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1. Introduction

X-ray Computed Tomography (XCT), as a technique for 
nondestructive testing, has been widely used in industrial 
applications such as defect detection [1], [2]. In recent years, 
XCT was also used for dimensional inspection to verify the 
geometric quality of the parts. This is attributed to its ability 
to measure internal dimensions, and its measurement time 
independent of part's complexity. With the development and 
application of additive manufacturing which allows complex 
and internal features, XCT geometric measurement has 
become a great interest for researchers [3], [4]. Basically, 
XCT geometric measurement includes four steps: data 
acquisition, reconstruction, surface determination, and 
dimensional measurements [3]. In this process, reconstruction 
involves recreating the part’s geometry from the projection 
images acquired during data acquisition. Two primary types 
of reconstruction algorithms exist, with the widely utilized 

Feldkamp-Davis-Kress (FDK) standing out as a typical 
analytical algorithm, serving as the main reconstruction 
algorithm in geometric measurement applications [4]. The 
other category is algebraic algorithms, which have gained 
popularity in medical XCT due to advantages in dose 
reduction, noise estimation, and high speed [5], [6], [7], [8]. 
In recent years, algebraic reconstruction algorithms have been 
introduced in geometric measurements to enhance acquisition 
efficiency [9], [10], [11]. However, since the principle and 
process of two algorithms are quite different, they may lead to 
different measurement accuracy, even when using the same 
dataset. Moreover, the impact of acquisition parameters on 
measurement results may differ from reconstruction 
algorithms. Therefore, it is necessary to evaluate the 
reconstruction algorithms in the XCT geometric 
measurement, including measurement accuracy and the 
sensitivity to acquisition parameters.
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In X-ray Computed Tomography (XCT) geometric measurement, the reconstruction process is a main step that significantly influences 
acquisition strategies and measurement results. Analytical algorithms, primarily Feldkamp-Davis-Kress (FDK), and algebraic algorithms are 
commonly used for reconstruction, with FDK being the dominant choice for dimensional measurements. Although algebraic algorithms offer 
advantages like denoising and handling limited projections, their evaluation concerning measurement accuracy remains insufficient. To assess 
the performance with respect to measurement accuracy and sensitivity to acquisition parameters, we performed typical reconstruction 
algorithms on the measurements of diameter, cylindricity, and flatness, including FDK and ordered subsets simultaneously algebraic 
reconstruction technique (OS-SART). Moreover, the algorithm comprised in a commercial software was used and evaluated. Variables in 
acquisition included part orientation and exposure time. The analysis comparing XCT measurements with those from Coordinate Measuring 
Machine showed different performances of the two reconstruction algorithms and the potential of algebraic algorithms in XCT geometric 
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The assessment of the FDK algorithm was mentioned in 
several studies, and Villarraga-Gόmez et al. [4] summarized
the results of CT-Audit, CIA-CT and InteraqCT comparisons, 
showing the range of the quoted uncertainties. Additionally, 
investigations into the impact of certain acquisition 
parameters on measurement accuracy have been conducted. 
Villarraga-Gόmez et al. [12] studied the influence of number 
of projections (Np) on the measurement of length, diameter, 
hole distance, flatness, and cylindricity. It was found that 
reducing Np causes the decrease of reconstruction quality, 
resulting in minor effects on size dimensions but noticeable 
errors in form dimensions. In another study by the same 
authors, it was demonstrated that part orientation, defined as
the angle between the rotation axis and the part central axis, 
influences measurements of diameter, length, and roundness.
Minimum deviation was obtained when the orientation is 
within 10° to 35° [13]. Furthermore, decreasing geometric 
magnification generally leads to larger deviations in the 
diameter and roundness of holes [14]. The work of Rossides
et al. [15] highlighted that a shorter exposure time induces 
biases in cylinder diameters. Collectively, these studies gave 
guidance to optimize the acquisition strategy and achieve high 
measurement accuracy.

The performance of algebraic reconstruction algorithms 
was also investigated.  Jones et al. [9] tested several algebraic 
reconstruction algorithms applied in medical domain, 
specifically evaluating their performance in measuring
location of edges and wall thickness. Results showed the 
potential of these algorithms in improving acquisition 
efficiency. In diameter measurements, Rossides et al. [15]
observed apparently biases and larger variances when using 
algebraic reconstruction algorithms (CGLS and FISTA-TV), 
compared with that using FDK algorithm. Sun et al. [10]
measured the size of inner/outer cylinders and cuboids on 
simulated dataset, using less than 2% data of a full scan. It 
was found that two algebraic algorithms (OS-SART and OS-
ASD-POCS) yielded values close to the nominal values. 
Currently, most studies on algebraic reconstruction algorithms 
in XCT geometric measurement focus on using a smaller 
number of projections to obtain accurate dimensional 
measurement results [10], [11], [15]. It is unclear whether the 
impact of acquisition parameters on measurements using 
algebraic reconstruction algorithms aligns with that observed 
in the FDK reconstruction algorithm.

In this study, we assessed the results of XCT geometric 
measurements using three reconstruction algorithms: FDK 
algorithm, ordered subset simultaneously algebraic 
reconstruction technique (OS-SART), and the reconstruction 
algorithm of a commercial software (Phoenix Datos|x).
Focusing on the measurement of diameter, cylindricity, and 
flatness, the main effects of reconstruction algorithms and two 
acquisition parameters (part orientation and exposure time) on 
measurement results were analyzed. Furthermore, we 
explored the interactions among reconstruction algorithms 
and acquisition parameters.

2. Methodology

2.1. Data collection

The part used in this work (Fig. 1) is a five steps multi-
cylinder. The bottom part serves only as fixturing. Before 
XCT scans, the part was calibrated on a Zeiss Prismo VAST 
HTG coordinate measuring machine located in a controlled 
environment at 20±0.5 ℃. The measurands and their nominal 
values are listed in Table 1. The data acquisition process was 
performed on a Phoenix V|tome|x M300 XCT system as 
shown in Fig. 2, comprising a 300 kV microfocus X-ray tube 
and a Dynamic 41|100 detector with 2016×2016 pixels of 200 
µm physical dimension. During the acquisition, to save time 
and scan data amount, the active area of the detector was 
reduced to 1500×2016 pixels.

Detailed acquisition parameters are shown in Table 2, 
where the number of projections was determined referring to 
Nyquist-Shannon sampling theorem [10], [16], and each 
image was obtained averaging 5 images. Two additional 
factors were considered, each varying on two levels: exposure 
time and part orientation. Part orientation was defined as the 
angle from rotation axis to the part center axis. Experiments
were replicated twice, with random re-positioning the part and 
recalibrating the sensor after each scan. In total 8 experiments 
were performed in a randomized order, with the room 
temperature at 20±3 ℃. Calibration of the XCT system was 
performed before the experiment, and image calibrations were 
conducted before each scan.

Fig. 1. Part geometry

Fig. 2. X-ray computed tomography system.
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Table 1. Nominal dimensions of the part.

Measurands Name Nominal value /mm

Diameter of cylinder 1 D1 8

Diameter of cylinder 2 D2 12

Diameter of cylinder 3 D3 16

Diameter of cylinder 4 D4 20

Diameter of cylinder 5 D5 24

Cylindricity of cylinder 1 Cy1 N/A

Cylindricity of cylinder 2 Cy2 N/A

Cylindricity of cylinder 3 Cy3 N/A

Cylindricity of cylinder 4 Cy4 N/A

Cylindricity of cylinder 5 Cy5 N/A

Flatness of plane 1 F1 N/A

Flatness of plane 2 F2 N/A

Flatness of plane 3 F3 N/A

Flatness of plane 4 F4 N/A

Flatness of plane 5 F5 N/A

Flatness of plane 6 F6 N/A

Table 2. Parameters and setups in data acquisition.

Constant parameters Setups

X-ray tube voltage /kV 250

X-ray tube current /μA 100

Voxel size /μm 32.294

Scan mode Start/stop

Average 5

Number of projections 2356

Filter material Sn

Filter thickness /mm 1.0

Binning 1×1

Variables Values

Part orientation /° 0, 45

Exposure time/ms 50, 100

2.2. Reconstruction algorithms

After data acquisition, three reconstruction algorithms were 
used for reconstruction. The first algorithm was FDK which 
represents the analytical reconstruction method, containing 
three steps: (1) weighting the projection data; (2) filtering the 
weighted projection data; (3) performing back-projection 
process [17]. The second algorithm was OS-SART [18], a 
typical algebraic reconstruction algorithm, with 20 images 
(default setup) in each subset. The last one was proprietary 
algorithm of the XCT system (Phoenix Datos|x, referred to as 
Phoenix for convenience). The first two algorithms were from 
TIGRE [19], a graphic process unit (GPU) based 
reconstruction toolkit and were executed in Matlab 2022b. 
Parameters related to the algorithm were set as default values. 
The reconstruction processes were performed on a computer 
with the following configuration: CPU: Intel(R) Xeon(R) W-
2225, GPU: NVIDIA Quadro RTX 5000, Memory: 256 GB.

2.3. Dimension extraction and data analysis

To obtain the dimensions in voxel models from the 
reconstruction, surface determination and dimensional 
measurement were performed in Volume Graphic Studio Max 
(VGS). To ensure accuracy, the advanced (classic) surface 
determination with the searching distance of 4 voxels and 
iterative determination was utilized [20]. The features were 
recognized and fitted automatically in the software, with 
guidance from a few manually selected surface points.
Dimensions were then obtained using VGS.

After XCT measurement, the error between XCT 
measurement results and calibrated sizes/deviations was used 
as the response variable for ANOVA. With 5 cylinders, 6 
planes, 3 reconstruction algorithms, 2 acquisition parameters
(with 2 levels), and 1 duplicate considered, the experiment 
yielded 120 diameter results, 120 cylindricity results, and 144 
flatness results. Main effects of reconstruction algorithm and 
acquisition parameters were analyzed, and the interactions
between them were also examined.

3. Results

3.1. Voxel model

Voxel models were obtained with an average computation 
time equal to 810 s for FDK and 18385 s for OS-SART. The 
voxel models after the surface determination are shown in 
Fig. 3 (from the experiment with the orientation of 45° and 
exposure time of 100 ms). It can be observed that all 
reconstruction algorithms effectively reconstruct the part 
geometry, with Phoenix producing a notably smoother surface 
compared to other algorithms. In the gray value histograms
shown in Fig. 4, two peaks that correspond to air and solid are 
obvious. In the region between the air and solid peaks of OS-
SART and Phoenix, the counts show relatively constant 
changes. However, an additional peak is observed in the FDK 
histogram, resulting in significant fluctuations in the counts.
Modifying the display in the software, we found that this peak
represents the voxels around surfaces (Fig. 5a). Besides, only 
half of the air peak is observed in the OS-SART histogram,
which is attributed to the nonnegative constraints during 
iterations [21].

Fig. 3. Voxel models after reconstruction.

Fig. 4. Histograms of the gray value from three methods.
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Since the distribution of the gray values around surfaces is 
crucial to surface determination, which in turn affects the 
accuracy of the dimensional measurement, the transition of 
the gray value across a surface was detected in a cross section, 
as shown in Fig. 5. The gray values from air to solid are 
presented in Fig. 6. In voxel modes from Phoenix and OS-
SART, the change of gray value is monotonous. However, in 
the FDK voxel model, the gray value shows higher 
fluctuations, and a great change of derivative was found in the 
middle, potentially challenging the surface determination.

Fig. 5. Change of gray value around the surface.

Fig. 6. Gray value transition over a surface.

3.2. Main effects of reconstruction algorithm and parameters

The main effects of the reconstruction algorithm, part 
orientation, and exposure time on dimensional measurements 
were analyzed across the features, with the preference for 
values closer to 0. Through hypothesis testing of one-way 
ANOVA (α=0.05, H0: all means are equal; H1: not all means 
are equal), significant differences can also be observed. It 

should be noted that every feature contains 5 or 6 measurands 
whose nominal values or positions are different.

The impact on diameter is shown in Fig. 7, where the 
reconstruction algorithm notably influences diameter results. 
Although Phoenix yields smoother surfaces, it gives worse 
results of diameters. Significant influence is observed in part 
orientation, while exposure time exhibits no impact. 
Additionally, measurands also show influences, probably
resulting from the differences in nominal values and position
with respect to the optical axis.

Fig. 7. Main effects plot for diameter error.

Fig. 8. Main effects plot for cylindricity error.

Fig. 8 shows the impact on cylindricity error, indicating a 
significant effect of the reconstruction algorithm. This is 
visually evidenced by the different amount of noise on 
surfaces generated by the three algorithms (Fig. 3). Besides, 
orientation, exposure time, and measurand exhibit little
influence. In Fig. 9, reconstruction algorithm still plays an 
important role in flatness measurement. Phoenix gives the 
best result while FDK yields the worst. Part orientation also 
affects the flatness, and scans with tilted angle of 45° show 
less error. This may be coherent with the stronger FDK effect 
generated by a projection in which the surface is far away 
from the optical axis [22]. Differences in exposure time and 
measurands have little impact on the flatness error evaluation.

The hypothesis test of one-way ANOVA was conducted 
focusing on FDK and OS-SART (α=0.05, H0: two means are 
equal; H1: two means are not equal), with results shown in 
Table 3. It reveals that while FDK and OS-SART do not 
exhibit significant differences in diameter measurements, they 
do show notable distinctions in cylindricity and flatness 
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measurements. The better performance of OS-SART may be 
attributed to the iterative updates and compromises of the 
voxel model with respect to real projection images, resulting 
in a gray value distribution closer to reality.

Fig. 9. Main effects plot for flatness error.

Table 3 Hypothesis test on FDK and OS-SART

Features p-value Significant difference

Diameter 0.059 No

Cylindricity <0.001 Yes

Flatness <0.001 Yes

3.3. Interaction between reconstruction algorithm and 
parameters

Fig. 10 shows the specific effects of orientation, exposure 
time, and measurand, with respect to diameter, cylindricity, 
and flatness error. The hypothesis test of one-way ANOVA 
was also conducted, and p-values corresponding to the curves 
from single reconstruction algorithms are presented in the 
plots.

Regarding diameter, the FDK algorithm is only sensitive to 
part orientation, showing lower error at 0° compared to 45°. 
The OS-SART algorithm is unaffected by orientation, 
exposure time, or measurand. The Phoenix algorithm is 
relevant to measurand, with a significant error increase from 
D1 to D5, likely due to nominal value or positional 
differences.  

For cylindricity, all algorithms are insensitive to 
orientation and measurand. However, FDK and Phoenix show
a response to exposure time, with lower error at longer 
exposures, while OS-SART remains unaffected by exposure 
time.

Concerning flatness, all algorithms are sensitive to part 
orientation. All three algorithms exhibit lower error at 45° 
compared to 0°, while none of them is responsive to exposure 
time or measurand, possibly due to high voltage in data 
acquisition ensuring overall image quality. The specific 
absolute differences of the mean error for each curve are 
listed in Table 4.

Fig. 10. Specific effect plots of acquisition parameters, with reconstruction algorithms separated. The numbers in the plot are the p-values correspond to curves.
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Table 4. The absolute differences of mean values for each curve in Figure. 10. 
Each element represents the difference for FDK, OS-SART, and Phoenix, 
respectively. “-” indicates no significant difference.

Features Difference in 
orientation /μm

Difference in 
exposure time /μm

Difference in 
measurand /μm

Diameter 29 / - / - - / - / - - / - / 34

Cylindricity - / - / - 13 / - / 4 - / - / -

Flatness 21 / 25 / 50 - / - /- - / - /-

4. Discussion and conclusion

We can further make some inferences regarding selecting 
reconstruction algorithms and acquisition parameters for XCT 
geometric measurements. Compared with the results of FDK, 
OS-SART yields comparable results for diameter, and 
significantly better results for cylindricity and flatness (Table
3), making it a suitable reconstruction algorithm in this study.
As for parameters, the part orientation provides similar effects 
on all algorithms in cylindricity and flatness results, while 
yields difference in diameter results, with significant impact 
on FDK algorithm (Fig. 10). Exposure time always shows 
similar effects on algorithms in diameter and flatness results. 
In cylindricity, it has significant influence on FDK but little 
on OS-SART. It should be noted that since we only 
considered aluminum as part material in this work, the 
material influence was not discussed. More materials should 
be considered in the future to get more robust conclusions.

In conclusion, this work explained the questions we 
pointed out in the first section to a certain extent. Firstly, 
algebraic reconstruction algorithms, represented by OS-
SART, could be competitive reconstruction algorithms in 
XCT geometric measurements, despite longer computation 
time. Secondly, the influence of acquisition parameters on 
geometric measurements is different between FDK and OS-
SART. Studies with more parameters and levels should be 
performed in the future.
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