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A B S T R A C T   

The Operation & Maintenance (O&M) of Cyber-Physical Energy Systems (CPESs) is driven by reliable and safe 
production and supply, that need to account for flexibility to respond to the uncertainty in energy demand and 
also supply due to the stochasticity of Renewable Energy Sources (RESs); at the same time, accidents of severe 
consequences must be avoided for safety reasons. In this paper, we consider O&M strategies for CPES reliable and 
safe production and supply, and develop a Deep Reinforcement Learning (DRL) approach to search for the best 
strategy, considering the system components health conditions, their Remaining Useful Life (RUL), and possible 
accident scenarios. The approach integrates Proximal Policy Optimization (PPO) and Imitation Learning (IL) for 
training RL agent, with a CPES model that embeds the components RUL estimator and their failure process 
model. The novelty of the work lies in i) taking production plan into O&M decisions to implement maintenance 
and operate flexibly; ii) embedding the reliability model into CPES model to recognize safety related components 
and set proper maintenance RUL thresholds. An application, the Advanced Lead-cooled Fast Reactor European 
Demonstrator (ALFRED), is provided. The optimal solution found by DRL is shown to outperform those provided 
by state-of-the-art O&M policies.    

Abbreviations 

C
⇀

t Component state vector at time t 

MT
⇀

t Times needed to complete the current maintenance vector at 
time t 

P
⇀

t Production plan vector at time t 

R
⇀

t RUL estimations vector at time t 
a⇀t Action vector at time t 
ΠCM CM downtime 
ΠPM PM downtime 
Gt Revenue at time t 
Gwater Water pump that regulates the feedwater mass flow rate 
Kbase Base-load operation revenue 
Kload, Load-following operation revenue 
PTh Thermal power 
Qπ(s,a) Estimation of the expected future reward obtained by 

performing policy π, choosing action a in state s 
Rl Ground truth RUL of the l-th component 
R∗

l RUL estimation by PHM tools 
TL,cold Cold leg lead temperature 
TM Mission time 
Tl Ground truth failure time of the l-th component 
Tsteam Steam temperature 
UCM Cost for each downtime of CM 
UPM Cost for each downtime of PM 
Usafe Cost of safe shutdown per unit of time 
Usevere Cost of severe shutdown per unit of time 
Wt Shutdown cost at time t 
Xt Maintenance cost at time t 
pSG Steam Generator (SG) pressure 
rt Reward at time t 
yref Controlled variable y reference value 

θ
⇀ 

Policy search methods parameters 
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π∗(a|s) Optimal policy choosing action a in state s 
ϵR RUL estimation error 
AGAN As Good As New 
ALFRED Advanced Lead-cooled Fast Reactor European Demonstrator 
CM Corrective Maintenance 
CPES Cyber-Physical Energy System 
CVaR Conditional Value at Risk 
DNN Deep Neural Network 
DRL Deep Reinforcement Learning 
GTST-MLD Goal Tree Success Tree-Master Logic Diagram 
IL Imitation Learning 
ML Machine Learning 
NPP Nuclear Power Plant 
O&M Operation & Maintenance 
PdM Predictive Maintenance 
PHM Prognostic and Health Management 
PI Proportional Integral 
PM Preventive Maintenance 
PPO Proximal Policy Optimization 
R The SDP reward function 
RES Renewable Energy Source 
RL Reinforcement Learning 
RUL Remaining Useful Life 
SDP Sequential Decision Problem 
SM Scheduled Maintenance 
VaR Value at Risk 
CR The control rods 
L Number of components 
P Power production plan 
Syst System state at time t 
kv Turbine admission valve that regulates the steam inlet mass 

flow rate 
A SDP action space 
P SDP transition probability 
S SDP state space 
γ SDP discount factor 
λ Component failure rate 

1. Introduction 

Cyber-Physical Energy Systems (CPESs) are highly connected sys-
tems for energy production, transmission and distribution [1,2], for 
which high reliability and availability must be guaranteed by proper 
Operation & Maintenance (O&M) procedures [3,4]. 

Scheduled Maintenance (SM), e.g., on a time basis, is widely applied 
in industrial production [5,6]. On the other hand, the development of 
sensing and data analysis, and the advent of Prognostic and Health 
Management (PHM) techniques, have made it possible to collect and use 
condition monitoring data to estimate the components health states, and 
predict their Remaining Useful Life (RUL) [7–10], so as to enable the 
Predictive Maintenance (PdM) paradigm for just-in-time maintenance 
interventions that maximize system availability and minimize O&M 
costs [11,12]. 

On the other hand, the penetration of large shares of Renewable 
Energy Sources (RESs) onto the power grid, with their high degree of 
variability in power generation, challenges O&M to provide flexibility of 
operation (e.g., load-following [13]) for dealing with sudden imbalances 
between demand and production [14]. Then, O&M strategies should 
account for the components health state and Remaining Useful Life 
(RUL) [12,15–17], together with the variability of the power demand 
and generation over long-time horizons, ensuring flexible operation. 

Recently, many researches have focused on O&M decision making: 
to name few, in [18] an artificial neural network is proposed to estimate 
the maintenance cost and, then used within a multi-agent Deep Rein-
forcement Learning (DRL) model to optimize decisions on large-scale 
systems; in [19] a Petri Net is applied to optimize offshore wind 

turbines O&M; in [20], a Bayesian Network maximizes a system supply 
capacity and gas supply reliability within a DRL scheme for maintenance 
planning. In all cases, however the fluctuations of the energy production 
and demands, their uncertainty, especially under increasing scenarios of 
penetration of RES specific production plans, have been overlooked. 
Also, the severity of the consequences of the CPES components failures is 
commonly neglected for simplicity. 

In this paper, we formalize an optimization problem for such O&M 
strategies as a Sequential Decision Problem (SDP) to maximize pro-
ductivity and safety, and provide flexible supply (load-following) to 
overcome the above mentioned limitations, i.e., we optimize the main-
tenance activities in light of the RUL of the CPES components, the 
severity of the consequences of their failures and the compliance with 
the operation plan (base-load or load-following) to satisfy the flexible 
operation needs while avoiding system shutdown caused by components 
failures. In a SDP, the goodness of the selected O&M action does not 
depend exclusively on the actual decision, but, rather, on the whole 
sequence of future decisions. To solve the SDP for the optimal O&M 
sequence of actions, we rely, as in [18–20], on Deep Reinforcement 
Learning (DRL), which is an extension of Reinforcement Learning (RL) 
and provides feasible application to complex systems [21,22]. RL has 
been applied to complex decision-making problems in many fields, 
including energy-related ones [23–32]. Indeed, tabular RL algorithms 
[33] allow finding the exact solution of SDPs in which the state and 
action spaces are small enough for the value function to be represented 
as tables. However, in most practical cases the computational cost of 
these algorithms is not compatible with the application to complex 
systems, whose state and action spaces are normally large due to the 
numerous components [33,34]. For this reason, we resort to DRL, which 
makes use of Deep Neural Networks (DNNs) to find approximate solu-
tions [33]. In particular, we integrate the Proximal Policy Optimization 
(PPO) algorithm [35], which is one of the state-of-the-art approaches for 
DRL implementation, Imitation Learning (IL), which is a supervised 
learning approach [36] to pre-train the RL agent with a heuristic policy, 
and a CPES model that embeds the components RULs estimator and the 
components failure process model (i.e., the reliability model). A case 
study is provided concerning the Advanced Lead-cooled Fast Reactor 
European Demonstrator (ALFRED) [37]. This advanced Nuclear Power 
Plant (NPP) is designed precisely to offer flexible operation by providing 
the possibility of daily changing the power output between full (100%) 
power and 20% power levels. The main components of ALFRED, i.e., 
sensors, turbine admission valve, water pump and control rods, are 
considered equipped with RUL estimation capabilities. For the failure 
process, a Goal Tree Success Tree-Master Logic Diagram (GTST-MLD) 
reliability model is available [38,39]. In a nutshell, the novelty of the 
proposed approach lies in accounting for both the energy production 
plan and the CPES reliability model to inform O&M decisions that jointly 
consider production uncertainties and wear/tear of the CPES. 

The remainder of the paper is organized as follows: Section 2 states 
the problem and formulates it as a SDP; in Section 3, details about the RL 
algorithm developed in this work are provided; Section 4 describes the 
case study; in Section 5, the results are discussed; conclusions are drawn 
in Section 6. 

2. Problem formulation 

Let us consider a CPES whose load-following power production plan 
P(t) to accommodate the RES fluctuations at each time t = 1, 2,…,TM 
(the mission time), can span from full (100%) power (typically produced 
in base-load regime) to 20% (i.e., the minimum assumed in the daily 
cycles of load-following). For example, a load-following 100–60–100 
cycle entails that in one day the load is 100% of the nominal power, then 
the load decreases by 40% to the 60% of the nominal power, then a 
power ramp is needed to re-establish the 100% full nominal power. 
Revenues are generated in both base-load and load-following opera-
tions, and are here indicated as Kbase and Kload, respectively. 
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The CPES is made of L components: the generic l-th component, l ∈ Λ 
= {1, …, L}, is assumed to be equipped with PHM capabilities, which 
allow estimating its RUL. In [40–42], several advanced machine 
learning methods have been recently proposed to estimate the RUL, 
given the ground truth failure time T∗

l of the l-th component, is equal to: 

R∗
l = T∗

l − t (1)  

And whose estimation provided by the PHM tool is: 

Rl = R∗
l + ϵR (2)  

where ϵR ∼ N(0, σR) is a Gaussian noise representing the error of the RUL 
estimation [4,43]. 

Maintenance of the components is considered perfect, i.e., the 
component is restored as good as new (AGAN), and performed by a 
number of maintenance crews equal to the number of components in 
need of maintenance at the same time. The type of maintenance that is 
performed on the generic l-th component is: i) Preventive Maintenance 
(PM), if the component is not failed, i.e., R∗

l > 0, or ii) Corrective 
Maintenance (CM), if the component is failed, i.e., R∗

l = 0. The down-
times due to PM and CM, ΠPM and ΠCM (typically ΠPM < ΠCM) are 
considered as a deterministic time period [44,45], and the costs for each 
downtime of maintenance are UPM and UCM, respectively. When a 
component fails, the system may undergo a safe shutdown or severe 
(damaged) shutdown, whose costs per unit of time are Usafe and Usevere, 
respectively. 

For simplicity sake, but without loss of generality, we i) neglect 
backup components or safety-related protection systems (i.e., a 
component failure drives the system into failure, and CM is imple-
mented), ii) assume that load-following operation can be implemented 
only when there are no components failed or under maintenance. It is 
important to point out that assumption i) neglects the fact that NPPs 
components are typically highly redundant for safety reasons, and so it 
allows providing conservative results, e.g., the upper boundary of the 
unreliability of the ALFRED control system; considering backup com-
ponents can be done within a reliability analysis of the system, e.g., by 
Fault Trees or Reliability Block Diagram. 

In this setting, the O&M problem can be formulated as a SDP defined 
by the set S ,A ,P ,R , γ, where:  

• S is the state space, i.e., the set of variables describing the state of 
the system;  

• A is the action space, i.e., the set of possible actions; 
• P represents the transition probability, i.e., P (s′ |s, a) is the proba-

bility of making a transition from state s to state s′ by performing 
action a;  

• R is the reward function, i.e., R (s′ |s, a) is the reward received as a 
result of making a transition from state s to state s′ by performing 
action a, and is used to update the O&M policy;  

• γ ∈ [0, 1] is the discount factor, i.e., the factor used to evaluate the 
present value of future rewards. 

The objective of solving the SDP is to define the optimal O&M policy 
π∗(a|s), i.e., the actions sequence a to be adopted at each decision time t, 
with regards to environment state s, in order to maximize the system 
profit over the mission time TM. The state space S , the action state A , 
and the reward function R , are defined in Sections 2.1, 2.2, and 2.3, 
respectively. In Section 2.4, the model of the CPES environment is 
described. Notice that, since in RL the learning agent directly interacts 
with the model of the environment, the explicit definition of the tran-
sition function P is not required. 

2.1. State space S 

At each decision time t, the state space S is defined by the vector s⇀t 

= [R
⇀

t , C
⇀

t MT
⇀

t , P
⇀

t , Syst , t] ∈ R3L+J+2, obtained appending the vectors of 

RUL estimations R
⇀

t = [R1, R2, …, RL], the component state vector 

(operating, failed, CM and PM) C
⇀

t = [C1, C2, …, CL], the vector of the 

times needed to complete the current maintenance MT
⇀

t = [MT1,MT2,…,

MTL], the production plan vector for consecutive J days from day t to day 

t+ J − 1 (J = 1,2,…,TM − t + 1) P
⇀

t = [P0,P1,…, PJ− 1], and the system 
state (operating, PM, shutdown and failure). 

2.2. Action space A 

At each decision time t, the maintenance actions space A is defined 
by the vector a⇀t = [a1,…,al,…,aL]: if a decision is taken to maintain the 
l-th component, the corresponding al is set to 1, resulting in a⇀t = [0,…,0,
al = 1,0,…,0], or a⇀t = [0,…,0] otherwise. 

2.3. Reward function 

At each decision time t, a reward rt is calculated on the basis of s⇀t and 
a⇀t as follows: 

rt = Gt − Wt − Xt (3)  

where Gt is the revenue (see Eq. (4) below), Wt is the cost when the 
system is under safe shutdown or severe shutdown (see Eq. (5) below) 
and Xt is the maintenance intervention cost (see Eq. (6) below). 

Gt can be calculated as follows: 

Gt = Ibase⋅Kbase + Iload⋅Kload (4)  

where Ibase and Iload are Boolean variables equal to 1 and 0, respectively, 
when the system operates in base-load regime, P(t) = 0, or 0 and 1, 
respectively, when the system operates in load-following regime, P(t) =

1. 
Wt can be calculated as follows: 

Wt = Isafe⋅Usafe + Isevere⋅Usevere (5)  

where Isafe and Isevere are Boolean variables equal to 1 when the system, at 
time t, is unavailable due to safe shutdown or severe shutdown. 

Xt can be calculated as follows: 

Xt =
∑L

l=1
IRUL>0

l ⋅UPM + IRUL=0
l ⋅UCM (6)  

where IRUL=0
l and IRUL>0

l are Boolean variables that indicate whether the 
component has (not) failed at time t and, therefore, should undergo 
corrective (preventive) maintenance. 

2.4. The environment model 

Despite the agent may in principle find the optimal O&M policy by 
means of direct interactions with the real-world system, this turns out to 
be unfeasible in the case of CPES for economic, safety and time issues: 
the trial-and-error nature of the learning process consists in performing 
several times the actions suggested by the algorithm to explore the so-
lution space, leading to economically inconvenient and unsafe system 
management in the early stage of the learning process (when they are 
not yet optimal); thus, the learning agent is typically trained using a 
white-box environment model of the system of interest [4]. 

The model here developed that reflects the complex response of the 
CPES to failure scenarios depending on the large variety of system in-
formation (e.g., components RUL, components state, load-following 
operation plan), consists in a model of the system which can simulate 
its response in the scenarios by the components failures, and in the 
estimator of the components RUL, which provides the estimate of the 
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RUL in the form of Rl of Eq. (2). 

3. Reinforcement learning algorithms 

A schematic view of the RL procedure used in this paper is shown in 
Fig. 1. The decision maker is indicated as the agent and the system it 
interacts with is called environment: they interact continuously, the 
agent selecting actions and the environment responding to those actions 
with a reward that the agent tries to maximize over time [33]. Specif-
ically, at each decision time t, the agent receives a representation of the 

environment state s⇀t (here including the components RULs R
⇀

t, the 

components state C
⇀

t, the maintenance remaining times MT
⇀

t, the pro-

duction plan P
⇀

t and the system state Syst), and based on this, it selects an 
action a⇀t to provide the optimal order of maintenance actions for the 
current situations. The environment system model simulates the system 
response to the selected action a⇀t , moves to the new state s⇀t+1 resulting 
from such action and returns the corresponding numerical reward rt to 
the agent. By iteratively repeating this procedure several times in a 
trial-and-error manner, the agent reaches the optimal policy π∗(a|s), 
which maps the possible environment states s into the optimal actions a 
maximizing the expected cumulative sum of rewards over the time ho-
rizon E[

∑TM
t=0γt⋅rt(a

⇀
t , s⇀t , s⇀t+1)], where γ is the discount parameter of 

future rewards. 
In general, RL algorithms can be classified into three groups: policy 

search, value function and actor-critic methods [22]. Policy search 
methods directly look for the optimal policy, π∗(a|s), by updating the 

parameters, θ
⇀

, of a parameterized policy, π(a
⃒
⃒
⃒s; θ

⇀
), through which 

optimal actions are selected. These methods typically converge to a local 
optimum rather than to the global optimum [21]. 

Differently, value function methods learn the value of selecting a 
particular action when being in a particular state, Qπ(s,a), which is an 
estimation of the expected future reward obtained by performing action 
a in state s, and, then following the policy π(a|s). In this way, the optimal 
policy, π∗(a|s), is the one that maximizes the action-value function Qπ∗

(s,
a): 

π∗(a|s) = argmaxa Qπ(a|s)(s, a) (7) 

Actor-Critic methods learn both the value function and the policy in 
an attempt to combine the strong points of value function and policy 
search methods [22]. Actor-Critic methods consist of two models: the 
critic, which learns the value function, and the actor, which learns the 

policy by updating the parameters in the direction suggested by the 
critic. 

In the simplest cases, i.e., those in which the state and action spaces 
are small, tabular RL can be implemented. In tabular RL the learning 
agent is represented as a table which stores the state-value (goodness of 
policy) or action-value (goodness of action in the state). Although 
tabular RL leads to find the exact optimal solution, its computational 
cost makes the applications unfeasible to complex systems characterized 
by large or continuous state and/or action spaces [34]. Then, function 
approximation has been introduced to approximate the state-value 
function or the action-value function [46]. In principle, linear approxi-
mation can be implemented for function approximation using different 
basis functions, e.g., polynomial basis or Fourier basis [23]. Deep Neural 
Networks (DNNs) have recently been successfully used for non-linear 
function approximation, within a DRL framework. Indeed, the use of 
DNNs in continuous and high-dimensional state spaces makes it possible 
to extract hidden features, which enable the DRL agent to overcome the 
uncertainty and partial observability of the environment. 

In this work, we adopt the state-of-the-art RL algorithm, Proximal 
Policy Optimization (PPO) [35] to optimize the O&M strategy of a CPES. 
PPO is an actor-critic algorithm, which aims at stabilizing the policy 
optimization by constraining the gradient updates, in the attempt to 
monotonically improve the policy. The main idea is to avoid too large 
policy updates, which can increase the probability of accidental per-
formance collapses. PPO is considered relatively easy to implement and 
tune, and despite its simplicity, it has been shown able to outperform 
many state-of-the-art approaches on discrete and continuous bench-
marks [35] and on several applications in different research fields, such 
as supply chains [47], autonomous vehicles [48] and power production 
plants [4,30–32]. 

Since in complex system applications the state space is very large, it 
can be hard for the agent to discover the optimal policy π∗(a|s) in an 
efficient way starting from a random initialization of the neural 
network. This problem has been tackled by including domain knowledge 
in the learning process, using methods such as reward shaping [49] and 
state-action similarity solutions [50]. In this work, we resort to Imitation 
Learning (IL) [36], in particular, Behavioral Cloning [51], to generate 
trajectories with a heuristic policy, for pre-training the agent to repro-
duce the heuristic policy in a supervised learning framework. In other 
words, the heuristically generated trajectories are used as training data 
for the policy neural network to learn to pair the state s⇀t and the chosen 
action a⇀t. Then, the agent is fine-tuned using RL to explore new policies 
and discover the optimal one. The interested reader may refer to [36, 

Fig. 1. Schematic representation of RL procedure.  
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52–54] for a detailed description of the DRL framework here adopted. 

4. Case study: the Advanced Lead-cooled Fast Reactor European 
Demonstrator (ALFRED) 

As a promising technology capable of meeting the Generation IV 
goals of Nuclear Power Plants (NPPs), ALFRED [55,56], a conceptual 
reactor design within the European nuclear community, has been the 
subject of various studies of reactor design [37,57–59], control design 
[60,61], and reliability and risk analysis [62,63]. ALFRED is designed to 
operate in a flexible way [64–66] and is expected to reach operational 
conditions of an industrially deployable small modular lead fast reactor 
around the year 2035–2040 [55], making it a perfect candidate of NPPs 
to be considered for coping with the variability of RESs, within a 
load-following schedule. 

The control of ALFRED is implemented by means of four feedforward 
and Proportional Integral (PI)-based feedback control loops (see Fig. 2) 
[37], that keep four variables y⇀ (steam temperature Tsteam, Steam 
Generator (SG) pressure pSG, cold leg lead temperature TL,cold and ther-
mal power PTh) controlled at reference values y⇀ref in full power nominal 

condition, and within the safety thresholds (L
⇀

y and U
⇀

y) in any other 
operational condition (see Table 1). The control system is here simpli-
fied as composed of L = 7 hardware components (4 sensors for the 
variables Tsteam, pSG, TL,cold and PTh, and 3 actuators for the turbine 
admission valve (kv), the water pump (Gwater) and the control rods (CR)). 

Such control system is not only exposed to components stochastic fail-
ures, but also to cyber failures that can contribute to the ALFRED un-
reliability [63,67,68]; however in this work, the components are 
considered subjected only to stochastic failures over a mission time TM 
of 5 years (1825 days) and are equipped with PHM capabilities for 
estimating their RULs, with a zero-mean Gaussian error whose standard 
deviation is σR = 10 days (see Eqs. (1) and (2)). The failure time T∗

l of 
each component is sampled from an exponential distribution; the failure 
rates for the components are listed in Table 2. 

We assume that i) the production plan P
⇀

t (base-load or load- 
following with respect to the probabilities listed in Table 3 (the load- 
following cycle ranges from 100% to 40% of the normal power for 
normal operation conditions, whereas it can drop to 20% of the normal 
power, as explained in [70])) for J = 2 successive days is known, i.e., 

P
⇀

t = [P0, P1, P2], ii) the maintenance durations ΠPM and ΠCM are 

Fig. 2. ALFRED reactor control system [63].  

Table 1 
Reference value and safety thresholds of the controlled variables [57].  

Controlled 
variable, y 

Reference value at full 
power nominal 
condition, yref 

Lower safety 
threshold, Ly 

Upper safety 
Threshold, Uy 

Tsteam (◦C) 450 / 550 
pSG (Pa) 180E5 170E5 190E5 
TL,cold (◦C) 400 350 / 
PTh (W) 300E6 270E6 330E6  

Table 2 
Components failure rates [69].  

Failure rate/occurrence probability Value 

Sensor failure rate λsensor 6.20E-3/Year 
Turbine admission valve (kv) failure rate λkv 6.57E-4/Year 
Water pump (Gwater) failure rate λwater 1.14E-2/Year 
Control rods (CR) failure rate λCR 5.30E-3/Year  

Table 3 
NPP load-following capability [68,73].  

Load Cycle Number of Load Cycles in 70 years lifetime Probability per day 

100–90–100 100,000 0.163 
100–80–100 100,000 0.163 
100–60–100 15,000 0.0245 
100–40–100 12,000 0.0196 
100–20–100 100 1.65E-4 
Load- 

following 
– 0.3703 

Base-load – 0.6297  
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considered as deterministic time periods ΠPM = 1.25 days [71] and ΠCM 
= 3.37 days [72], respectively, iii) the daily revenues and maintenance 
costs of PM and CM are as listed in Table 4. 

The ALFRED system model we use in the RL environment is a goal- 
oriented logical model, based on the Goal Tree Success Tree-Master 
Logic Diagram (GTST-MLD) (see Appendix B). Once a component is 
failed, the ALFRED system is considered being in safe shutdown and not 
able to continue operating. After initializing the components state and 
propagating the component failure through the GTST-MLD (the inter-
ested reader may refer to [69,76] for implementation details), the 
GTST-MLD reliability model can evaluate the system response with 
respect to whether the component failure leads the four controlled 
variables (Tsteam, pSG, TL,cold and PTh) out of the safety thresholds, which is 
considered to be a system failure leading to severe consequences. In 
other words, the system structure and functionality are described by the 
hierarchical framework GTST and the system response to the compo-
nents failure are simulated by the MLD in a transparent way [38,39]. 
Thus, the GTST-MLD system model can be considered as a white-box 
model which can be applied as the RL environment model and used to 
simulate the interactions with the agent. 

As RL agent, based on the settings in [4,13], we use a DNN with two 
hidden layers of 64 neurons. The IL step is performed by generating 500 
PdM trajectories, which list the state-action-reward triplets following 
the PdM policy that are used to pre-train the agent for 50 epochs to 
reproduce the PdM behavior. Finally the PPO RL is implemented. The 
discount factor γ is set equal to 0.99 by grid searching around the 
empirical value [4]. 

5. Results 

For a fair comparison of the PPO (GTST-MLD) RL, with state-of- 
practice strategies, we have considered (in increasing order of 
complexity) i) a CM strategy, ii) a SM strategy, iii) a PdM strategy (i.e., 
the same policy of the IL step used to pre-train the agent in Section 4), iv) 
a PPO RL (same RL without GTST-MLD, as the one shown in [77]). All 
strategies are tested on a set of 100 test sequences of O&M and the 
corresponding profits and losses within the mission time TM of 5 years 
are compared. The SM and PdM are performed with 173 days of SM 
interval and 35 days of PdM RUL threshold (found by grid search), 
respectively. 

In this paper, we use Conditional Value at Risk (CVaR) to evaluate 
the strategies performance, while Value at Risk (VaR) quantifies the 
extent of possible financial losses. (e.g., if the CPES operation profit 
within the mission time has a 95% VaR of 7 million euros, the CPES 
profit has a 5% probability of losing its value by 7 million euros after the 
operation of the mission time). CVaR estimates the expected loss if the 
losses go beyond the VaR cut-off (e.g., the CPES operation profit having 
a 95% CVaR of 5 million euros means that the average of losses that are 
larger than the 95% VaR cut-off threshold (e.g., 3 million euros losses) is 
5 million euros within the mission time). In other words, CVaR provides 
a measure of the extent of the losses that might be suffered beyond the 
VaR cut-off threshold [78]. 

We rely on a Monte Carlo simulation approach to calculate the 95% 
CVaR with respect to 100 different test sequences (for each strategy), in 
which we simulate the sequence of O&M decisions, collect the losses 

(including maintenance cost, safe shutdown cost, severe shutdown cost 
and load-following operation unfulfillment cost (i.e., the difference be-
tween load-following and base-load profits)): the lower the CVaR esti-
mate, the lower the losses and the less the number of safe/severe 
shutdowns. The obtained comparison results are listed in Table 5, with 
the ranking of the alternative strategies with respect to average profit, 
95% CVaR and average number of CM and PM actions needed in the 
sequence mission time. 

From Table 5, it can be noticed that the CM and SM policies, which 
are commonly used [79,80], cause a large number of components fail-
ures, leading to an average of 38.12 and 24.32 times of NPP system 
dysfunction (safe shutdown and severe shutdown) during the 5 years 
mission time, respectively (which is equal to the number of CM actions 
consequently performed). The PdM, PPO and PPO (GTST-MLD) policies 
perform better than CM and SM (PPO (GTST-MLD) has the highest 
profit), due to the exploitation of the information on the health state of 
the components: these three policies allocate just-in-time PM actions 
(44.13, 42.03 and 41.97 on average, respectively) to avoid system 
dysfunction (0.03, 0.05 and 0.04 on average, respectively) and, there-
fore, the consequent CM. The number of PM actions of PPO (42.03) and 
PPO (GTST-MLD) (41.97) are slightly smaller than PdM (44.13), due to 
the smaller average RUL thresholds (35 days for PdM policy, 31.2 days 
and 31.4 days on average for PPO and PPO (GTST-MLD) policies, 
respectively) shown in Table 6 (in fact, smaller average RUL threshold 
means larger average maintenance interval and less interventions). 
From Table 6, it can be noticed that even if the PPO and PPO 
(GTST-MLD) agents are pre-trained with the same PdM policy, the 
optimized RL agent founds different RUL thresholds setting: the 
thresholds of PPO policy are close to the average value (31.2 days), 
whereas the thresholds of PPO (GTST-MLD) (31.4 days) follow the 
weights of MLD listed in Table 6, which shows the relationship between 
components and system goal function (e.g., the MLD weight linking 
sensor pSG and goal function pSG control (0.69) means that when the 
sensor pSG fails, there is 0.69 probability that the controlled variable pSG 
will be out of the safety boundary, causing system severe shutdown) (for 
further details see Appendix A). The PPO (GTST-MLD) recognizes the 
safety-related components with larger MLD weights (sensor pSG (0.69), 
sensor PTh (0.98) and control rods (0.58)) and sets higher RUL thresh-
olds (sensor pSG (46.2 days), sensor PTh (52.6 days), and control rods 
(43.3 days)) to maintain these components in advance for preventing 
these safety-related components from failure, since they have high 
probability of leading to system severe shutdown. The average number 
of safe shutdowns and severe shutdowns over 100 test sequences are 
listed in Table 7. With the components safety importance information 
(the GTST-MLD weights) and reasonable setting of the component RUL 
(higher RUL threshold for larger weights components), the PPO 
(GTST-MLD) efficiently avoids system severe shutdown (0.00 ± 0.01, 
leading to the lowest 95% CVaR 0.01 ± 0.01, shown in Table 5), whereas 

Table 4 
Daily revenues and maintenance costs [71,74,75].  

Revenue/Cost Value [KEuros per day] 

Normal operation revenue Kbase 720 
Flexible operation revenue Kload 900 
Shutdown cost Ushutdown 720 
Failure cost Ufailure 1200 
PM cost UPM 1.5 
CM cost UCM 6.2  

Table 5 
Performance of the tested strategies in terms of average profit, 95% CVaR, 
average number of CM and PM actions over 100 test sequences.  

Maintenance 
strategy 

Average 
profit 
[109euro] 
(Ranking) 

95% CVaR 
[109euro] 
(Ranking) 

Average 
number of CM 
(Ranking) 

Average 
number of PM 
(Ranking) 

Corrective 0.09 ± 0.13 
(5) 

1.41 ± 0.88 
(5) 

38.12 ± 5.64 
(5) 

– 

Scheduled 0.53 ± 0.12 
(4) 

0.93 ± 0.53 
(4) 

24.32 ± 1.98 
(4) 

60.47 ± 6.55 
(4) 

Predictive 1.18 ± 0.07 
(3) 

0.30 ± 0.17 
(3) 

0.03±0.01 (1) 44.13 ± 5.86 
(3) 

PPO 1.39 ± 0.02 
(2) 

0.04 ± 0.03 
(2) 

0.05 ± 0.03 
(3) 

42.03 ± 3.98 
(2) 

PPO (GTST- 
MLD) 

1.44±0.02 
(1) 

0.01±0.01 
(1) 

0.04 ± 0.02 
(2) 

41.97±4.06 
(1) 

*In bold the best performance. 

Z. Hao et al.                                                                                                                                                                                                                                     



Reliability Engineering and System Safety 235 (2023) 109231

7

PdM and PPO policies suffer severe shutdown times (0.03 ± 0.01 and 
0.03 ± 0.02, respectively). 

In Fig. 3, the number of actions performed during specific power 
production plans are plotted for PPO (GTST-MLD), PPO and PdM pol-
icies (slash, dotted and star bars, respectively). Specifically, on the x- 
axis, the power production plans for J = 3 consecutive days are plotted 
(e.g., policy 110, standing for load-following operations on the first two 
days and, then, base-load operation on the third day), together with the 
frequency of occurrence of the production plan (continuous line, whose 
exact value can be calculated from the combination of load-following/ 
base-load probabilities listed in Table 2. It can be seen that the num-
ber of maintenance actions that the PdM policy chooses on the first day 
of the production plan follows the frequency of occurrence of the load- 
following sequences, which means that the PdM policy randomly 
chooses maintenance timing, neglecting the production plan, leading to 
a low performance in following the load. On the contrary, the RL policy 
(PPO (GTST-MLD) and PPO, slash and dotted bars, respectively) mostly 
arranges maintenance activities on base-load days and prefers 000 and 
001 sequences than 010 and 011 sequences, to keep load-following 
operation as much as possible. This means that the RL agent chooses 
to postpone the PM interventions from a load-following day to a base- 
load day, to accommodate the frequency of occurrence of the 
preferred production plans. In other words, the RL agent chooses the 

actions in light of the desired operation plan (i.e., flexible operation) by 
optimizing the timing of maintenance activities. 

In addition, it must be noted that, even if the RL policy can preserve 
the load-following operations with a more aggressive O&M policy, that 
requires a smaller average RUL threshold, the resulting ALFRED unre-
liability and unavailability estimation are larger for PPO (GTST-MLD) 
(dotted line) and PPO (dashed-dotted line) than for PdM O&M (dashed 
line) (see Figs. 4 and 5): as expected, compared with the no- mainte-
nance policy (continuous line), all three policies significantly decrease 

Table 6 
Components RUL thresholds of maintenance interventions and corresponding GTST-MLD weights.  

Components RUL threshold of PPO policy 
[days] 

RUL threshold of PPO (GTST-MLD) policy 
[days] 

GTST-MLD weights    

Tsteam 

control 
pSG 
control 

TL,cold 

control 
PTh 

control 

Sensor Tsteam 33.5 27.9 0 0 0 0 
Sensor pSG 32.1 46.2 0.35 0.69 1.54E-5 0.12 
Sensor TL,cold 29.7 27.7 0 0.09 0 0 
Sensor PTh 28.8 52.6 0.11 0.72 0 0.98 
Turbine admission valve 

(kv) 
30.4 28.1 0 0 0 0 

Water pump (Gwater) 32.7 28.5 0 0 0 2.50E-3 
Control rods (CR) 29.9 43.3 0.06 0.58 0 0.05 
Average RUL threshold 31.2 31.4 –  

Table 7 
Performance of the tested strategies in terms of average number of safe/severe 
shutdowns in 100 test sequences.  

Maintenance 
strategy 

Average number of safe 
shutdowns (Ranking) 

Average number of severe 
shutdowns (Ranking) 

Predictive 0.01±0.01 (1) 0.03 ± 0.01 (2) 
PPO 0.02 ± 0.02 (2) 0.03 ± 0.02 (3) 
PPO (GTST-MLD) 0.04 ± 0.02 (3) 0.01±0.01 (1)  

Fig. 3. Maintenance timing and power production demand sequence occur-
rence over 100 test sequences. 

Fig. 4. System unreliability.  

Fig. 5. System unavailability.  
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the unreliability, with PdM the lowest unreliability and PPO (GTST- 
MLD) and PPO slightly larger unreliability value. The reason is that the 
smaller average RUL thresholds of the PPO (GTST-MLD) and PPO may 
lead to a larger number of unexpected safe/severe shutdowns than PdM. 
But due to the larger RUL thresholds setting for safety-related compo-
nents, PPO (GTST-MLD) can avoid part of the unexpected safe/severe 
shutdowns, leading to a lower unreliability than the PPO policy. The 
same occurs for the unavailability. 

6. Conclusions 

In this paper, we have illustrated the SDP formalisation of the O&M 
optimization in CPESs that must operate flexibly to accommodate the 
fluctuations in production coming from the penetration of RESs into the 
power grid and the uncertainty in power demand, for providing reliable 
and safe power production and supply. A novel DRL-based approach has 
been developed to solve the SDP, in which an agent-neural network is 
trained by interacting with the CPES model that embeds the system 
failure process model to search for the optimal policy, i.e., choose the 
best O&M action to be performed on the basis of the available infor-
mation (e.g., production plan, component RUL, component state, 
maintenance remaining time, system state) and learning from the set of 
previous maintenance activities performed. 

The proposed approach has been applied to an advanced NPP design, 
ALFRED, and shown to be capable of providing an optimized O&M 
policy that tends to dynamically arrange the maintenance interventions 
on the base-load days, to preserve flexible operation as much as possible, 
i.e., the proposed approach optimizes the maintenance activities in light 
of the RUL of the CPES components, the severity of the consequences of 
their failures and the compliance with the operation plan (base-load or 
load-following) to satisfy the flexible operation needs while avoiding 
system shutdown caused by components failures. With the system reli-
ability model by GTST-MLD, the DRL-based approach can recognize the 
safety-related components and set higher RUL thresholds to prevent 
system severe shutdown due to their critical failures. The DRL-based 
policy proposed here can outperform the state-of-practice policies 

(CM, SM, PdM and PPO without GTST-MLD) and keep the production 
availability and profitability high (and the costs low). 

Future works will regard:  

• Train the RL agent to obtain the proper maintenance activity 
considering not only the components stochastic failures, but also 
cyber aging and cyber failures  

• Due to the variability of the dynamic energy market and RES, the 
fluctuation of energy price and power generation will affect the 
profit, with clear effects on the selection of the O&M strategy. Thus, 
the integral analysis and joint prediction of energy price, power 
generation and demands should be taken into consideration.  

• Besides the failure of physical and cyber parts of CPESs, the effects of 
the external environment should also be accounted for in the O&M 
strategy, for example, the unavailability of cooling water due to 
climate change and abnormal weather conditions [81]. 
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Appendix A. Imitation Learning and Reinforcement Learning 

Imitation learning (IL) is a type of supervised machine learning technique which is used for various tasks, including control, decision making and 
manipulation, and has shown promising results in several fields such as robotics, autonomous driving, and gaming [51]. 

In this work, IL is applied to pre-train the O&M decision making agent before the Reinforcement Learning (RL) step [4]. After IL, the agent model 
learns to perform the O&M decision task by observing and imitating the behavior of the given heuristic Predictive Maintenance (PdM) strategy. This is 
typically done by training the agent (neural network) to predict the actions a⇀t that the heuristic PdM strategy would take in a given CPES state s⇀t and 
get the reward rt . The implementation of Imitation learning can be summarized as:  

1. Collect heuristic trajectories: this involves obtaining the heuristic PdM strategy state-action-reward triplets ( s⇀t , a⇀t , rt) through each step of NIL 
times of CPES environment model simulation within the mission time (in this work, NIL = 500), which are fed to the agent model as the supervised 
training dataset.  

2. Define the agent model: this involves defining and initializing the agent neural network. In this work, the neural network has two hidden layers of 
64 neurons.  

3 Train the model: this involves feeding the training data (state-action-reward triplets) into the model and training it using a supervised learning 
algorithm. 

The pseudocode of IL is shown in Fig. A1. 
After pre-training the agent by IL, the RL can be implemented as follows: at each decision time t, the agent receives a representation of the 

Fig. A2. Pseudocode for RL training.  

Fig. B1. GTST-MLD for ALFRED.  
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environment state s⇀t, and the agent will select an action a⇀t based on the action selection policy (e.g., epsilon-greedy [33]). The environment system 
model simulates the system response s⇀t+1 to the selected action a⇀t, and returns the corresponding numerical reward rt to the agent. Then, the agent 
policy is updated with RL algorithm (in this work, PPO is implemented [35]) and the current state is set to s⇀t+1. By iteratively repeating this procedure 
several times, the agent reaches the optimal policy. The pseudocode of implementing training of RL is shown in Fig. A2. 

Appendix B. The Goal Tree Success Tree-Master Logic Diagram (GTST-MLD) Model 

The Goal Tree Success Tree-Master Logic Diagram (GTST-MLD) method has been proposed to analyze the scenarios generated by the combination 
of stochastic failures of the hardware components and malicious, intentional attacks to the cyber elements of a CPES [69,76]. The GTST-MLD provides 
a comprehensive modeling of the system response. It does so by decomposing the system logic from the point of view of goal functions in the Goal Tree 
(GT), down to the components and functions that they provide, represented in the Success Tree (ST) and MLD [82]. The GTST-MLD for ALFRED is 
shown in Fig. B1. 

The MLD weights [38] represent the strength of the relationship between components and functions. To overcome the subjectivity of expert 
judgment in assigning the weights CFc,f (relationship between main components and subfunctions), a simulation-based inference method is proposed 
in [38] based on Bracketing Order Statistics [83] to estimate the weights probabilistically. The estimated weights are listed in Table B1 [38]. As 
commonly done when using GTST-MLD, after initialization and propagation step, the top goal function fulfillment can be simulated considering the 
AND/OR logic gates that define the relationships among subfunctions and the top goal function [38,69,76]. 
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Table B1 
Weights between main components and subfunctions.   

Tsteam 

control 
pSG 
control 

TL,cold 

control 
PTh 

control 

Sensor for Tsteam 0 0 0 0 
Sensor for pSG 0.35 0.69 1.54E-5 0.12 
Sensor for TL,cold 0 0.09 0 0 
Sensor for PTh 0.11 0.72 0 0.98 
Turbine admission valve 

(kv) 
0 0 0 0 

Water pump (Gwater) 0 0 0 2.50E-3 
Control rods (CR) 0.06 0.58 0 0.05  
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