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Abstract
Gravitational lensing is the relativistic effect generated by massive bodies, which bend the space-time surrounding them. It

is a deeply investigated topic in astrophysics and allows validating theoretical relativistic results and studying faint

astrophysical objects that would not be visible otherwise. In recent years, machine learning methods have been applied to

support the analysis of the gravitational lensing phenomena by detecting lensing effects in datasets consisting of images

associated with brightness variation time series. However, the state-of-the-art approaches either consider only images and

neglect time-series data or achieve relatively low accuracy on the most difficult datasets. This paper introduces Deep-

GraviLens, a novel multi-modal network that classifies spatio-temporal data belonging to one non-lensed system type and

three lensed system types. It surpasses the current state-of-the-art accuracy results by � 3% to � 11%, depending on the

considered data set. Such an improvement will enable the acceleration of the analysis of lensed objects in upcoming

astrophysical surveys, which will exploit the petabytes of data collected, e.g., from the Vera C. Rubin Observatory.

Keywords Multi-modal deep learning � Fusion � Gravitational lensing � Time series

1 Introduction

In astrophysics, a gravitational lens is a matter distribution

(e.g., a black hole) able to bend the trajectory of transiting

light, similar to an optical lens. Such apparent distortion is

caused by the curvature of the geometry of space-time

around the massive body acting as a lens, a phenomenon

that forces the light to travel along the geodesics (i.e., the

shortest paths in the curved space-time). Strong and weak

gravitational lensing focus on the effects produced by

particularly massive bodies (e.g., galaxies and black holes),

while microlensing addresses the consequences produced

by lighter entities (e.g., stars). This research proposes an

approach to automatically classify strong gravitational

lenses with respect to the lensed objects and to their evo-

lution through time.

Automatically finding and classifying gravitational len-

ses is a major challenge in astrophysics. As [1–4] show,

gravitational lensing systems can be complex, ubiquitous

and hard to detect without computer-aided data processing.

The volumes of data gathered by contemporary instruments

make manual inspection unfeasible. As an example, the

Vera C. Rubin Observatory is expected to collect petabytes

of data [5].

Moreover, strong lensing is involved in major astro-

physical problems: studying massive bodies that are too

faint to be analyzed with current instrumentation; charac-

terizing the geometry, content and kinematics of the uni-

verse; and investigating mass distribution in the galaxy

formation process [1]. Discovery is only the first step, yet a

fundamental one, in the study of gravitational lenses.

Finding evidence of strong gravitational lensing enables

the validation and the advancement of existing astrophys-

ical theories, such as the theory of general relativity [2],

and supports specialized studies aimed at modeling the

effects of gravitational lensing on specific entities, such as
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wormholes [2], Simpson–Visser black holes [3], and Ein-

stein–Gauss–Bonnet black holes [4].

The gravitational lenses discovery task takes as input

spatiotemporal observations consisting of images and time

series and associates each observation with one class (e.g.,

‘‘Lens,’’ ‘‘No lens,’’ ‘‘Lensed galaxy’’...). Images are

obtained from specific regions of the electromagnetic field

(e.g., visible and infrared [6], ultra-violet [7], and green,

red, and near-infrared [8]), depending on the specific

experiment. Time series are also collected in specific

electromagnetic field regions. They typically describe

brightness variation through time (e.g., [8, 9]), and their

sampling frequency depends on the technological con-

straints of the acquisition instrument. In general, they can

be multivariate time series [10, 11]. Observations can be

either real (i.e., collected by actual instruments) or simu-

lated (i.e., generated by a software system that replicates

the characteristics of real instruments).

Several gravitational lenses discovery approaches and

tools have been introduced in the past. Originally, obser-

vations were analyzed without the aid of computers [12].

Even after the advent of computer science, observations

were initially processed without automated classification

systems [13–15]. More recently, machine learning (ML)

methods have been exploited. The works [16, 17] use

convolutional neural networks (CNNs) to classify gravita-

tional lensing images, [18] exploits a Bayesian approach to

categorize image data, and [8] applies a multi-modal

approach to classify spatio-temporal data in four simulated

datasets generated by the deeplenstronomy simulator

[19]. In particular, [8] classifies gravitational lensing data

by applying a CNN to the image and a long short-term

memory (LSTM) network to the brightness time series and

then fusing the outputs of the two branches, achieving a

test accuracy ranging from 48.7 to 78:5%.

State-of-the-art lens detection systems, however, still

present several limitations. Some of them (e.g., [16–18])

rely on images only and neglect time-domain data and thus

cannot detect transient phenomena such as supernovae

explosions, which are of great importance for estimating

the rate of expansion of the Universe [20]. The work [8]

considers spatio-temporal data, but the proposed

DeepZipper multi-modal (image ? time series) multi-class

(‘‘no lens,’’ ‘‘lensed galaxy,’’ ‘‘lensed type-Ia supernova,’’

‘‘lensed core-collapse supernova’’) classification architec-

ture shows relatively low accuracy on the most challenging

simulated datasets. Moreover, the simulated data set, as

presented in [8], contains � 4000 samples in each test set,

obtained after an eightfold data augmentation. The unique

samples, before augmentation, then, amount to 500, mak-

ing the number of test samples of some sub-classes (e.g.,

‘‘SN-Ia’’) low (� 14 samples) and yielding high uncer-

tainty on the test set accuracy results.

The authors of [8] have recently proposed the

DeepZipper II architecture [20], which exploits a multi-

modal (image ? time series) binary (‘‘lensed supernova’’

vs ‘‘other’’) classification architecture similar to that of [8],

achieving an accuracy of 93% over a mix of real and

simulated data. The work [21] applies to image time series

(i.e., sequences of images), but the classifier works only on

the observations where a supernova is known to be present

to infer if lensing has occurred or not.

Multi-modal classification architectures have been

exploited in many fields other than astrophysics (e.g.,

remote sensing and medicine) [22–24]. Only a few

approaches consider the combination of a single image and

one or more time series [25–27], and most approaches are

similar to the architecture proposed in [8, 20]. Other

modalities have been also considered (e.g., videos and

texts), but such inputs differ from those relevant to astro-

physical observations and thus such architectures do not

carry over the gravitational lensing discovery task. Sec-

tion 2 briefly surveys them.

Finally, the evaluation of an automatic system for

gravitational lens classification poses specific challenges

due to the very nature of the task. In real astrophysical

observations, gravitational lenses, especially lensed super-

novae, are extremely rare and only a few discoveries have

already been validated by the scientific community. The

extreme scarcity of ground truth data (i.e., verified dis-

coveries) challenges both training and testing of classifi-

cation algorithms and motivates the use of simulators for

creating synthetic datasets. Such datasets can be used for

training, validating and testing a classifier in the usual way.

However, when it comes to real data, evaluation can only

be done a posteriori by submitting the candidate lensing

phenomena to the expert judgement for verification.

This paper presents DeepGraviLens, a novel architecture

for the classification of strong gravitational lensing multi-

modal data. The considered classes concern both transient

and non-transient phenomena, and this research shows the

superiority of DeepGraviLens over other spatio-temporal

networks not only at finding gravitational lenses, but also at

finding gravitationally-lensed supernovae, rare objects of

particular interest to the astrophysical community. The

contributions can be summarized as follows:

• We introduce the architecture of DeepGraviLens, which

takes in input spatio-temporal data of real or simulated

astrophysical observations and produces in output a

multi-class single-label classification of each spatio-

temporal sample. DeepGraviLens exploits three com-

plementary sub-networks trained independently and

combines their outputs by means of an SVM final stage.

The three sub-networks apply different and comple-

mentary ways of combining image and time-series data,
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taking advantage of both the local and the global

features of the input data.

• We evaluate the designed architecture on four simu-

lated datasets formed by � 20,000 unique examples,

split into a train set with � 14,000 samples (70% of the

data set), a validation set with � 3000 samples (15% of

the data set), and a test set with � 3000 samples (15%

of the data set). We compare the predictions of

DeepGraviLens to the results obtained by the DeepZip-

per network [8] and by a version of DeepZipper II [20]

extended from 2 to 4 classes. DeepGraviLens yields

accuracy improvements ranging from � 10 to � 36%
with respect to the best version of DeepZipper on each

test set and significantly reduces the confusion between

similar classes, one of the major issues of gravitational

lenses classification.

• We have also compared DeepGraviLens with STNet

[25], a spatio-temporal multi-modal neural network

recently proposed in remote sensing applications, with

an improvement in accuracy ranging from � 3 to 11%.

• Finally, we demonstrate that DeepGraviLens is able to

detect the presence of gravitational lenses, and specif-

ically gravitationally-lensed supernovae, in real Dark

Energy Survey (DES) data [28].

The obtained improvements in the classification of lensing

phenomena will enable a faster and more accurate char-

acterization of future real observations, such as those of the

Vera C. Rubin Observatory, and will open the way to the

discovery of lensed supernovae, which are among the

hardest bodies to detect due to their rarity, scattered spatial

distribution and relatively short observable life [28–32].

The rest of this paper is organized as follows: Sect. 2

surveys the related work; Sect. 3 describes the data set and

the architecture of DeepGraviLens; Sect. 4 describes the

adopted evaluation protocol and presents quantitative and

qualitative results; finally, Sect. 5 draws the conclusions

and outlines our future work.

2 Related work

This section surveys the previous research in the fields of

automated gravitational lensing analysis and multi-modal

Deep Learning, which are the foundations of this work.

2.1 Automated gravitational lensing analysis

Classifying gravitational lensing phenomena is a chal-

lenging task and the subject of many studies. This section

concentrates on data-driven techniques, as opposed to the

analytical methods that focus on the design of mathemat-

ical models capable of explaining the observed data. It

considers the specific case of lensed supernovae, as rep-

resentatives of transient phenomena, as they are particu-

larly interesting for the astrophysics community. Some of

the most recent and promising approaches are listed in

Table 1.

In gravitational lens search, finding lensed supernovae

(LSNe) is challenging, as they are rare and fast transient

phenomena. The main challenges connected with rarity

have been thoroughly analyzed in [48]. A common prob-

lem across several lens-finding approaches is the lack of

large datasets comprising a sufficient number of real

gravitational lens observations. The work [40], then, pro-

poses a training set with mock lenses and real non-lensed

data, which is a widespread strategy. Several works

[20, 21, 35] also test their trained models on real data and

propose some candidate gravitational lenses.

The second major challenge is considering the transient

nature of supernovae. The explosion of a supernova leads

to a peak in its brightness, which first increases and can

then decline at a slower rate in a few months [49]. The

benefits of considering brightness time series in the LSNe

case have been illustrated by [8, 20], and [21] uses image

time series to consider brightness variability. [8] justifies

the extraction of brightness time series from image time

series noticing that the differences between images in a

series are negligible in 17 representative sub-classes of

lensed and non-lensed astrophysical objects. For this rea-

son, their input is formed by a representative image and a

normalized brightness time series. The work [21], instead,

uses image time series for finding lensed supernovae and

shows promising results on simulated data. However, it

considers only two classes: non-lensed supernovae and

lensed supernovae, while [8] considers also other astro-

physical objects, both lensed and non-lensed, making the

input used by [21] a particular case of theirs.

The work described in [18] applies a Bayesian approach

to classify high-resolution images of non-transient phe-

nomena to reproduce the categorization performed by

human experts. However, high-resolution images are not

always available and the human classification (‘‘Definitely

not a lens,’’ ‘‘Possibly a lens,’’ ‘‘Probably a lens,’’ ‘‘Defi-

nitely a lens’’) is intrinsically imprecise and prone to bias

depending on the human classifier.

An alternative to Bayesian methods [46] relies on

domain-specific features and separates lensed and non-

lensed systems using an SVM, whose output is assessed by

human experts. The classifier obtains, in the best case, an

AUC of 0.95 on simulated data, but the presence of man-

ually-defined features makes this approach less general

than deep learning methods. In particular, it exploits

specific hard-coded characteristics of lenses, such as the

prevalence of a specific color, which can hardly generalize
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to multi-label classification tasks or to scenarios where

transient phenomena are relevant.

Deep learning-based methods rely mostly on Convolu-

tional Neural Networks (CNNs), as in the binary classifiers

illustrated in [16, 40] and in [50], which do not consider

time-domain information nor support the fine-grain clas-

sification of lensed systems. The work [35] exploits a CNN

architecture and tests it also on real data, reporting good

results on a binary classification problem that does not

focus on LSNe. The authors observe that in their experi-

ments CNN performances relied ‘‘heavily on the design of

lens simulations and on the choice of negative examples for

training, but little on the network architecture.’’ The works

[8, 20] argue instead that architecture design can lead to

great improvements in the results, reporting that multi-

modal architectures outperform single-modality CNNs on

transient phenomena data. The work [44] describes a CNN-

based algorithm trained and tested only on simulated data,

which achieves an accuracy of 98% and finds the position

of the gravitational lens in the input image. However, the

classifier is binary and does not consider LSNe. An inter-

esting approach has been proposed in [45], which focuses

on the binary classification of simulated data and proposes

a committee of networks, yielding an improvement with

respect to individual networks.

Table 1 This table summarizes the main approaches for finding gravitational lenses using data-driven techniques

Paper Year Algorithm Survey Metric Metric

result

Real

data

LSNe

discoveries

Trans LSNe

class

Class.

type

[20] 2022 Multi-modal NN DES Accuracy 0.930 Y Y Y Y B

[21] 2022 Spatiotemporal

NN

YSE Accuracy 0.950 Y Y Y Y B

LSST Accuracy 0.990 N None

[33] 2022 CNN committee CFIS Precision* 0.014 Y N/A N N B

[8] 2022 Multi-modal NN DES (DES-

wide)

Accuracy 0.487 N None Y Y M

DES (DES-

deep)

Accuracy 0.573 N None

DES (DESI-

DOT)

Accuracy 0.735 N None

LSST Accuracy 0.785 N None

[34] 2021 Tree-based Gaia Found

lenses*

14 Y N/A Y N B

[35] 2020 CNN Pan-STARRS

3p
Accuracy 0.942 Y N/A N N B

[36] 2020 Rule-based HSC FPR 2.30% Y N/A Y N B

[37] 2020 HSC Rule-based Found

lenses*

6 Y N/A Y N B

[38] 2020 CNN KiDS FPR \0:4% Y N/A N N B

[39] 2020 ConvAE and

BGM

Euclid Accuracy 0.773 N N/A N N B

[40] 2019 CNN KiDS Recall* 0.750 Y N/A N N B

[41] 2019 Tree-based Gaia AUC* 0.997 Y N/A N N B

[42] 2019 CNN KiDS Precision* 0.025 Y N/A N N B

[43] 2019 Tree-based KiDS Precision* 0.013 Y N/A N N M

[44] 2018 CNN Various Accuracy 0.982 N N/A N N B

[45] 2018 CNN committee GGSLC AUC 0.988 N N/A N N B

[46] 2017 SVM Euclid AUC 0.89 N N/A N N B

KiDS AUC 0.95 Y

[47] 2017 CNN KiDS Precision* 0.029 Y N/A N N B

[18] 2009 Bayes HSC Completeness 0.900 Y N/A N N M

In the ‘‘Metric’’ column, ‘‘*’’ indicates that the metric was computed on real data. The ‘‘Real data’’ column indicates whether the algorithm was

tested also on real data, the ‘‘Trans’’ column indicates whether transient phenomena are considered, ‘‘LSNe class’’ indicates whether the ‘‘LSNe’’

class is present in the data set, and ‘‘Class. type’’ is the classification type, which can be either binary (B) or multi-class (M)
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As an alternative to supervised methods, [39] defines an

unsupervised method for binary classification, which first

uses an autoencoder to denoise the image (reducing its

resolution), then applies a second autoencoder to extract

features from the denoised image, and finally exploits a

Bayesian Gaussian Mixture (BGM) to cluster the extracted

features. This approach, however, requires human inter-

vention for associating labels to clusters corresponding to

the lensed objects.

Several works focused on finding other gravitationally

lensed transient phenomena, such as quasars [8], shows

that, compared to supernovae, the brightness of quasars

changes in a timescale of several years, because they are

not explosive phenomena. For this reason, many studies

targeting lensed quasars do not use time series information.

[43] exploits the image magnitudes in different bands,

which is an ad-hoc method that would need adaptation to

be applied to the LSNe search. [36] also focuses on finding

lensed quasars, but aims at finding quadruply-lensed qua-

sars using an essentially rule-based pipeline. While this

method can be effective for the specific application, it

should also be modified to tackle more generic and com-

plex cases.

Differently from binary approaches, DeepZipper [8]

casts the problem as a multi-class single-label classification

task for datasets consisting of images associated with time

series of brightness variation. To analyze both images and

time-series data, the authors propose a multi-modal net-

work, formed by a CNN and an LSTM, whose outputs are

then fused. The resulting system is applied to four simu-

lated datasets corresponding to different astronomical sur-

veys (DES-wide, LSST-wide, DES-deep, and DESI-DOT).

This approach, although relatively simple, achieves rela-

tively good results on all four datasets, with accuracies

ranging from 48:7% to 78:5%. DeepZipper II [20], an

evolution of DeepZipper, introduces minor changes to the

network, casts the problem as a binary classification task

(‘‘LSNe’’ vs ‘‘other’’) instead of a multi-class one, and

performs testing on a new dataset partially based on real

data. It reaches an accuracy of 93% on DES data and a

false positive rate of 0:02%. Three new candidate lensed

supernovae found in the DES survey are offered to the

astrophysical scientific community for confirmation.

DeepGraviLens, similar to DeepZipper, casts the prob-

lem as a multi-class single-label classification task, on the

same types of classes and datasets. Compared to previous

approaches, it employs more effective unimodal networks

and more advanced fusion techniques, which improve the

effectiveness in dealing with shared information between

the two modalities.

2.2 Multi-modal deep learning and fusion

Several phenomena in the most varied disciplines are

characterized by heterogeneous data that give comple-

mentary information about the subject under investigation.

Multi-modal DL has proved its effectiveness in those

domains that require the integrated analysis of multiple

data types (e.g., images, videos, and time series). The

survey [22] overviews the advances and the trends in multi-

modal DL until 2017 and documents usage in such areas as

medicine [51–53], human–computer interaction [54] and

autonomous driving [55, 56]. The recent survey [57] dis-

cusses several applications combining image and text

[58, 59], video and text [60, 61], and text and audio

[62, 63]. Some applications rely on physiological signals

for behavioral studies, such as face recognition [64–66]. In

the medical field, [67] overviews the use of AI in oncology

and shows the benefits of multi-modal DL. The work [68]

diagnoses cervical dysplasia with the integrated analysis of

images and numerical data. [69] employs multi-modal DL

for classifying malware using textual data from different

sources. [70] exploits images and texts to detect hate

speech in memes. [71] uses multiple robotic sensors (e.g.,

cameras, tactile and force sensors) for object manipulation.

From the architecture viewpoint, the processing of

heterogeneous inputs can be performed by analyzing the

individual data types separately and then fusing the out-

come of the different branches to produce an output (late

fusion), by stacking the inputs, which are processed toge-

ther (early fusion), or by introducing fusion at a middle

stage (intermediate fusion) [22, 72]. The survey [23]

overviews DL methods for multi-modal data fusion in

general whereas [72] focuses on biomedical data fusion.

The work [57] broadens the comparison beyond DL and

contrasts alternative methods employed in multi-modal

classification tasks, including SVMs [73], RNNs [66, 74],

CNNs [75, 76] and even GANs [77]. The combination of a

single image and a time series has been considered by a

few works, mainly in the remote sensing [78] and medicine

[79] fields. It is apparently similar to the problem of clas-

sifying data formed by a video and a time series [80–82].

However, the combination of a single image and a time

series, differently from the case of videos, does not require

addressing the time-dependent synchronization, connection

and interaction between modalities [83]. Another similar

case is the joint analysis of image and text. However, text

processing poses different challenges and adopts different

methods with respect to numeric signals [84]. Another

correlated problem is classifying image time series (i.e.,

sequences of images), as done in several remote sensing

applications (e.g., [85–87]). This task, addressed also by

[21] for gravitational lensing data, is best applied when
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images in the time series vary noticeably. In gravitational

lensing data applications such as the one addressed in this

paper, instead, the images in the series have small varia-

tions. In such a scenario, the use of time series is preferred

to the use of image sequences and can be regarded as the

extraction of the relevant features from the image sequence

[8, 20].

3 Datasets and methods

3.1 Datasets

An input to the lensed object classification task consists of

four images and four brightness variation time series,

which together represent an astrophysical observation. One

image and one time series are provided for each band of the

griz photometric system, widely used in CCD cameras

[88]. In this system, the g band is centered on green, the r

band is centered on red, the i band is the near-infrared one,

and the z band is the infrared one.

Each input is labeled with one of four classes: ‘‘No

Lens’’ (no lensed system), ‘‘Lens’’ (Galaxy-Galaxy lens-

ing), ‘‘LSNIa’’ (the lensed object is a Type-Ia supernova),

and ‘‘LSNCC’’ (the lensed object is a core-collapse

supernova). Section 4.2 shows various examples of input

samples and of their classification by DeepGraviLens.

Four distinct datasets (DESI-DOT, LSST-wide, DES-

wide, and DES-deep) are built via simulation and are used

for training and evaluating DeepGraviLens. The details of

their construction are similar to the ones presented in

[8, 19, 89]. Each dataset simulates a current or next-gen-

eration cosmic survey and is characterized by different

specifications of the images and of the associated time

series.

The DESI-DOT dataset simulates the observations made

by the Dark Energy Camera (DECam) [90] and mirrors the

real observing conditions of the DES wide-field survey

reported in [91]. The exposure time, a simulation parameter

that affects the image quality (higher is better), was set to

60 s. The LSST-wide dataset simulates the LSST survey

images acquired using the LSSTCam camera [92]. The

simulation parameters were estimated from the conditions

of the first year of the survey and the exposure time was set

to 30 s [93]. The DES-wide dataset emulates the images

from the DECam and uses the real observing conditions

from the DES wide-field survey, but the exposure time is

90 s. The DES-deep dataset also reproduces the images

from DECam but its characteristics are simulated accord-

ing to the DES SN program [94] with the exposure time set

to 200 s.

Due to the use of the four-bands griz photometric sys-

tem, each image has 4 layers. The image size is 45� 45�

4 pixels for all the four datasets. The length of the time

series depends on the technical limitations of the simulated

instruments. DESI-DOT, LSST-wide, and DES-deep time

series contain 14 samples for each band, while DES-wide

contains 7 samples for each band.

For each dataset, 17 astrophysical systems were defined

and grouped into the four classes ‘‘No Lens,’’ ‘‘Lens,’’

‘‘LSNIa,’’ and ‘‘LSNCC’’ as proposed in [8]. The examples

of the four classes were generated randomly: each class

covers � 25% of each dataset and the distribution of the 17

subsystems is the same in all the datasets. Each dataset

comprises � 20;000 elements, split into the train set,

containing � 14;000 samples (� 70%), the validation set,

containing � 3000 samples (� 15%), and the test set,

containing � 3000 samples (� 15%).

3.2 Extraction of statistical quantities

Two statistical quantities (mean l and standard deviation

r) are extracted from the brightness time series and used as

inputs. Such derived data have a physical meaning. For

example, an empty sky is expected to have approximately

the same mean value for the four bands and a high standard

deviation (because the fluctuations are random). A non-

lensed star is expected to be characterized by a low stan-

dard deviation, as the means are approximately constant.

Even when they manifest a transient behavior (e.g., the

explosion of a supernova), the brightness variation is

attenuated by the distance. Lensed bodies instead are

expected to have a higher standard deviation, because when

they display a transient behavior their brightness is

amplified by the lens. Other statistical quantities, instead,

are not considered as they could not be associated with

explainable physical behaviors. The contribution of such

derived inputs is quantified in the ablation study described

in Sect. 4.

3.3 Overall architecture

Figure 1 illustrates the multi-stage multi-modal inference

pipeline of DeepGraviLens. It is formed by three sub-net-

works (LoNet, GloNet, and MuNet), whose outputs (i.e.,

the 4 features preceding the final activation function) are

concatenated and ensembled using SVM. In this case,

concatenation is the process of joining the outputs of length

4 from the three sub-networks end-to-end to obtain a vector

of length 12. LoNet and MuNet, in turn, rely on unimodal

sub-networks focusing on local or global features in the

images and time series. Table 2 summarizes the charac-

teristics of the three networks. GloNet exploits the com-

bination of the image and time-series data, which are

merged using early fusion. This approach emphasizes the

global features of the multi-modal inputs. LoNet focuses on
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the local features of the distinct data types: the image and

the time series pass through two separate sub-networks and

then intermediate fusion is applied. Finally, MuNet extracts

both local and global features from the image, using an FC

sub-network and a CNN in parallel, and then applies

intermediate fusion. The next sections present the three

proposed multi-modal networks.

3.4 LoNet, a network focusing on local features

Figure 2 shows the architecture of the LoNet sub-network

and Table 3 summarizes its features. It comprises two

branches, one for the image (processed through a CNN)

and one for the time series (processed by a Gated Recurrent

Unit recurrent neural network, from now on referred to as

GRU). The network is composed of several layers. After

processing the image and the time series, a transformer

(similar to [25]) takes in input the concatenation of the

Fig. 1 The DeepGraviLens

pipeline comprises four steps:

(1) the inputs are fed into three

independent networks (LoNet,

GloNet, and MuNet); (2) the

outputs of the three networks

are concatenated; (3) the

ReFuse network receives the

concatenated outputs and (4)

outputs a predicted class

Table 2 The three sub-networks pursue different goals: GloNet

emphasizes global features and applies early fusion; LoNet accentu-

ates local features and employs intermediate fusion; MuNet extracts

both global and local image features

Fusion type Feature extraction

Global Local

Early GloNet

Intermediate MuNet

LoNet

Fig. 2 LoNet architecture. The

time series is processed by the

GRU module and the image by

a CNN. The two outputs

together with the statistics are

fused and fed as input to a final

transformer module

Table 3 Summary of the LoNet neural network architecture showing

its layers, output shape, and number of parameters

Output shape Parameters #

GRU (features) [128, 64] 4,068

CNN (features) [128, 64] 2,337,284

Transformer1d: 1-3 [128, 136] –

– TransformerEncoder: 2-15 [128, 136] –

– ModuleList: 3-2 – 2,537,248

Sequential: 1-4 [128, 32] –

– Linear: 2-16 [128, 64] 8,768

– ReLU: 2-17 [128, 64] –

– BatchNorm1d: 2-18 [128, 64] 128

– Dropout: 2-19 [128, 64] –

– Linear: 2-20 [128, 32] 2,080

– ReLU: 2-21 [128, 32] –

– BatchNorm1d: 2-22 [128, 32] 64

Sequential: 1-5 [128, 4] –

– Linear: 2-23 [128, 8] 264

– ReLU: 2-24 [128, 8] –

– BatchNorm1d: 2-25 [128, 8] 16

– Dropout: 2-26 [128, 8] –

– Linear: 2-27 [128, 4] 36

Total params: 4,889,956

Trainable params: 4,889,956

Non-trainable params: 0

Total mult-adds (G): 3.40
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feature vectors from the GRU and CNN, the means and the

standard deviations of the time series. Finally, two

sequential components incorporate fully connected layers,

dropout, batch normalization, and ReLU activation func-

tions. The last sequential component generates the output

of the model. This structure is similar to the one of Zip-

perNet [8] but replaces the LSTM [95] module with a GRU

module with a smaller hidden unit size [96] and batch

normalization. The benefits of GRU over LSTM have been

shown in several applications [97–101]. In the considered

datasets, the short length of the time series makes GRU

advantageous over LSTM because the former has fewer

training parameters and thus better generalization abilities.

The use of CNN for extracting features from images

privileges the focus on contiguous pixels (i.e., small

regions of the image), as shown in several studies

[102–104]. The use of transformers privileges the extrac-

tion of the most important features and contextual infor-

mation from the CNN and GRU sub-networks.

3.5 GloNet, a network focusing on global
features

Figure 3 shows the architecture of the GloNet sub-network

and Table 4 summarizes its features. GloNet, differently

from LoNet, applies early fusion and relies on a Fully

Connected sub-network applied to the flattened inputs. This

network comprises multiple linear layers with ReLU acti-

vation functions, batch normalization, and dropout. The

network comprises two parts (Sequential: 1-1 and

Sequential: 1-2). The first part outputs a feature vector,

used as input during SVM ensembling, while the second

part generates the model output. In this architecture, the

image, the time series, the means and the standard devia-

tions are concatenated and given in input to the first linear

layer (Linear: 2-1). This approach is complementary to the

one of LoNet: it combines the original time series and the

original image up-front, rather than merging the features

derived from their pre-processing by the GRU and CNN

modules. Table 4 also shows that the number of parameters

is higher than in LoNet. Having more parameters allows

learning from more complex patterns, which compensates

for the absence of convolutional layers.

3.6 MuNet, a network focusing on local
and global features

Figure 4 shows the architecture of the MuNet sub-network

and Table 5 summarizes its features. It processes the image

using two parallel branches: a CNN and an FC sub-net-

work. The time series is processed in the same way as in

LoNet. In this network, unlike the case of LoNet, sub-

networks results are fused using only a fully connected

network, which relies on the ReLU activation function,

batch normalization and dropout layers. Compared to

LoNet, MuNet adds the FC module applied to the image, to

extract local and global features simultaneously. The latter

may provide a relevant contribution due to the small size of

the images. To avoid overfitting, the number of parameters

in the FC sub-network is smaller than in GloNet. In total,

the number of parameters is similar to the one of LoNet.

3.7 Ensembling

The three multi-modal networks introduced in this study

extract distinct information from the data, emphasizing

local features, global features, or a combination of both. To

fully leverage the complementary information provided by

these networks, ensemble methods can be employed.

Table 6 details the ensemble methods used in this study and

their associated experimental parameters. For each

parameter combination of every method, accuracy is

computed on both the train and validation sets. The best

parameter combination is then selected based on the

highest validation set result, and the accuracy is finally

computed on the test set. Moreover, an ablation study is

conducted to assess the performance of the best ensemble

method when using only two out of the three networks.

Fig. 3 GloNet architecture. The

input data are (1) flattened, (2)

concatenated, and (3) fed to an

FC module
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3.8 Training and validation

The training process of DeepGraviLens is divided into two

stages. In the first step, LoNet, GloNet, and MuNet are

trained separately, using the same inputs. The second stage

consists of training the SVM, which exploits as inputs the

values obtained before the application of the final

activation function of the LoNet, GloNet, and MuNet sub-

networks. LoNet, GloNet, and MuNet are trained for a

maximum of 500 epochs, and the Early Stopping patience

is set to 20 epochs. In both stages, the best model is the one

with the highest accuracy obtained with the validation

process. The validation process aims at selecting the best

configurations of the components and of the overall

architecture by evaluating the performances on the vali-

dation set. It consists of several phases. For unimodal

networks, the best-performing model is the one that obtains

the highest accuracy value on the validation set. Then, the

parameters of the unimodal components of the multi-modal

networks are initialized using the previously selected pre-

trained unimodal models, and each multi-modal network is

trained. The best-performing model is the one that obtains

the highest accuracy value on the validation set. Finally,

the SVM ensembling phase relies on the previously

selected models, and the best ensembling model is the one

achieving the highest validation accuracy.

4 Evaluation

This section reports the quantitative and qualitative eval-

uation of DeepGraviLens on the datasets introduced in 3.1.

For each accuracy result, a confidence interval

amounting to 1 standard deviation is calculated to take the

limited size of the test set into account. C.R. represents the

radius of the confidence interval [106]:

C:R: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a � ð1� aÞ
n

r

ð1Þ

where a is the mean accuracy (scaled to [0, 1]) on the test

set and n is the number of samples in the test set.

4.1 Quantitative results

This section presents the outcome of the performance

analysis of DeepGraviLens on the four datasets described

in Sect. 3.1. For assessing the improvement induced by the

proposed architecture, the approach of [8] is used as a

baseline, since it is the only research which used a dataset

with the same classes as ours. Accuracy is used as the

performance metrics because the dataset is balanced. In

addition, results were compared with other two multi-

modal networks using the time and image modalities,

presented in Table 7, and with seven unimodal networks,

presented in Table 8. Both DeepZipper II [20] and STNet

[25] have been adapted to use four classes rather than the

original two.

Ablation experiments with respect to the sub-networks

preceding the final ensembling stage are also performed to

verify their contribution.

Table 4 Summary of the GloNet neural network architecture showing

its layers, output shape, and number of parameters

Output shape Parameters #

Sequential: 1-1 [128, 32] –

– Linear: 2-1 [128, 4096] 33,443,840

– ReLU: 2-2 [128, 4096] –

– BatchNorm1d: 2-3 [128, 4096] 8,192

– Dropout: 2-4 [128, 4096] –

– Linear: 2-5 [128, 2048] 8,390,656

– ReLU: 2-6 [128, 2048] –

– BatchNorm1d: 2-7 [128, 2048] 4,096

– Dropout: 2-8 [128, 2048] –

– Linear: 2-9 [128, 1024] 2,098,176

– ReLU: 2-10 [128, 1024] –

– BatchNorm1d: 2-11 [128, 1024] 2,048

– Dropout: 2-12 [128, 1024] –

– Linear: 2-13 [128, 512] 524,800

– ReLU: 2-14 [128, 512] –

– BatchNorm1d: 2-15 [128, 512] 1,024

– Dropout: 2-16 [128, 512] –

– Linear: 2-17 [128, 256] 131,328

– ReLU: 2-18 [128, 256] –

– BatchNorm1d: 2-19 [128, 256] 512

– Linear: 2-20 [128, 128] 32,896

– ReLU: 2-21 [128, 128] –

– BatchNorm1d: 2-22 [128, 128] 256

– Dropout: 2-23 [128, 128] –

– Linear: 2-24 [128, 64] 8,256

– ReLU: 2-25 [128, 64] –

– BatchNorm1d: 2-26 [128, 64] 128

– Dropout: 2-27 [128, 64] –

– Linear: 2-28 [128, 32] 2,080

Sequential: 1-2 [128, 4] –

– Linear: 2-29 [128, 8] 264

– ReLU: 2-30 [128, 8] –

– Linear: 2-31 [128, 4] 36

Total params: 44,648,588

Trainable params: 44,648,588

Non-trainable params: 0

Total mult-adds (G): 5.72

In this case, a time series of 14 steps is considered
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4.1.1 Prediction performance

Table 7 presents the accuracy results on the four considered

test sets. The test set accuracy is similar for the DESI-DOT,

LSST-wide and DES-deep datasets and decreases for the

more complex DES-wide dataset. In all cases, the accuracy

shows an improvement with respect to both the DeepZip-

per baseline and the best method in the state of the art.

Such improvement is observed not only in the case of

DeepGraviLens, but also for LoNet and GloNet, making

them viable alternatives to state-of-the-art approaches.

Moreover, the performances of GloNet, a simple network,

are similar to the ones of DeepZipper and DeepZipper II.

In addition to LoNet and MuNet, the networks Evi-

dentialLoNet and EvidentialMuNet were also implemented

and tested. These networks exploit the evidence-based late

fusion approach proposed in [107], which dynamically

weights the contribution of each modality based on the

degree of uncertainty associated with its predictions. Our

experiments show that the proposed intermediate fusion

approach outperforms the evidence-based fusion approach,

with an average improvement of � 4:5%.

Figure 5 illustrates the confusion matrices for the four

datasets. For the DES-deep dataset, the greatest confusion

is observed between ‘‘LSNIa’’ and ‘‘LSNCC.’’ A similar,

yet more accentuated pattern, was found in [8] too.

For the DES-wide dataset, the confusions between

classes are similar, different from [8], in which the greatest

confusion is between ‘‘LSNIa’’ and ‘‘LSNCC.’’ This

demonstrates that DeepGraviLens is more effective at

discerning between different gravitationally-lensed tran-

sient phenomena, reducing the confusion with respect to

the baseline [8] significantly.

For the DESI-DOT dataset, the confusion between

classes is lower than the one presented in [8]. The greatest

confusion is between the ‘‘No Lens’’ and the ‘‘Lens’’

classes, which can be justified by the similarity of the

brightness time series of some systems. An example is the

‘‘Galaxy ? Star’’ system, in which a galaxy and a star

appear close together but without the lensing effect, and the

‘‘Galaxy-Galaxy Lensing ? Star’’ system, in which a

galaxy stands in front of another galaxy producing the

lensing effect and a star appears close to the lensed galaxy

from the point of view of the observer.

For the LSST-wide dataset, the greatest confusion is

between the ‘‘LSNIa’’ and the ‘‘LSNCC’’ classes as in

DES-deep, similar to the pattern observed in [8].

The reported results prove that DeepGraviLens can

classify the samples of all the datasets accurately and with

Fig. 4 MuNet architecture.

While LoNet processes the

image using only a CNN,

MuNet employs both a CNN

and an FC component

Table 5 Summary of the MuNet neural network architecture showing

its layers, output shape, and number of parameters

Output shape Parameters #

FC: 1-1 [128, 32] 2,337,284

GRU: 1-2 [128, 64] 4,068

CNN: 1-3 [128, 64] 2,118,804

Linear: 1-4 [128, 32] 2,080

Sequential: 1-5 [128, 32] –

– Linear: 2-23 [128, 64] 8,768

– ReLU: 2-24 [128, 64] –

– BatchNorm1d: 2-25 [128, 64] 128

– Dropout: 2-26 [128, 64] –

– Linear: 2-27 [128, 32] 2,080

– ReLU: 2-28 [128, 32] –

– BatchNorm1d: 2-29 [128, 32] 64

Sequential: 1-6 [128, 4] –

– Linear: 2-30 [128, 16] 528

– ReLU: 2-31 [128, 16] –

– BatchNorm1d: 2-32 [128, 16] 32

– Dropout: 2-33 [128, 16] –

– Linear: 2-34 [128, 8] 136

– ReLU: 2-35 [128, 8] –

– BatchNorm1d: 2-36 [128, 8] 16

– Dropout: 2-37 [128, 8] –

– Linear: 2-38 [128, 4] 36

Total params: 4,474,024

Trainable params: 4,474,024

Non-trainable params: 0

Total mult-adds (G): 3.39
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a significant performance improvement with respect to the

compared methods. The results on DES-wide show a

significant improvement, reducing the confusion between

lensed supernovae classes. This dataset is particularly

Table 6 Experimental

parameters of ensemble

methods for aggregating

decisions of LoNet, GloNet, and

MuNet

Methods Parametrization

AdaBoost Estimators: 200

Random forest Estimators: [10, 50, 100, 200, 500, 1000, 2000]

Extra trees Estimators: 100

Fuzzy ranking [105] None

Average None

MLP Hidden layer sizes: 100

Activation: ’relu’

Solver: ’adam’

Alpha: 0.0001

KNN Neighbors: [2, 4, 6, 8, 16, 32]

FCNN Early stop

Max None

SVM C: [10�4, 10�3, 10�2, 10�1, 100, 101]

Kernel: [’poly’, ’linear’, ’rbf’, ’sigmoid’]

Table 7 Accuracy—comparison

of the accuracy of

DeepGraviLens and of the best

result obtained using state-of-

the-art multi-modal methods

DESI-DOT DES-deep DES-wide LSST-wide

DeepZipper [8] 77.1 58.6 51.7 74.3

DeepZipper II [20] 78.9 57.4 49.8 70.7

STNet [25] 85.1 58.4 82.5 84.3

EvidentialLoNet (Ours) 81.6 65.6 79.9 84.5

EvidentialMuNet (Ours) 81.1 65.6 79.4 84.2

LoNet (ours) 87.0 67.5 85.8 87.2

GloNet (ours) 77.2 62.3 76.8 76.8

MuNet (ours) 87.9 67.9 86.5 88.5

DeepGraviLens (ours) 88:7 69:6 87:7 88:8

Improvement 3.6 11.0 5.2 4.5

An improvement of � 10% to � 36% is achieved with respect to DeepZipper [8], the only work using a

dataset with the same classes as DeepGraviLens. When compared to the best result obtained by reproducing

state-of-the-art approaches, the improvement ranges between � 3% and � 11%

Table 8 Comparison of the unimodal networks and DeepGraviLens—the table shows the performance of different unimodal networks on image

and time modalities, used in Deep Zipper, STNet, and DeepGraviLens

Modality Unimodal network Multi-modal networks DESI-DOT DES-deep DES-wide LSST-wide Average

Image ResMixer STNet 81.4 65.1 82.5 82.1 77.8

CNN (ours) LoNet, MuNet 78.4 65.9 79.7 81.4 76.4

CNN (DZ) DeepZipper 74.3 61.9 70.0 74.3 70.1

FCNN (ours) MuNet 67.7 57.7 62.3 59.3 61.8

Time GRU (DZ) DeepZipper 70.9 28.5 39.1 67.0 51.4

GRU (Ours) LoNet, MuNet 69.2 32.4 38.9 61.0 50.4

PDNet STNet 63.8 28.5 32.9 60.9 46.5

Multi-modal DeepGraviLens (ours) 88:7 69:6 87:7 88:8 83:7

The best unimodal results are highlighted in bold, and the proposed network’s performance is underlined

Neural Computing and Applications (2023) 35:19253–19277 19263

123



Fig. 5 Confusion matrices of

the a DES-deep, b DES-wide,

c DESI-DOT, and d LSST-wide

datasets. In general, the greatest

confusion is observed between

‘‘Lens’’ and ‘‘No Lens,’’ and in

the case of the DES-wide

dataset, between ‘‘LSNCC’’ and

‘‘LSNIa,’’ due to the low

sampling rate

Table 9 Comparison of 10

ensemble methods accuracies
Ensemble method DESI-DOT DES-deep DES-wide LSST-wide Average

AdaBoost 87.2 ± 0.6 66.7 ± 0.9 86.1 ± 0.6 87.9 ± 0.6 82.0

Random Forest 88.3 ± 0.6 68.6 ± 0.8 87.0 ± 0.6 88.8 ± 0.6 83.2

Extra Trees 88.3 ± 0.6 68.7 ± 0.8 87.1 ± 0.6 88.8 ± 0.6 83.2

Fuzzy ranking [105] 88.3 ± 0.6 68.8 ± 0.8 87.2 ± 0.6 88.6 ± 0.6 83.2

Average 88.1 ± 0.6 68.8 ± 0.8 87.3 ± 0.6 88.7 ± 0.6 83.2

MLP 88.0 ± 0.6 68.9 ± 0.8 87.6 ± 0.6 88.5 ± 0.6 83.3

KNN 88.3 ± 0.6 68.7 ± 0.8 87.1 ± 0.6 88.9 ± 0.6 83.3

FCNN 88.4 ± 0.6 69.2 ± 0.8 87.6 ± 0.6 88.4 ± 0.6 83.4

Max 88.6 ± 0.6 68.7 ± 0.8 87.3 ± 0.6 89:1� 0:6 83.4

SVM 88:7� 0:6 69:6� 0:8 87:7� 0:6 88.8 ± 0.6 83.7

Improvement w.r.t. MuNet 0.8 1.7 1.2 0.3 1.0

The underlined results are the best ones for each dataset. The values in bold are the ones comprised in the

1r confidence interval of the best results. The best performances are obtained using SVM on DESI-DOT,

DES-deep, and DES-wide, while Max is the best on LSST-wide
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challenging because lensed galaxies are fainter due to the

simulated optical depth of the images, which depends on

the technical characteristics of the simulated instrumenta-

tion. Moreover, the time series are shorter than in the other

datasets and thus contain less information.

4.1.2 Ablation studies

Table 9 compares SVM with other ensemble methods. The

use of SVM brings an average 1% improvement over the

best multi-modal network (MuNet) and surpasses the per-

formances of other ensemble methods in three datasets out

of four. Considering the LSST-wide dataset, Max performs

better than SVM, but the SVM result is inside Max’s

confidence interval. Moreover, Max’s accuracy on DES-

deep is outside the SVM confidence interval. Considering

the analyzed ensemble methods, only SVM, Fuzzy Rank-

ing [105] and Average are inside the confidence interval of

the best ensemble approach for all the datasets. However,

both Fuzzy Ranking and Average have an accuracy sig-

nificantly inferior to that of SVM.

Table 10 presents the results of the ablation experiments

with respect to the multi-modal sub-networks. The pres-

ence of the three sub-networks guarantees the highest

accuracy, with the results obtained ensembling one or two

networks being often outside the confidence interval of the

result obtained by ensembling three networks. In particular,

combining three networks yields an improvement ranging

from þ0:3% to þ12:0% with respect to single networks,

and a change ranging from 0:0% to þ1:7% with respect to

the combination of two networks.

In DESI-DOT, the contribution of GloNet is dominated

by that of the other two sub-networks and thus eliminating

GloNet does not affect accuracy. This can be explained by

the use of early fusion in GloNet which does not preserve

the information of the image, which is immediately fused

with the time series.

The introduction of the means l and standard deviations

r of the time series yields an additional modest average

improvement of 0:5% in accuracy consistently across the

datasets. Compared to the predictions made using a random

forest with inputs l and r, DeepGraviLens accuracy

improves from 18 to 49%.

4.1.3 Execution time

DeepGraviLens has been trained using an NVIDIA

GeForce GTX 1080 Ti for GloNet, MuNet and LoNet. On

average, the network training requires less than 3 h for a

single dataset. SVM training time is negligible with respect

to the other networks.

4.2 Qualitative results

Section 4.2.1 illustrates some representative examples of

the results obtained by DeepGraviLens on the four test sets.

All the images are obtained by coadding the griz layers, as

done in [8]. In the plots, the g band is displayed in green,

the r band in red, the i band in blue and the z band in grey.

The brightness time series have been obtained from each

initial sequence of images by calculating, for each band,

the difference between the sum of the central pixels of the

image and the image background, reproducing the

approach presented in [8].

Section 4.2.2 shows how the application of Deep-

GraviLens to real data recognizes the presence of

Table 10 Ablation studies on SVM ensemble—when a single net-

work is considered, accuracy refers to the results obtained by applying

it without any additional decision-level algorithm

Dataset LoNet GloNet MuNet Accuracy ± 1r

DESI-DOT U 87.0 ± 0.6

U 77.2 ± 0.8

U 87.9 ± 0.6

U U 87.0 ± 0.6

U U 88:7 � 0:6

U U 87.9 ± 0.6

U U U 88:7 � 0:6

DES-deep U 67.5 ± 0.9

U 62.3 ± 0.9

U 67.9 ± 0.9

U U 68.4 ± 0.8

U U 68.7 ± 0.8

U U 68.7 ± 0.8

U U U 69:6 � 0:8

DES-wide U 85.8 ± 0.6

U 76.8 ± 0.8

U 86.5 ± 0.6

U U 87.2 ± 0.6

U U 87.3 ± 0.6

U U 86.9 ± 0.6

U U U 87:7 � 0:6

LSST-wide U 87.2 ± 0.6

U 76.8 ± 0.8

U 88.5 – 0.6

U U 87.4 ± 0.6

U U 88.5 ± 0.6

U U 88.5 ± 0.6

U U U 88:8 � 0:6

The underlined results are the best mean accuracy results for every

dataset, and results in bold are contained within the confidence

intervals of the best results. All the values are expressed in %
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gravitational lensing phenomena, also confirming the three

lensed supernovae candidate systems, a very rare occur-

rence, reported in [20].

4.2.1 Simulated data

Figure 6 presents a true positive example belonging to the

‘‘No Lens’’ class in the LSST-wide dataset. It shows two

stars close to each other, which exhibit a spherical

symmetry, which suggests the absence of lensing. In

addition, the brightness curves do not show consistent

variations, which indicates the absence of transient

phenomena.

Figure 7 presents a true positive example belonging to

the ‘‘Lens’’ class, in the DESI-DOT dataset. In this system,

the lensing effect is manifested by the ring pattern on the

1 https://datalab.noirlab.edu/ (As of April 2023).

Fig. 6 A positive example on the LSST-wide dataset—This datum

belongs to the ‘‘No Lens’’ class. The image shows two separate stars

that have a spherical geometry, which suggests they are not lensed.

Moreover, the curves on the right show no consistent brightness

variation through time, which indicates the absence of transient

phenomena

Fig. 7 A positive example on the DESI-DOT dataset—This datum

belongs to the ‘‘Lens’’ class. The lensing effect is visible in the ring

pattern around the central body. The flatness of the brightness time

series, instead, indicates the absence of transient phenomena (e.g.,

explosions), which is expected because the involved entities are

galaxies
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central body. The flatness of the brightness curves indicates

the absence of transient phenomena, as expected, because

the system is formed by galaxies, which are not charac-

terized by explosive events.

Figure 8 presents a true positive example belonging to

the ‘‘LSNIa’’ class in the DESI-DOT dataset. The peak in

the time series indicates the presence of an exploding

supernova and the image shows an elliptical shape, which

signals the presence of lensing. The brightness in the g

band is almost flat, which is distinctive of Type Ia super-

novae. Type Ia and core-collapse supernovae release

chemical elements during the explosion and produce pho-

tons at different wavelengths, which are detected by sen-

sors in specific bands. During explosions, the emission of

an element with a certain wavelength produces a temporary

brightness peak in the corresponding band. Both types of

Fig. 8 A positive example on the DESI-DOT dataset—This datum

belongs to the ‘‘LSNIa’’ class. The lensing effect is visible from the

elliptical shape of the central body, while the presence of a supernova

can be observed by the peaks in the brightness time series, which

indicates the presence of explosive transient phenomena. The

supernova type can be inferred from the flatness of the g band time

series

Fig. 9 A positive example on the DES-wide dataset—This datum

belongs to the ‘‘LSNIa’’ class. The lensing effect is visible because of

the elliptical shape of the central body. Even if the peaks that indicate

the presence of transient phenomena are absent, the network is still

able to correctly classify the datum
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supernovae release chemical elements whose detection can

be observed in the g band, but Type-Ia supernovae emit

less materials than core-collapse supernovae, which makes

the latter exhibit a more pronounced peak in the g band.

The absence of such a peak in Fig. 8 justifies the ‘‘LSNIa’’

classification.

The same type of system is shown in Fig. 9, from the

DES-wide dataset. In this case, the peaks are not detected

because of the lower sampling rate, which misses rapid

transient events. However, the network correctly classifies

this example thanks to the information contained in the

image.

Figure 10 presents a true positive example belonging to

the ‘‘LSNCC’’ class, in the DESI-DOT dataset. In this case,

the presence of a supernova is indicated by the rapid

variation in the brightness time series. Since also the g

band exhibits a peak, the input is classified as a core-col-

lapse supernova. The lensing effect is manifested in the

image by the supernova (the green body), lensed by the

galaxy in front of it. The green color confirms the presence

Fig. 10 A positive example on the DESI-DOT dataset—This datum belongs to the ‘‘LSNCC’’ class. In this case, the lensing effect is suggested

both by the presence of varying time curves (indicating the presence of a supernova) and the green body lensed by the galaxy

Fig. 11 A negative example on the LSST-wide dataset—This datum

belongs to the ‘‘LSNCC’’ class, but has been classified as ‘‘Lens.’’

The lensing effect is alluded by the halo surrounding the star, while

the flat time series suggests the absence of a transient phenomenon,

which induces the wrong classification
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of elements emitting photons in the g band and the body

itself is visible because of the magnifying effect induced by

the galaxy.

Figure 11 presents a negative example in the LSST-

wide dataset. The datum belongs to the ‘‘LSNCC’’ class,

but is classified as ‘‘Lens,’’ which means that the model

was not able to detect the presence of a supernova and

interpreted the example as a lensed system without evident

transient phenomena. The wrong classification is caused by

the low-quality time series and the ambiguous image. The

lensing effect is visible thanks to the faint halo surrounding

the star in the background, but the time series (wrongly)

suggest the absence of a transient phenomenon. The

apparent lack of the transient phenomenon can be

explained by considering that supernovae explosions can

happen in a short time and the brightness variation may not

be recorded by the camera. Soon after the explosion, the

Fig. 12 A negative example on the DES-deep dataset—This datum belongs to the ‘‘Lens’’ class, but has been classified as ‘‘No Lens.’’ The

lensing effect is suggested by the halo surrounding the central body

Fig. 13 A negative example on the DESI-DOT dataset—This datum

belongs to the ‘‘No Lens’’ class, but it has been classified as belonging

to the ‘‘Lens’’ class. The lensing effect is suggested by the elliptical

shape, but such shape may suggest also the presence of a non-lensing

elliptical galaxy. The flatness of the time series, in addition, does not

allow to discern ‘‘Lens’’ and ‘‘No Lens’’ systems, as some ‘‘No Lens’’

systems also have flat time series
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brightness returns to the original value, which explains the

flatness of the curves.

Figure 12 presents a negative example from the DES-

deep dataset, belonging to the ‘‘Lens’’ class, but classified

as ‘‘No Lens.’’ The lensing effect is visible on the central

body, which has a halo. However, because of the low

image resolution, this effect is not as clear in most of the

positive examples. In addition, the presence of multiple

peaks is not frequently associated with the ‘‘Lens’’ class

and induces the wrong classification.

As a final example, Fig. 13 shows an ambiguous image

in the DESI-DOT dataset, incorrectly classified. The sam-

ple belongs to the ‘‘No Lens’’ class, but is classified as

‘‘Lens.’’ The confusion is generated chiefly by the elliptical

object, which is confused with a lensing effect, while it can

represent, e.g., a non-lensed elliptical galaxy. The time

series are flat, so they do not help discern ‘‘Lens’’ and ‘‘No

Lens’’ systems, because some ‘‘No Lens’’ systems also

have flat time series.

4.2.2 Real data

The authors of [20] analyze real data from the Dark Energy

Survey over a five-year period (Y1-Y5) with the aim of

detecting gravitationally-lensed supernovae. They identify

three potential lensed supernova systems (identified as

691022126, 701263907, and 699919273), two of which

were detected using only Y5 data, indicating that the

supernovae likely exploded during that year. Our research

tries to reproduce such results using public data provided

by NoirLab,1 which currently only includes data up to Y4,

using the network trained on the DES-deep dataset.

DeepGraviLens successfully identified the lensed

supernova with ID 691022126 and also detected the pres-

ence of a gravitational lens for the other two systems. To

extract brightness time series, we followed a methodology

similar to the one employed in [20], using 14 time steps

Table 11 Summary of results on the considered real data, including system ID, coordinates, number of observations, predicted class, and the

proportion of observations in which that class was observed

System ID [20] Coordinates [�] # Observations Predicted class

RA DEC Class Proportion

691022126 53.898910 �28.912293 77 LSNCC 65%

701263907 40.969218 �0.619054 69 Lens 100%

699919273 10.155917 �44.437515 76 Lens 93%

Here, RA indicates the right ascension, and DEC indicates the declination

Fig. 14 The detection of a real gravitationally-lensed supernova—

This system is formed by four objects, whose boundaries are not well-

defined. The time series shows the presence of peaks in the four

bands. The presence of a peak in the g band suggests the presence of

an LSNCC, as predicted by DeepGraviLens

1 https://datalab.noirlab.edu/ (As of April 2023).
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with a 6-day interval between each step, resulting in a 78-

day period. The corresponding image was obtained by

averaging the images captured during this period. Each

system has been observed for more than 78 days, and as

such, multiple observations are associated with each sys-

tem. Finally, images bigger than 45� 45 pixels are resized

to such dimension.

Table 11 presents a summary of our results on the real

data. The number of observations associated with each

system may differ slightly due to missing observations in

the database. Our results confirm the findings of [20]. The

systems in which a lensed supernova was discovered only

in Y5 have a prevalence of ‘‘Lens’’ prediction.

The object with ID 691022126 is shown in Fig. 14. It

has been classified as ‘‘LSNCC’’ in 65% of the observa-

tions. The presence of a gravitational lens is signaled by the

multiple objects visible in the image. Additionally, the

peaks in the four bands indicate the presence of a

Fig. 15 The missed detection of a real gravitationally-lensed super-

nova—The system presented in this figure is the same as the one in

Fig. 14, but the time series, for this time interval, does not show

significant peaks, suggesting the absence of a transient phenomenon.

The clearer separation between the four bodies in the image is not

enough to suggest the presence of a supernova

Fig. 16 A real gravitational lens—The system presented in this

figure has been classified as a gravitationally-lensed supernova by

[20]. However, the detection was performed on the fifth year of the

observation, which is not publicly available. At the time of the

observation, the lens is already present, but the supernova explosion is

not visible yet. The time series, indeed, are almost flat or noisy
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supernova and the peak in the g band suggests it belongs to

the ‘‘LSNCC’’ class, similar to the case shown in Fig. 10.

Figure 15 shows the same system at a different time.

Although the four objects are more clearly visible in the

image, the time series appears more flat and does not

exhibit the typical peaks of exploding supernovae. There

are several possible explanations for this. One hypothesis is

that the supernova has already exploded and the brightness

change is no longer detectable. Another possibility is that

real data are inherently more variable than simulated data

and noise makes peaks difficult to detect.

Figure 16 presents the system identified with ID

699919273, which exhibits a clear gravitational lens.

Additionally, this system contains multiple objects, which

are likely to be lensed versions of the same astrophysical

object. The authors of [20] classify this system as a grav-

itationally-lensed supernova, based on Y5 data (not pub-

licly available). With the available data up to Y4, the

system is classified as a ‘‘Lens,’’ which confirms the cat-

egory assigned by [20] with the public data up to Y4.

Figure 17 presents the more complex system with ID

701263907, in which the identification of individual

objects is challenging due to their blurred boundaries. The

presence of halos around the central bodies and in the

bottom-right corner of the image suggests the existence of

a gravitationally-lensed object. It is possible that the lens

extends beyond the boundaries of the image, further

complicating its identification. The absence of evident

peaks in the time series data suggests the absence of

transient phenomena. Specifically, the peaks observed in

the g band do not correspond with significant peaks in other

bands, indicating the absence of relevant transient effects.

Similar to system 699919273, data up to Y4 hint at the

presence of a lens, which DeepGraviLens correctly

identifies.

5 Conclusions and future work

This work has introduced DeepGraviLens, a neural archi-

tecture for the classification of simulated and real gravi-

tational lensing phenomena that processes multi-modal

inputs by means of sub-networks focusing on comple-

mentary data aspects. DeepGraviLens surpasses the state-

of-the-art accuracy results by � 3% to � 11% on four

simulated datasets with different data quality. In particular,

it attains a 4:5% performance increase on the LSST-wide

dataset, which simulates the acquisitions of the Vera C.

Rubin Observatory, whose operations are scheduled to start

in 2023. The Vera C. Rubin Observatory is expected to

detect hundreds to thousands of lensed supernovae sys-

tems, which represents a breakthrough with respect to the

capacity of previous instruments. The enormous amount of

data that will be acquired demands highly accurate and fast

computer-aided classification tools, such as

DeepGraviLens.

Despite the promising results, some limitations should

be considered. The presented approach should be validated

on additional real data for a more robust evaluation. In

addition, a generalization study should be conducted to

assess the accuracy of the proposed methods when applied

to other types of gravitationally-lensed objects such as

Fig. 17 A real gravitational lens—The system presented in this

figure has been indicated as a gravitationally-lensed supernova by

[20]. However, the detection was performed on the fifth year of the

observation, which is not publicly available. Before, the lens is

already present, but the supernova explosion is not visible yet. The

time series, indeed, are almost flat or noisy
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quasars and to datasets collected by astronomical surveys

characterized by different acquisition parameters.

Future work will concentrate on the application of

DeepGraviLens to real observations as soon as they

become available. The presented approach could be

applied to automatic and extensive sky searches. First,

sequences of images can be extracted from survey data in

the positions with a previously detected astrophysical

object. Then, they can be processed to extract a single

image and a time series in the same format as the ones

accepted by DeepGraviLens. Finally, predictions can be

made. However, such an extensive search would require

the analysis of a large number of sources before finding a

gravitational lens because of the rarity of gravitational

lenses with respect to other objects.

The envisioned research work will also pursue the

objective of creating a scientist-friendly system that allows

experts to import and manually classify data from real

observations to create a non-simulated dataset and compute

relevant classification and object detection metrics for

automated data analysis, following an approach similar to

the one implemented in [108–110]. Finally, we plan to

employ the multi-modal architecture designed for Deep-

GraviLens for the analysis of other (possibly non-astro-

physical) datasets characterized by images and time series.
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