6 0.18 0.6 0.6 0.27 0.6

AUCE 30.42 28.48 22.03 36.11 37.38 31.40 27.37 33.40 22.31
MCE 0.51 0.47 0.36 0.63 0.65 0.53 0.45 0.57 0.36
ENCE 2.41 2.03 1.21 3.71 4.31 2.33 1.70 2.80 1.13
cv 0.46 0.24 0.34 0.45 0.16 0.47 0.47 0.22 0.52

Table S12: Summary of relative metrics for the different methods (Lipophilicity, out-of-
domain).

MC-Dropout Ensembling Bootstrapping
Epi. Ale. Tot. Epi. Ale. Tot. Epi. Ale. Tot.

AUCO +8% +4% +4% +23% +9% +10% +19% +8% +13%
Error drop -29% +40% -4% -65% +17% -64% -70% -31% -72%
Decr. Ratio +152% +575% +282% +107% +80% +131% +107% +286% +107%

AUCE +36% +76% +136% +49% +119% +200% +69% +22% +103%
MCE +38% +74% +125% +57% +124% +212% +67% +27% +89%
ENCE +48% +105% +120% +82% +219% +199% +59% +20% +61%
cv -6% -17% -6% -8% -43% +74% -10% -29% +27%

Confidence-oracle error plots
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Figure S1: QM9, in-domain.
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Figure S2: Alchemy, in-domain.
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Figure S3: PDBbind, in-domain.
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Figure S4: Lipophilicity, in-domain.
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Figure S5: QM9, out-of-domain.
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Figure S6: Alchemy, out-of-domain.
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Figure S7: PDBbind, out-of-domain.
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Figure S8: Lipophilicity, out-of-domain.
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Experimental details

Implementation and experimental settings

We implemented the tested uncertainty estimation methods starting from the chemprop base

model made available in Yang et al. S1 , based on the PyTorch framework in Python. The new

software developed has been made available: https://github.com/gscalia/chemprop/

tree/uncertainty.

Training hyperparameters for the model were selected using the hyperopt package, as

described for the original chemprop implementation.S1 The impact of hyperparameters on

uncertainty estimates is further discussed in this Supporting Information.

We used q = 100 to compute all the confidence curves (i.e., we used percentiles). We

used bins of 100 for QM9 and Alchemy, 50 for PDBbind and 25 for Lipophilicity to compute

error-based calibration plots. We used smaller bins to account for smaller datasets.

Data preparation

Table S13: Summary of the datasets and split types for the experiments.

Dataset Category Size Property Metric Split

in-domain out-of-domain

QM9
quantum
chemistry

130828
enthalpy
[kcal ·mol−1]

MAE random scaffold

Alchemy
quantum
chemistry

103727
heat capacity

[cal · (mol ·K)−1 ]
MAE random size

PDBbind biophysics 11908
protein
binding affinity
[− log (Kd/Ki) ]

RMSE random time

Lipophilicity
physical
chemistry

4200

octanol/water
distribution
coefficients
[logD]

RMSE random
chemical
element

S8
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Datasets and split types used in this work are summarized in Table S13. More details about

each dataset, including its preparation, are discussed in the following.

In general, we relied as much as possible on what has already been published in the

literature and used in recent benchmarks. All the data used in this work were made available

in the respective publications. Furthermore, the out-of-domain splits used in our experiments

are in line with what has been previously used,S1–S3 with the exception of the chemical

element split introduced in this work.

In both the in-domain and out-of-domain experiments, the same split was used to test

all the different uncertainty estimation methods.

QM9

QM9 is part of the datasets included in the MoleculeNet benchmark.S2 The formation en-

thalpies of 130,828 stable organic molecules composed of C, H, O, N and F atoms were used

to train and test the model. These reference data were derived from the QM9 dataset, which

was calculated at the B3LYP/6-31G(2df,p) level of theory with the rigid rotor-harmonic os-

cillator approximation (RRHO).S4 As discussed in previous work, these calculated enthalpies

are themselves associated with significant errors, primarily due to weaknesses of B3LYP such

as the absence of long-range dispersion interaction but also the lack of rotor or conformer

corrections in the calculations.S5–S8 We note that it is possible to use a small amount of

high-accuracy coupled cluster training data via a transfer learning approach to minimize the

influence of DFT errors. Interested readers are referred to the recent work of Grambow et

al.S9 In this work, we used the QM9 data as is without any attempt to correct its errors in

order to investigate the effects of aleatoric uncertainties.

Data were prepared as described in Grambow et al. S9 . Readers are referred to this

work for additional details and the original dataset. We used a 80:10:10 split for training,

validation, and test sets, both in the in-domain and out-of-domain settings. Random splitting

was used for in-domain analysis, while scaffold splitting was used for out-of-domain analysis.
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For scaffold splitting, molecules are split into bins based on their Murcko scaffold, with each

bin belonging to only one among training, validation, and test set. We used scaffold splitting

as described and implemented in Yang et al. S1 .

PDBbind

PDBbind is part of the datasets included in the MoleculeNet benchmark.S2 For this work,

since we are interesting in evaluating scalable uncertainty estimation methods, we used the

“full” version of PDBbindS2 which includes the largest amount of molecules.

We used data as distributed in Yang et al. S1 . We used a 80:10:10 split for training,

validation, and test sets, both in the in-domain and out-of-domain settings. Random splitting

was used for in-domain analysis. For out-of-domain analysis, we used time splitting as

suggested in Wu et al. S2 , where the model trained on molecules published before a certain

year is tested on molecules published after that year.

Lipophilicity

Lipophilicity is part of the datasets included in the MoleculeNet benchmark.S2 We used data

as distributed in Yang et al. S1 .

We used a random 80:10:10 split for training, validation, and test sets for the in-domain

experiment.

For the out-of-domain experiment, we introduced a chemical element split. For this, we

split the Lipophilicity dataset between F-containing molecules (901 elements) and the rest

(3299 molecules). The latter subset was used for training and validation (90:10 split), while

F-containing molecules were only used as test set.

Alchemy

Alchemy is a quantum chemistry dataset for benchmarking AI models recently published in

the context of the Alchemy Contest.S3 It expands the size and diversity of existing quantum
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datasets (namely, QM9). Interested readers are referred to the original paper for more details

about this dataset and the comparison with QM9. For this work we used the heat capacities

of 103,567 molecules. Data were prepared as follows.

We split our data based on the size split described in Chen et al. S3 . A first subset

(alchemy-small) includes 99,776 smaller molecules, with only ≈ 5% of them having more

than 10 heavy atoms. A second subset (alchemy-large) includes 3,951 molecules, each

with more than 10 heavy atoms. Notice that this is the only split used in this work that

does not lead to two totally disjointed sets, since a very small fraction of molecules with

more than 10 heavy atoms is included also in the training set, in line with Chen et al. S3 .

For the in-domain tests, alchemy-small was split randomly with a 80:10:10 split for

training, validation, and test sets. This ensures that each set has the same distribution and

is mostly composed of smaller molecules.

For the out-of-domain tests, we used the same models trained for the in-domain experi-

ments and we tested them on alchemy-large.

Additional discussion

Hyperparameters

It is worth noting that uncertainty estimates obtained through DNN-based methods are, in

general, affected by the training hyperparameters of the network. Indeed, aleatoric uncer-

tainty, being an output of the network, depends on the training hyperparameters just as

any other network output does. Epistemic uncertainty is affected by the network weights —

which affect output variability — and are a function of the training hyperparameters.

In this work, we selected the DNN training hyperparameters as follows: i) Hyperparam-

eters were tuned by minimizing the loss of the base network (using the hyperopt package).

ii) Once optimal hyperparameter were selected, the resulting network was extended with the

different uncertainty estimation methods. This allowed investigating the performance of the
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uncertainty estimation methods as used in practice.

On top of training hyperparameters, uncertainty estimation methods themselves could

introduce additional hyperparameters. For example, MC-Dropout introduces the dropout

probability p that directly affects the magnitude of the predicted epistemic uncertainty.S10

As previously mentioned, for this work we selected practical uncertainty estimation meth-

ods. Accordingly, all of the selected methods do not introduce additional hyperparameters

affecting uncertainty estimates (with the exception of the sampling size, discussed later).

Indeed, ensembling is intrinsically hyperparameter free,S11 and, in particular, its usage in

conjunction with early stopping does not require defining new hyperparameters (in contrast,

for example, to anchored ensemblingS12 discussed next). Bootstrapping increases the diver-

sity in the models without introducing new hyperparameters. Regarding MC-Dropout, we

avoided the standard method to avoid introducing a hyperparameter with a direct impact

on uncertainty estimates. Instead, we used Concrete Dropout,S10 which allows automati-

cally tuning per-layer dropout probability p during training, with the goal of converging to

the optimal probability for optimal epistemic uncertainty estimates. As described in Gal

et al. S10 , Concrete Dropout results in a performance that is comparable to a grid search for

p. While avoiding selecting the dropout probability p, Concrete Dropout requires setting

another hyperparameter: the prior length scale l (which, in turn, sets the weight regularizer

and the dropout regularizer; see the original paper for more details about their meaning).

However, the prior length scale l is a training hyperparameter and, as such, can be jointly

optimized with the other training hyperparameters on a validation set. Once optimized,

the probability p leading to optimal epistemic uncertainty was automatically found during

training.

As explained in the Methods section, all the uncertainty estimation techniques considered

in this work were based on approximate Bayesian inference, which relies on Monte Carlo

integration over (approximate) samples of the posterior distributions. For this reason, the

number of samples M is an inherent hyperparameter of all the considered methods. In this
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respect, even though it is not possible to formally identify the precise number of samples

which result in “good enough” performance, previous works highlighted how uncertainty

estimates quickly converge, with diminishing returns beyond 5-15 samples.S13,S14 In this work

we used 15 samples for ensembling and bootstrapping, 150 for MC-Dropout. MC-Dropout

employs weight sharing between different instances and it does not require a separate training

for each one, allowing a larger M in practice. This difference in the number of instances

reflects realistic condition of use. Preliminary experiments increasing the number of samples

did not report significant variations in the outcomes, except for an asymptotically smaller

general improvement in all the metrics for all the tested methods.

Anchored Ensembles and Early Stopping

Traditional regularization techniques, such as weight decay and early stopping, affect the

solutions reached by NNs. Recently, the usage of these techniques has been proposed not

only as a practical strategy to increase ensemble diversity, but also as a formal evidence for

a Bayesian interpretation of ensembling.S12,S15

Anchored ensemblingS12 modifies traditional ensembling by leveraging the randomised

MAP sampling technique. This technique exploits the fact that injecting some noise in

the loss function of a MAP estimate allows sampling from the true posterior. Therefore,

an ensemble of such models is a simple and scalable approach for approximate Bayesian

inference.

It is known that the commonly used L2 regularization for NN (weight decay) corresponds

to the MAP estimate with Gaussian priors,S16 which can be interpreted as reducing the

magnitude of weights for which the network does not express a strong preference. The

anchored ensembling algorithm proposes to add noise to this loss function by changing the

means of the priors. For regression, this leads to the following loss for the i-th model in the

ensemble:

L =
1

N
‖y − ỹ(i)‖22 +

1

N
λ‖θ(i) − θ(i)0 ‖22 (1)
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where y are the target outputs and θ
(i)
0 , which equals zero for standard L2 regularization, is

the mean of the prior of the i-th model.

Following this approach, each model in the ensemble has its parameters anchored to a

different θ0,i, and this promotes the diversity of the solutions reached by the different models.

An important limitation of this approach is the need for additional hyperparameters that

must be tuned. They include at least the regularization coefficient λ — that expresses the

ratio between data variance and prior variance of the weights — and the noise distribution

θ0,i ∼ N (0,Σ0). As originally described,S12 the algorithm also employs a regularization

matrix Γ instead of the scalar λ, to allow specifying per-layer regularization.

The work presented in Duvenaud et al. S15 gives an interesting interpretation to a com-

monly exploited regularization method — early stopping — as approximate nonparametric

Bayesian variational inference. In particular, they show how training a model to minimize

the negative log-likelihood with stochastic gradient descent (SGD)i can be interpreted as

obtaining the approximate posterior qt (θ) parametrized by the number t of SGD steps,

and demonstrate how early stopping leads to an optimal t̃. Within this context, the initial

distribution of the model p (θ0) is interpreted as the prior.

In practice, qt̃ (θ) allows sampling from the variational posterior, and therefore ensembling

different random restarts allows obtaining independent samples from the posterior, that can

then be used as in traditional ensembling. Even if the approach, as originally described, does

not take into consideration SGD with momentum, recent work also shows how SGD with

momentum can be interpreted as Bayesian inference.S17

Not only is this approach practical, but ensembling with early stopping is usually already

exploited for property prediction in state-of-the-art systems.S1 In this work we use it as a

Bayesian alternative for uncertainty estimation.

We can draw a parallelism between the two approaches described above. It has been

shown that early stopping for NNs is conceptually similar to L2 regularization, while an exact

iThe approach is compatible also with minibatches.
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equivalence holds in the simpler case of a linear model with a quadratic loss function.S16 In-

tuitively, both approaches restrict the optimization procedure to the vicinity of a pre-defined

value — θ0 for L2 regularization, the initial configuration for early stopping. In our case,

we noticed that these two values have the same role of prior in the two approaches,S12,S15

highlighting an interesting similarity. Even though they are based on different theoretical

foundations, in practice both the approaches increase the diversity in the ensembled in-

stances by injecting some randomness into their regularization. An intrinsic advantage of

early stopping over weight decay is that early stopping automatically determines the correct

amount of regularization, instead of requiring external hyperparameter optimization.S16

Therefore, given the objective of this paper of evaluating scalable and practical uncer-

tainty quantification techniques, we used ensembling with early stopping for our extensive

tests. Anchored ensembling and the impact of different priors for uncertainty estimation will

be the subject of future work.

Additional analyses

Aleatoric and epistemic uncertainty correlation

In Table S14 the Spearman rank-order correlation and the Pearson correlation between

aleatoric and epistemic uncertanties are shown for each dataset and uncertainty estimation

method. Values are shown as Spearman/Pearson correlation.

Table S14: Spearman/Pearson correlation between aleatoric and epistemic uncertainties

MC-Dropout Ensembling Bootstrapping

QM9 0.25/0.01 0.54/0.66 0.71/0.28
Alchemy 0.47/0.01 0.86/0.30 0.87/0.15
PDBbind 0.26/0.20 0.69/0.04 0.18/0.12
Lipophilicity 0.74/0.68 0.17/0.21 0.24/0.35
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Aleatoric uncertainty and ground truth error correlation

Since aleatoric uncertainty captures inherent data noise, one may wonder whether it corre-

lates with error in the data with respect to a more accurate ground truth. For example,

considering DFT calculations (QM9 dataset), the ground truth can be better approximated

by high level quantum chemistry calculations like coupled cluster theory with a generous

basis setS9,S18 or experimental results.

For this experiment, we collected 826 enthalpy values derived from experiments and

higher level calculations (CCSD(T)-F12/cc-pVDZ-F12) to examine whether the estimated

aleatoric uncertainties correlate with the nois in training data, i.e., the differences between the

DFT enthalpies calculated at the B3LYP level of theory and the true formation enthalpies.

These more accurate enthalpy values were collected from the work of Grambow et al. S9 and

can be found in the supporting information of the original paper. Interested readers are

referred to the detailed description of how the data were derived in the Datasets section of

Grambow et al. S9 .

Aleatoric uncertainties and errors with respect to ground truth values report a low cor-

relation: Pearson correlation ≈ 0.04, Spearman correlation ≈ 0.13. A possible explanation

for this behavior is discussed in the paper.

In-domain and out-of-domain epistemic uncertainty median

In Table S15 the uncertainty median is shown for each dataset and uncertainty estimation

method as in-domain median/out-of-domain median.

Table S15: In-domain/out-of-domain uncertainty median

MC-Dropout Ensembling Bootstrapping

QM9 0.0027/0.0007 0.30/0.67 0.54/1.21
Alchemy 3.85e-06/1.06e-06 0.009/0.302 0.107/0.385
PDBbind 0.115/0.035 0.153/0.076 0.250/0.139
Lipophilicity 0.042/0.040 0.024/0.018 0.056/0.057
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