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a b s t r a c t

The inflation of SARS-CoV-2 lineages with a high number of accumulated mutations (such as the recent
case of Omicron) has risen concerns about the evolutionary capacity of this virus. Here, we propose a
computational study to examine non-synonymous mutations gathered within genomes of SARS-CoV-2
from the beginning of the pandemic until February 2022. We provide both qualitative and quantitative
descriptions of such corpus, focusing on statistically significant co-occurring and mutually exclusive
mutations within single genomes. Then, we examine in depth the distributions of mutations over defined
lineages and compare those of frequently co-occurring mutation pairs. Based on this comparison, we
study mutations’ convergence/divergence on the phylogenetic tree. As a result, we identify 1,818 co-
occurring pairs of non-synonymous mutations showing at least one event of convergent evolution and
6,625 co-occurring pairs with at least one event of divergent evolution. Notable examples of both types
are shown by means of a tree-based representation of lineages, visually capturing mutations’ behaviors.
Our method confirms several well-known cases; moreover, the provided evidence suggests that our
workflow can explain aspects of the future mutational evolution of SARS-CoV-2.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

All viruses, including SARS-CoV-2, change over time. Many
organizations, such as the Global Initiative on Sharing all Influenza
Data (GISAID) [42], Nextstrain [18] and Pangolin [40], are studying
the phylodynamics of SARS-CoV-2 genomes to track and define
new variants. At the end of May 2021, the World Health Organiza-
tion (WHO) announced the usage of a novel nomenclature system
for naming and tracking SARS-CoV-2 genetic lineages using letters
of the Greek alphabet, now offering a reference to refer to viral
variants across the world. In the same announcement, the WHO
also introduced a multi-level categorization of variants based on
the levels of attention they should raise; namely, variants under
monitoring (VUM), variants of interest (VOI), and variants of con-
cern (VOCs). Such levels were defined by evaluating specific mea-
sures that define the virus properties and virulence. On a different
level, several initiatives such as CoVariants [20] and outbreak.info
[15] are working on determining the defining (i.e., characterizing)
mutations for each variant.
The evolutionary dynamics of the virus were predominantly
characterized by a mutational pattern of slow and selectively neu-
tral random genetic drift. Past pandemics and long-term evolution-
ary dynamics of RNA viruses attest to the fact that such an
evolutionary ‘‘lull” rarely lasts [28]. Indeed, in late 2020, three rel-
atively divergent SARS-CoV-2 lineages emerged in rapid succes-
sion: B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma). Those
three lineages were considered as VOCs according to the WHO.
Due to the continuation of the pandemic, other lineages emerged
and, at the beginning of 2022 we faced the emergence of BA.1
(Omicron) and of its descendant lineages. From the point of view
of single mutations accumulated since the beginning of the pan-
demic, most of them had little to no impact on the virus’ properties
(i.e., not epidemiologically significant). However, some changes
have arisen that affect the virus to gain specific advances, such as
a spread advantage [7], the associated disease severity [16], or
the resistance to vaccines [17], antiviral medicines [44], diagnostic
tools, and other public health/ social measures [34] (as we ana-
lyzed in [1,2]).

Thanks to the continuous spreading of SARS-CoV-2 and the con-
textual deposition of its viral sequences to public repositories
(even considering possible delays [24]), the viral evolution can be
monitored and studied to understand SARS-CoV-2 variants and
the risks that they pose. Methods that study the virus characteris-
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Fig. 1. Methodological workflow of the study. The schema is composed of four main
parts enclosed in dotted-framed areas: 1) Data preparation; 2) Data Analysis; 3)
Lineages distribution-dependent analysis; and 4) Lineages distribution-indepen-
dent analysis. Legend: Sl: number of sequences assigned to lineage l; Sm: number of
sequences holding a mutation m; Sm;l: number of sequences from lineage l holding
mutation m; Sm1 ;m2 ;l: number of sequences assigned to lineage l holding the pair of
mutations m1 and m2; KS test: Kolmogorov–Smirnov test; MC simulation: Monte
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tics have been developed independently from the phylogenetic
techniques traditionally employed in this field. For instance, con-
siderable efforts have been dedicated to building surveillance sys-
tems that employ temporal analysis of SARS-CoV-2 mutations to
assist in the identification of candidate variants of clinical impor-
tance. A number of studies have described typical SARS-CoV-2
mutational profiles across different countries and regions [31],
proposing statistical indicators for location-based mutation evolu-
tion [45] and observing changes that become recurrently prevalent
in different locations, thus suggesting selective advantages [26].
Time-series analyses have been considered for clustering of preva-
lent SARS-CoV-2 mutations over time [50,8,5,22,11,21], trend
detection in SARS-CoV-2 short nucleotide sequences [46], and sin-
gle amino acid changes [41]. Such works consider functions that
describe the prevalence of different mutations and, when a number
of these are behaving similarly, they recognize a possible distinct
variant. These approaches usually have an epidemiological angle
and are focused on highly present forms of the virus. A different
work [12] focuses on patterns of mutations located in relevant
domains of the virus that are found in variants of concern but also
in emerging variants, suggesting they can be used as a guidance for
next evolution moves. At the same time, several studies have ana-
lyzed the evolution of mutational patterns that are typical of a
specific geographical area [9,10,47,6]. Our approach does not focus
on the most spread variants or on groups of numerous mutations,
nor it restricts to specific locations. We take an interest in a more
micro-level phenomenon, i.e., involving the relationship between
single mutations that appear together or separated in different
fragments of the phylogenetic story of SARS-CoV-2.

Co-occurrences are analysed in a number of works [39,52,43].
Specifically, Qin et al. [39] used small groups of co-occurring muta-
tions as drivers to define groups of sequences (some of which are
location-specific) that are then validated on the phylogenetic tree.
This analysis is conducted on less then a million genomes up to the
beginning of 2021. For co-occurrences we next use a definition that
is close to the co-mutations of Zhang et al. [52], which is however
focused only on B.1.1.7, digging deep in the evolution and trans-
mission chains of this variant. For this purpose, they have studied
the co-occurrence of SARS-CoV-2 mutations by using only high fre-
quency mutations. Mutation rates are compared with the spatial
information: mutations found in places with highly similar muta-
tion rates are considered as potential co-mutation patterns. Finally,
Singh et al. [43] proposed an original approach to analyse
occurrence/co-occurrence of genomic mutations with NLP tech-
niques by exploiting their conceptual equivalence to the occur-
rence of words in a textual document – mutational signatures
could be understood as topics of a document; the approach is still
preliminary.

In this research, we employ a previously unexplored perspec-
tive: we consider 8 million sequences and we perform a systematic
co-occurrence and mutual exclusion analysis of non-synonymous
mutations’ pairs. These become our entry point to the SARS-CoV-
2 evolution aspects. In the following, we provide a workflow to
determine 1) co-occurring pairs of mutations (as preliminarily
tested in [1]) and 2) mutually exclusive pairs of mutations (as
inspired by research on mutually exclusive human gene pairs
[38]). Then, we employ the results from the first phase (co-
occurring pairs) to study convergent and divergent evolution
events of mutation pairs, also analyzing them from the point of
view of single mutations participating to the event. An intuitive
visual representation is employed to explain such events and point
the attention to a number of interesting cases, which have been
validated in the literature. As future work, our workflow encour-
ages the design of a light-weight prediction procedure for the
mutational evolution of SARS-CoV-2.
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2. Methods

The framework of our study is divided into four parts, discussed
in the remainder of this section and overviewed (as dotted-framed
areas) in Fig. 1:

1. Data preparation (described in Section 2.1), where we analyze
the initial dataset of viral sequences and prepare aggregated
intermediate tables.
Carlo simulation.
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2. Data analysis (Section 2.2), composed of three parts that use
specific statistical tests to, respectively i) identify the co-
occurring and mutually exclusive pairs of mutations, ii) com-
pare the distributions over lineages of mutations that appear
in previously identified co-occurring pairs, and iii) test the evo-
lution events happened between co-occurring pairs.

3. Lineages distribution-dependent analysis (Section 2.3), i.e., an
analysis on mutation pairs that takes into consideration how
mutations are spread across the lineages; it includes the visual-
ization of convergence/divergence events involving mutation
pairs along tree-based structures representing the hierarchy of
Pango lineages.

4. Lineages distribution-independent analysis (Section 2.4), i.e., an
analysis of co-occurring and mutual exclusive mutation pairs
that ignores how mutations are spread across the lineages.

The complete analysis has been performed in Python (Version
3.7.6), using classical data science libraries, i.e., Pandas (Version
1.3.5) for data extraction and aggregation, Scipy (Version 1.4.1)
for statistical analysis, Seaborn (Version 0.11.2) and Matplotlib
(Version 3.1.3) for data visualization.

2.1. Data preparation

A set of over 8.2 million sequences of SARS-CoV-2 genome was
collected from GISAID since the beginning of the pandemic until
mid of February 2022 to be used in this large scale analysis. Each
entry of the initial dataset represents one viral sequence with their
assigned Pango lineage [35] and a list of its non-synonymous
mutations; these belong to all the proteins of SARS-CoV-2,
expressed considering the reference SARS-CoV-2 genome hCoV-
19/Wuhan/WIV04/2019 [53].

Data aggregation. From the initial dataset, we prepared three
intermediate tables that were used in following analyses as shown
in the Data preparation box of Fig. 1:

1. triplets of the form hm; l; Sm;li, where Sm;l represents the number
of sequences from lineage l having a mutation m;

2. for the lineages included in 1), triplets of the form
hl; fseq1; . . . ; seqi; . . . ; seqSl

g; Sli, where for each lineage l we have
the set of sequences assigned to that Pango lineage and its car-
dinality Sl;

3. for the mutations included in 1), triplets of the form
hm; fseq1; . . . ; seqi; . . . ; seqSmg; Smi, where for each mutation m
we have the set of sequences exhibiting that mutation and its
cardinality Sm.

To reduce the size of the initial dataset, we only considered the
most frequent mutations, i.e., those found in at least 20 K viral
sequences as extracted from the intermediate table 3); they
amount to 421. In the following, we refer to these as frequent
mutations: we only performed the analysis over this list of
mutations.

2.2. Data analysis

2.2.1. Detection of co-occurring and mutually exclusive mutations
pairs

In a given population (e.g., the sequences that are associated to
a lineage), we define:

� co-occurring pairs of mutations: pairs of mutations that are
observed in the same sequences of the reference population a
number of times that is significantly higher than the expected
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one when the two mutations are independent from each other
(i.e., frequency of first mutation � frequency of second muta-
tion � size of the population);

� mutually exclusive pairs of mutations: pairs of mutations that are
observed in the same sequences of the reference population a
number of times that is significantly lower than the expected
one when the two mutations are independent from each other.

Both co-occurring and mutually exclusive pairs are found at the
two tails of the hypergeometric distribution of pairs of mutations
found within the population. We employ as p-value for our selec-
tion the cumulative distribution function (cdf) of the hypergeomet-
ric distribution:

PðSm1 ;m2 ¼ nÞ ¼

Sm1

n

� �
P � Sm1

Sm2 � n

� �

P

Sm2

� �

where Sm1 ; Sm2 and Sm1 ;m2 are the numbers of sequences harbouring
mutations m1;m2, and both m1 and m2, respectively, while P is the
size of the reference population. The p-value of observing N
sequences with both mutation m1 and mutation m2 can be com-
puted as:

PðSm1 ;m2 > NÞ ¼ 1� PðSm1 ;m2 6 NÞ ¼ 1�
XN
n¼0

PðSm1 ;m2 ¼ nÞ

We employ the Python cdf (Cumulative Distribution Function)
function of the scipy.stats.hypergeom that, for a pair hm1;m2i
takes as input the number of sequences with both mutations
(Sm1 ;m2 , the total count of available sequences P, and the number
of sequences with m1 and with m2 (Sm1 and Sm2 ) in order to com-
pute the probability PðSm1 ;m2 6 NÞ. We compute p-values for all
the possible pairs of frequent mutations (FM), that are
FM � ðFM � 1Þ=2. Results are filtered by using suitable p-values
(lower than 0.05 correspond to co-occurring pairs and higher than
0.95 correspond to mutually exclusive pairs) as shown in the Data
analysis box of Fig. 1.

2.2.2. Distribution of frequent mutations over lineages
We employed lineages as they are assigned by Pangolin [35].

For each mutationm of our dataset and each available Pangolin lin-
eage l, we computed the count of sequences assigned to l that hold
m, obtaining the triplet hm; l; Sm;li. Such data is collected within a
421 (frequent mutations) � 1,587 (all lineages) matrix. We refer
to the mutation m’s distribution over lineages as the row of the
matrix corresponding to m. To focus only on lineages that well-
represent the mutation, for each row we set to zero the sequence
counts that are less than 0.001 of the total lineage sequences. For
each pair of co-occurring mutations extracted during the previous
step, we compared the distributions over lineages of each of its two
mutations; the comparison was performed by employing the Kol-
mogorov–Smirnov (KS) test [23] using the scipy.stats.ks-

2samp Python method, which is efficient in determining if two
samples are significantly different from each other. For a pair
hm1;m2i it takes as input the two arrays of m1 and m2’s distribu-
tions over lineages and the ‘two-sided’ option. A reasonable
p� value < 0:05 is used as a threshold of significance (see Data
analysis box of Fig. 1).

To support the understanding of these methods’ steps, we
exemplify them on a minimal example data structure. Assume
we prepare a 3 � 3 matrix (Table 1), which collects the counts of
sequences holding mutationsm0;m1, andm2 taken from sequences
assigned to lineages L1; L2, and L3. The total number of sequences of
each lineages are given in parenthesis in the header.



Table 1
Minimal example matrix of counts of sequences assigned to lineages and holding
mutations.

L1 (10000) L2 (100) L3 (300)

m0 4 10 100
m1 4 10 110
m2 300 10 100
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As L1 sequences withm0 and withm1 are less than 0.001*10000,
then the corresponding counts are set to zero (see Table 2).

The first row of the matrix is them0’s distribution over lineages.
All possible mutation pairs are tested for co-occurrence with the
hypergeometric test; let the following pairs be selected: hm0;m1i
and hm0;m2i. For each such pair, we compare their distributions
over lineages. The KS test is employed to conclude that line m0 is
not significantly different from line m1 and that line m0 is signifi-
cantly different from line m2, yielding to the corresponding alter-
native steps in the workflow. Depending on the results of the KS
test, each pair of co-occurring frequent mutations can be classified
in one of the two categories:

� pairs with different distributions over lineages;
� pairs with similar distributions over lineages.
2.2.3. Convergent and divergent evolution testing method
We developed a method to identify convergence and divergence

events involving two mutations at a time. The method was run for
each pair of mutations extracted from the previous step, analyzing
their presence within couples of lineages in 1-step relationship on
the hierarchical lineages tree (i.e., each node with its direct ances-
tor). To support the explanation, we refer to Fig. 2, showing a co-
occurrence graph (panel A) where mutations (i.e., nodes) are
exhibited by the same sequences (i.e., edges that connect co-
occurring mutations). This graph is connected with a lineages tree
(panel B), where lineages are nodes and edges explain their hierar-
chical relationships according to the phylogenesis. The mutation
graph and the tree are connected when a mutation occurs above
the threshold 0.001 of the sequences of a specific lineage.

When considering two mutations co-occurring across the data-
set and having different distributions over lineages, we observe a
convergence event when both the following conditions occur:

� for each lineage l, its sequences holding both mutations of a pair
hm1;m2i represent a large-enough fraction (> 0.01) of the
sequences holding exclusively one mutation of the pair (i.e.,
Sm1 ;m2 ;l=Sm1 ;l> 0.01 and Sm1 ;m2 ;l=Sm2 ;l> 0.01);

� only m1 or m2 is found in the direct ancestor of l.

In panel B of Fig. 2, the blue rectangle surrounds an event of
convergence between mutations, in which only mutation B was
found in the parent lineage lin.1 whereas both mutations B and
C were found together on the same sequences of the sub-lineage
lin.1.1.

Several kinds of divergence events can occur, but here we focus
on a particular definition. When considering two mutations co-
occurring together across the dataset and having similar distribu-
Table 2
Minimal example matrix from Table 1 where non-representative counts are set to
zero.

L1 (10000) L2 (100) L3 (300)

m0 0 10 100
m1 0 10 110
m2 300 10 100
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tions over lineages, we observe a divergence event when both the
following conditions occur:

� Sm1 ;m2 ;l=Sm1 ;l> 0.01 and Sm1 ;m2 ;l=Sm2 ;l> 0.01 (same condition as for
the convergence event);

� only one of the two mutations is found in the direct descendant
lineage of l.

As shown in panel B of Fig. 2, the orange rectangle surrounds an
event of divergence of mutations, in which both co-occurring
mutations C and D were found together on the same sequences
of the parent lineage lin.2.2.2, whereas its sub-lineages have
exclusively mutation C or D.

Based on these definitions, we generate two tables containing:
1) the converging pairs of mutations (‘Convergence Result’ in the
Lineages distribution-dependent analysis box of Fig. 1); 2) the diverg-
ing pairs of mutations (‘Divergence Result’ in Fig. 1).

For each convergence event (sketched in panel C of Fig. 2), we
find a corresponding row in the first table, showing: the pair of
converging mutations, the Distinct Ancestor Lineage (DAL, i.e., the
lineage with only one of the two pair mutations), the Common
Descendant Lineage (CDL, i.e., the sub-lineage with both pair muta-
tions), the Remaining Mutation (RM, i.e., the mutation found both
in the ancestor and its descendant lineage), the Acquired Mutation
(AM, i.e., the mutation found only in the descendant lineage), the
count of sequences assigned to CDL holding both RM and AM, the
count of sequences assigned to DAL holding only RM, and the depth
of CDL in the lineages tree.

For each divergence event (sketched in panel D of Fig. 2), we
find one row in the second table, showing: the pair of diverging
mutations, the Common Ancestor Lineage (CAL, i.e. the lineage
with both pair mutations), a Distinct Descendant Lineage (DDL,
i.e., a sub-lineage with only one of the two pair mutations), the
Remaining Mutation (RM, i.e., as before, the mutation found both
in the ancestor and its descendant lineage), the Missing Mutation
(MM, i.e., the mutation found only in the ancestor lineage), the
count of sequences assigned to CAL holding both RM and MM, the
count of sequences assigned to DDL holding only RM, and the depth
of CAL in the lineages tree.
2.3. Lineages distribution-dependent analysis

To study the behavior of pairs of co-occurring mutations along
the different lineages in the phylogenetic tree, two aggregated
tables were generated from the convergence and divergence tables’
results (shown in the Lineages distribution-dependent analysis box
of Fig. 1), by grouping according to the following fields:

� Pairs of co-occurring mutations. We grouped both ‘Convergence
Result’ and ‘Divergence Result’ tables by the hm1;m2i pair. Since
a stronger evidence for converging mutations pairs (resp.
diverging) is available when a pair shows more convergence
(resp. divergence) events) in the lineages tree – also at different
depths – the resulting aggregated tables were ranked by the
count of CDL (convergent evolution) or by the count of CAL (di-
vergent evolution).

� Remaining mutation. We grouped both ‘Convergence Result’ and
‘Divergence Result’ tables by RM and then ranked the aggre-
gated tables by descending count of DAL (convergent evolution)
and by descending count of DDL (divergent evolution).

Monte Carlo simulation. We used a Monte Carlo (MC) simula-
tion approach to simulate the convergence and divergence tests
and calculate the significance of our findings. By employing the
Python method sample of the random library, we performed a



Fig. 2. A. Frequent mutations graph whose nodes represent mutations and edges represent the co-occurrence of the two connected nodes within same sequences. B. Tree
representing the phylogenetic hierarchy among lineages. C. Schematic representation of a convergence event. D. Schematic representation of a divergence event E.
Terminology used in the methods.
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simulation of 10,000 rounds, each composed as follows: 1) ran-
domly select as many pairs of mutations as the ones obtained by
the hypergeometric test out of the primary pool of unique pairs
of mutations; 2) count how many distinct pairs of mutations pass
the convergence test; 3) count how many distinct pairs of muta-
tions pass the divergence test; 4) calculate the p� values by com-
paring the random distributions generated according to 2) and 3)
and the real data.

Sub-trees visualization. Graphviz [14] and NetworkX [19] were
used to draw lineages trees. Tree-shaped graphs are generated
from the aggregated tables representing pairs of co-occurring
mutations. One graph is produced for each converging or diverging
pair of mutations, following the relationships between lineages as
indicated by the Pangolin nomenclature. Each node represents a
lineage and lineages are connected by hierarchical relationships
(arrows). We start from the original SARS-CoV-2 haplotypes (A or
B) and descend the tree up to the node where an evolution event
is identified. Since several pairs have a high number of evolution
events, we omit the visualization of branches without such events.
A color code is used to highlight where convergent/divergent evo-
lution events are identified and which mutations from the consid-
ered pair are observed.

2.4. Lineages distribution-independent analysis

Following the hypergeometric test that identifies co-occurring
and mutually exclusive mutation pairs, we also perform a lineage-
independent analysis, which is not related to the analysis reported
in Section 2.3, as it does not consider how mutations are spread
across the lineages. More precisely, we employ co-occurring pairs
to investigate the defining mutations of lineages. Instead, we employ
mutually exclusive pairs to gain insights on the mutations that are
preferred during the virus evolution. To further study these two hap-
penings, we incorporate the calculation of fold enrichment as shown
in the Lineages distribution-independent analysis box of Fig. 1.

Fold enrichment calculation. The Fold Enrichment (FE) is a gen-
eral statistical term that indicates how many folds a phenomenon
happened more (or less) than expected by random chance. For
instance, FE = 3 means than the event happened three times the
random expectation for that event. We use the following formula
to calculate it:

logFEm;l ¼ log2ðSm;l � ðL=SmÞÞ
where we have that Sm;l is the total number of sequences having a
mutation m in a given lineage l; L is the total number of lineages
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found in the population; Sm is the total number of sequences having
mutation m in the population. Here we considered Sm;l as the count
of observed events and Sm/L as the count of expected events. By
using logFEm,l, the values of enrichment range from �1 to þ1,
where negative logFEm,l values indicate that the mutation m is less
enriched in lineage l and positive values indicate that the mutation
m is more enriched in lineage l, while zero means the enrichment is
as expected by random chance. Details on how this measure is
employed are given in the results (Section 3.2.1), where noteworthy
variants are analyzed.

3. Results

3.1. Dataset description

By analyzing the considered dataset (see Section 2.1 in the
Methods), we observed the distributions of the sequences over
continents and lineages, provided respectively in Fig. 3A and
Fig. 3B. Half of the viral sequences of the analysed dataset were col-
lected in the European continent. Sequences were assigned to
1,587 distinct Pango lineages, the most represented lineages being
B.1.1.7 (Alpha), AY.4, and BA.1 (Omicron), respectively represening
the 13.8%, 10.1%, and 9.2% of the total population. According to the
WHO, the current variants of concern (VOCs) are B.1.617.2 (Delta)
and Omicron (including all BA.1, BA.2, BA.3, and BA.1.1), while pre-
viously circulating VOCs were B.1.1.7 (Alpha), B.1.351 (Beta), and
P.1 (Gamma). Fig. 3C presents the counts of sequences from the
dataset assigned to distinct lineages that are currently or were pre-
viously considered as VOCs; these are distributed by collection
date for the whole course of the pandemic.

Almost all the sequences – except for five – exhibit at least one
non-synonymous mutation with a total number of 156,951 non-
synonymous mutations (substitutions, deletions, or insertions)
found in the population with an average of 32.6 mutations per
sequence. The most dominant non-synonymous mutations are
the substitution D614G in the spike protein, the substitution
P323L in the non-structural protein 12, and the substitution
T478K in the spike protein, found in 97%, 96.5%, and 63.8% of the
population, respectively.

3.2. Co-occurring and mutually exclusive mutation pairs

A total of 88,410 unique pairs were generated from the list of
421 frequent mutations. Using the hypergeometric test (see Meth-
ods, Section 2.2.1), we extracted 16,692 co-occurring pairs by using



Fig. 3. A. Sequences’ distribution across lineages, detailing the ten most representative lineages. B. Sequences’ distribution across all the continents. C. Number of sequences
assigned to the lineages currently or previously considered as VOCs according to the WHO with their collection dates.
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p� value < 0.05; note that, using a smaller p� value < 0.01 pro-
duces 16,415 co-occurring pairs, thus a small decrease. Then, we
extracted 69,903 mutually exclusive pairs by using a
p� value > 0:95; note that, out of these, 62,491 have
p� value ¼ 1, with 374 pairs never appearing together in the same
sequence in the entire dataset. Differently from Zhang et al. [52]
(where mutations are considered as ‘‘high frequency” if found in
at least 1% of sequences), we have used a much lower frequency
threshold (found in more than 20 K sequences, i.e. 0.25%). Conse-
quently, when performing the hypergeometric test on pairs of
mutations, this choice has allowed to widen the possibility of co-
occurrence/mutual exclusion detection.

3.2.1. Lineage distribution-independent results
Before proceeding with our main analysis thread, which evalu-

ates mutations w.r.t. their distributions over lineages, we derive a
series of interesting observations that can be made just on the
basis of the results of the hypergeometric test. Such results are
derived using the methods described in Section 2.4. First, by
exploiting the extracted co-occurring pairs, we show how they
could be used to complement lists of variants’ defining mutations.
Second, by exploiting the extracted mutually exclusive pairs, we
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show how the pairs could be used as insights of the natural evolu-
tion of the virus. Results are explained using notable examples.

Defining mutations of a given lineage: the case of the Delta
variant. The B.1.617.2 variant (Delta) has been considered for a
long time as one of the VOCs byWHO. Almost all (19) of its defining
mutations (according to CoVariants [20]) are found in our list of
frequent mutations (specifically, only 2 out of 21 mutations are
missing, but they are also absent in the full dataset). Table 3 pre-
sents the p� values derived from running a hypergeometric test
on each pair formed by Delta defining mutations in the Spike pro-
tein. All pairs have a significant p� value, except for the pair com-
posed by Spike_D614G and Spike_E156- ðp� value ¼ 0:54Þ (likely
due to the huge difference in the populations of these two muta-
tions). In general, these p� values suggest that the pairs of muta-
tions tend to co-occur together. Out of all the pairs hm1;m2i
resulting from the hypergeometric test, we considered the ones
where m1 belongs to Delta defining mutations whereas m2 does
not. Only mutations m2 with a logFE above a threshold of 1 (i.e.,
mutations that have been found in Delta’s population at least twice
more than expected) were further considered. We identified other
68 mutations that co-occur with all Delta defining mutations and
that logFE values above our threshold. Three of these are found in



Table 3
Examples of co-occurring pairs of mutations in the Spike protein, extracted from the defining mutations list of the Delta variant [20]. The provided number of sequences is
evaluated on the complete dataset.

m1 m2 #Seq. with m1 #Seq. with m2 #Seq. with m1;m2 P-value

T19R E156- 4145223 21528 20285 4.72e-09
T19R F157- 4145223 3867174 3833412 0.0
T19R R158G 4145223 24435 23862 0.0
T19R L452R 4145223 4199166 4034866 0.0
T19R T478K 4145223 5252904 4046410 3.74e-09
T19R D614G 4145223 7981457 4134564 1.04e-08
T19R P681R 4145223 4208095 4123831 3.28e-09
T19R D950N 4145223 4033822 3960828 0.0
E156- F157- 21528 3867174 20395 0.0
E156- R158G 21528 24435 18717 0.0
E156- L452R 21528 4199166 17429 1.01e-09
E156- T478K 21528 5252904 17870 7.69e-09
E156- D614G 21528 7981457 21339 0.5496
E156- P681R 21528 4208095 20315 5.83e-9
E156- D950N 21528 4033822 19943 2.06e-09
F157- R158G 3867174 24435 17664 0.0
F157- L452R 3867174 4199166 3785418 0.0
F157- T478K 3867174 5252904 3795616 0.0
F157- D614G 3867174 7981457 3857745 7.53e-09
F157- P681R 3867174 4208095 3849316 5.77e-10
F157- D950N 3867174 4033822 3724976 0.0
R158G L452R 24435 4199166 20816 0.0
R158G T478K 24435 5252904 21209 0.0
R158G D614G 24435 7981457 24247 0.0418
R158G P681R 24435 4208095 23830 0.0
R158G D950N 24435 4033822 22455 0.0
L452R T478K 4199166 5252904 4080758 1.02e-09
L452R D614G 4199166 7981457 4189517 4.32e-09
L452R P681R 4199166 4208095 4078817 0.0
L452R D950N 4199166 4033822 3907159 9.18e-10
T478K D614G 5252904 7981457 5241411 8.97e-09
T478K P681R 5252904 4208095 4082650 4.22e-09
T478K D950N 5252904 4033822 3919358 2.71e-10
D614G P681R 7981457 4208095 4197588 4.37e-09
D614G D950N 7981457 4033822 4025217 5.00e-09
P681R D950N 4208095 4033822 4001531 5.86e-09
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the Spike protein: Spike_V1104L (FE: 44.87, logFE: 5.48), Spi-
ke_G142D (FE: 41.06, logFE: 5.35), and Spike_S112L (FE: 13.75,
logFE: 3.78); the complete set is found in Supplementary TableS1.
Our findings suggest that the identified mutations could be consid-
ered as additional defining mutations of the Delta variant, comple-
menting the list provided by CoVariants [20]. Properties of
significant mutations co-occurring with Delta defining mutations
are shown in the scatter plots drawn in the panels of Fig. 4.

Mutually exclusive mutations: the case of the Alpha and Omi-
cron lineages. The variants B.1.1.7 (Alpha) and BA.1 (Omicron)
have a very high number of common defining mutations. Among
their defining mutations lists, we identified possible mutually
exclusive pairs; see Table 4, where pairs with p� value ¼ 1 and
mutations from these two variants are reported. We focus on the
first two rows where the number of sequences having both muta-
tion equals to zero: hSpike_S371L, Spike_A570Di and hSpike_S371L,
NSP3_A890Di. Spike_S371L is one of the defining mutations of
BA.1, while both Spike_A570D and NSP3_A890D are from the
defining mutations of the lineage B.1.1.7 (Alpha). Indeed, Spi-
ke_S371L has a logFE of 9.91 in Omicron and �1 in Alpha, whereas
Spike_A570D and NSP3_A890D both have logFE of �1 in Omicron
and of 10.58 in Alpha.

This observation suggests that the more recent circulating lin-
eage, i.e. Omicron, tends to favor Spike_S371L over Spike_A570D
or NSP3_A890D. Note that BA.1 (Omicron) and B.1.1.7 (Alpha) are
sharing many defining mutations (e.g., H69-, V70-, Y144-, D614G,
N501Y, and P681H in Spike_protein and other mutations in other
proteins) – almost half of the defining mutations of Alpha are con-
sidered defining mutations also of Omicron – and that they are not
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closely related lineages. This may suggest that the virus could be
evolving into the direction of collecting new mutations that might
enhance its features, e.g., Omicron is now the most complete ‘esca-
pee’ from neutralization by currently available antibodies in com-
parison to other SARS-CoV-2 variants, including the Alpha variant
[27].

3.3. Lineages distribution analysis for co-occurring mutations pairs

Following the methods described in Section 2.2.2, we were able
to study the quantitative behavior of pair mutations over lineages.
We extracted distributions over lineages for each frequent muta-
tion. Fig. 5 presents the number of sequences and lineages of each
frequent mutation considered for the Spike protein. As expected,
the most dominant mutation is Spike_D614G, found in 1,534 lin-
eages out of 1,587 total lineages. Then, we compared each such dis-
tributions in pairs, using the KS test. As a result, we obtained 4,000
pairs with different distributions over lineages and 12,692 pairs
with similar distributions over lineages. A 3D scatter plot of the
KS test results for all the 421 frequent mutations is provided in
Supplementary Figure S2.

Based on the procedure described in Section 2.2.3, from the
group of pairs with different lineages distributions, we identified
4,489 distinct events of convergent evolution, whereas from the
group of pairs with similar lineages distributions, we identified
415,892 distinct events of divergent evolution.

Along the Methods described in Section 2.3, we then produced
the tables aggregated by mutation pairs and remaining mutations,
which are analyzed in the next section.



Fig. 4. A. 2D Scatter plot of the p-values of the hypergeometric tests on all the pairs of mutations in which only one of the two is a defining mutation of Delta variant, mapped
on the values of logFE of the mutation of the pair that is not a Delta-defining mutation (outside of the list). A total of 7,638 pairs of mutations were considered in the figure
after removing mutations with FE = 0. Blue dots indicate the p� values < 0:05, whose corresponding non-Delta mutations have a logFE>1. B. Zoomed version of Panel A
scatter plot; it includes 68 mutations extracted from the ‘blue’ pairs selected in Panel A (co-occurring with all 19 Delta-defining mutations); here, a color scale is used to
indicate the logFE of the pair mutation that belongs to the Delta variant: the darker the color, the higher the value. The corresponding 3D scatter plot is provided in
Supplementary Figure S1.

Table 4
Examples of mutually exclusive pair of mutations. m1 are extracted from the defining mutations’ list of the Omicron variant; m2 are defining mutations of the Alpha variant.

m1 m2 #Seq. with m1 #Seq. with m2 #Seq. with m1;m2 P-value

Spike_S371L Spike_A570D 1012982 1161124 0 1.0
Spike_S371L NSP3_A890D 1012982 1159088 0 1.0
Spike_S371L Spike_D1118H 1012982 1153130 20 1.0
Spike_Y505H Spike_A570D 1115034 1161124 109 1.0
Spike_Y505H NSP3_A890D 1115034 1159088 110 1.0
Spike_Y505H Spike_D1118H 1115034 1153130 131 1.0
Spike_T547K Spike_A570D 1184888 1161124 116 1.0
Spike_T547K NSP3_A890D 1184888 1159088 116 1.0
Spike_T547K Spike_D1118H 1184888 1153130 140 1.0
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Fig. 5. Scatter plot indicating the number of lineages containing the frequent mutations of the Spike protein; the higher the number, the more spread a mutation is over the
lineages. A color scale is used to express the number of sequence exhibiting each mutation.
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3.4. Convergent and divergent evolution of pairs of mutations

3.4.1. Convergence
By using pairs of mutations as a grouping factor in the ‘Conver-

gence Result’ table, we generated a table with 1,818 unique pairs of
co-occurring mutations having at least one event of convergent
evolution. Table 5 presents the pairs of mutations with the highest
count of convergence events; the complete result is provided in
Supplementary TableS2.

Example 1. The first line of the table shows that the co-occurring
pair composed by NSP1_V84- and NSP1_V86- is found separately
in 8 Distinct Ancestor Lineages (#DAL) and appears in 24 of their
Descendant Lineages (#CDL), occurring at various depths of the
lineages tree (between the third and the sixth level). In all such
cases, the Remaining Mutation is, alternatively, the first or the
second mutation of the pair. The lineages tree related to this pair is
shown in Supplementary Fig. S3.
Example 2. In addition to several co-occurring (and closely posi-
tioned) deletions, in the seventh row of Table 5 we can observe a
pair composed by NSP4_V167L and Spike_P681R, which are pre-
sent separately in 4 lineages (#DAL) and appear together in 17 of
Table 5
Top 10 converging pairs of mutations ranked by descending #CDL.

hm1;m2i #CDL CDL de

NSP1_V84-+NSP1_V86- 24 3,4,5,6
NSP1_H83-+NSP1_V86- 23 3,4,5
NSP1_G82-+NSP1_V86- 23 3,4,5
NSP6_F108-+NSP6_S106- 18 3,4
NS8_P93S + NSP3_V932A 18 4
NSP6_F108-+NSP6_G107- 18 3,4
NSP4_V167L + Spike_P681R 17 3,5
NSP6_L260F + NSP6_S106- 15 2,3,4,5
N_G204R + N_R203K 15 1,3
NSP6_G107-+NSP6_L260F 14 2,3,4,5
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their descending lineages (#CDL), spotted at both the third and
fifth level of the tree. Fig. 6 shows the representative lineages tree
of this pair. Note that having found a pattern of converging muta-
tions in such a high number of lineages suggests the existence of
selection advantages for such mutations.

We deepen our analysis by using remaining mutations (RM) as a
grouping factor in the ‘Convergence Result’ table. We generate a
table of 308 converging mutations. Table 6 shows the converging
mutations participating to the highest number of convergent evo-
lution events across the whole lineages tree; the complete list is
provided in Supplementary TableS4. In Table 6 we find the three
consecutive deletions occurring on the non-structural protein 6
(NSP6) at positions 106–108. These three mutations are co-
occurring and converging in 28 different lineages, suggesting that
the deletion of 9 nucleotides in ORF1ab gene that generates the
‘SGF deletion’ is among the most prevalent remaining mutations
in convergent evolution events in the population. Note that this tri-
ple amino acid deletions is included in the defining mutations lists
of three previous VOCs, i.e., Alpha, Beta, and Gamma. NSP6 is a
multi-pass transmembrane protein that is thought to be involved
in autophagy and antagonism of innate immune responses, but it
remains unclear what influence this deletions has on virus pheno-
type [49,37]. Other mutations in Table 6 are N501Y, L452R, and
pth #DAL #RM

8 NSP1_V84-,NSP1_V86-
7 NSP1_H83-,NSP1_V86-
7 NSP1_G82-,NSP1_V86-
3 NSP6_S106-
1 NSP3_V932A
3 NSP6_G107-
4 NSP4_V167L,Spike_P681R
4 NSP6_S106-
4 N_R203K,N_G204R
4 NSP6_G107-



Fig. 6. Tree-based representation of lineages involved in the evolution of
NSP4_V167L and Spike_P681R. Each node represents one lineage and the arrow
between two lineages draws the phylogenetic relation between an ancestor lineage
and its descendant lineage. For ease of visualization, we show only part of the tree
(5 convergence events out of 17 events detected by the pair). Colors are used to
indicate which mutation is present in the indicated lineage: red when both
mutations are present, blue when only Spike_P681R is present, and yellow when
only NSP4_V167L is present.
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P681H in Spike. These mutations started to converge from the sec-
ond wave of COVID-19 and have been reported in many globally
circulating lineages. They are considered as defining mutations of
different lineages considered as VOCs, namely N501Y is a defining
mutation of Alpha, Beta, Gamma, and Omicron; L452R is a defining
mutation of Delta; and P681H is a defining mutation of Alpha and
Omicron. Moreover, N501Y may increase the binding affinity to
ACE2 [3] and affect the immune response to possible vaccines
and treatments [4,48]; L452R is one of the RBD mutations that pos-
sibly enhance the binding affinity to ACE2 receptor and reduce the
binding affinity of many antibodies [51]; finally, P681H enhances
the furin binding and viral infectivity [33].

3.4.2. Divergence
By using pairs of mutations as a grouping factor on the ‘Diver-

gence Result’ table, we generated a table of 6,625 unique pairs of
co-occurring mutations with at least one possible event of diver-
gent evolution. Table 7 presents the pairs of mutations with the
highest count of divergence events; the complete table is provided
as Supplementary TableS3.

Example. Coronaviruses, including SARS-CoV-2, have lower
substitution rates than other RNA viruses because of an RdRp with
proofreading activity [13,32]. However, proofreading cannot
correct deletions. Even if deletions in the considered frequent
Table 6
Top 10 remaining mutations ranked by descending #DAL (counting converging
events).

RM #CDL #DAL #AM

NSP6_G107- 53 17 24
NSP6_S106- 54 17 24
Spike_N501Y 24 14 14
NS8_R52I 30 12 15
Spike_L452R 20 12 9
Spike_P681H 17 12 17
NSP12_F694Y 15 11 12
NS8_Q27stop 28 11 15
NSP6_F108- 35 11 28
N_T205I 23 10 18
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mutation list are only 31 (7.36% of the total), we found that in
18.66% of the observed divergence events the remaining mutation
(RM) was a deletion. This might be explained by the fact that,
unlike substitutions, deletions cannot be corrected by proofreading
activity [30]. Notable examples of pairs of deletions with divergent
evolution through the lineages tree are hSpike_H69-, Spike_Y144-i
and, similarly, hSpike_V70-, Spike_Y144-i; see the seventh and
eigth rows of Table 7. Spike_H69- and Spike_H70- are co-
occurring mutations having very similar lineages distribution
according to the KS test (p� value ¼ 1:0); they are spotted
together in 439 different lineages (forming respectively 98% and
99% of the lineages they appear in). Therefore, we discuss about
this double deletion as if it were a unique mutation and compare
its pattern of distribution with the one of Spike_Y144-. We
detected 304 divergent events, whose 86.18% includes Spike_
Y144- as the diverging mutation (RM) passing to the new descen-
dant lineage, while only 13.81% includes Spike_H69-/V70- as the
remaining mutations. Both Spike_H69-/V70- and Spike_Y144- are
deletions that lie in the NTD region of Spike and may modulate
antigenicity [25,29,30]. Since the count of DDL is high (307), the
generated tree is very large, thus Fig. 7 shows only a portion of it.

We deepen our analysis by using remaining mutations (RM) as a
grouping factor in the ‘Divergence Result’ table; we generate a
table of 362 unique diverging mutations. Table 8 shows the
remaining mutations participating to the highest number of diver-
gent evolution events across the whole lineages tree; the complete
list is provided in Supplementary TableS5. The table shows two
mutations that were expected, i.e., Spike_D614G and
NSP13_P323L, as they are the most dominant mutations across
the population. With the exception of Spike_L5F, the other seven
top mutations are well known mutations that were studied since
almost the beginning of the pandemic, having a major role in form-
ing the five well-known distinct clades [36]. This may explain why
we detected a considerably high numbers of divergence events,
compared to the convergence ones.
3.4.3. Validation
To assess the significance of our findings, we performed a

Monte Carlo simulation to compare the resulting numbers of pairs
showing convergence/divergence events with numbers of ran-
domly selected pairs. A p� value < 10e-4 in both cases of conver-
gent and divergent evolution was detected. Fig. 8 shows the
distribution of the counts of pairs of mutations with at least one
convergent or divergence event detected following the Monte
Carlo approach; both distributions are centered on mean values
that are considerably distant from the observed values (1,818 for
convergence events and 6,625 for divergence events).
4. Discussion

The SARS-CoV-2 pandemic is a major threat to the public
health. In response to the continuous spreading of the virus the
global community answered with an incredible effort to collect
and deposit a huge amount of viral genomes to public repositories.
Thanks to such availability, we were able to conduct a large-scale
analysis that aimed at highlighting the role of non-synonymous
mutations’ pairs in identifying evolution events of SARS-CoV-2.

First, we analyzed the patterns of co-occurrence and mutual
exclusion of pairs of mutations on sequences of the virus. We then
focused on sets of significantly co-occurring pairs of mutations by
analyzing how their distributions over lineages compare. Finally,
we precisely described events of convergence (when two muta-
tions are frequent in a lineage but only one of them is frequent
in its ancestor) and of divergence (when two mutations are
frequent in a lineage but one of the two disappears in a



Table 7
Top 10 diverging pairs of mutations ranked by descending #CAL.

hm1;m2i #CAL CAL depth #DDL #RM

Spike_D614G + Spike_L5F 22 1,2,3,4 584 Spike_D614G,Spike_L5F
NSP1_H83-+NSP1_M85- 21 1,2,3,4,5 236 NSP1_H83-,NSP1_M85-
NSP1_G82-+NSP1_M85- 21 1,2,3,4,5 235 NSP1_G82-,NSP1_M85-
NSP12_P323L + Spike_L5F 21 1,2,3,4 587 NSP12_P323L,Spike_L5F
NSP1_M85-+NSP1_V84- 20 1,2,3,4,5 202 NSP1_M85-,NSP1_V84-
NSP1_M85-+NSP1_V86- 19 1,2,3,4,5 124 NSP1_M85-,NSP1_V86-
Spike_H69-+Spike_Y144- 17 1,2,3,4 307 Spike_H69-,Spike_Y144-
Spike_V70-+Spike_Y144- 17 1,2,3,4 307 Spike_V70-,Spike_Y144-
NSP5_K90R + Spike_D614G 17 1,2,3,4,5 406 Spike_D614G,NSP5_K90R
NSP16_K160R + Spike_D614G 15 2,3,4 63 Spike_D614G

Fig. 7. Tree-based representation of lineages involved in the evolution of Spike_H69- and Spike_Y144-. For ease of visualization, here we present a portion of the original tree,
with 19 out of 307 total divergent events detected for the pair of deletions.

Table 8
Top 10 remaining mutations ranked by descending #DDL (counting diverging events).

RM #CAL #DDL #MM

Spike_D614G 66 1416 244
NSP12_P323L 62 1389 221
NSP6_L37F 47 873 88
Spike_L5F 28 685 58
NS3_Q57H 22 594 50
N_R203K 22 579 91
N_G204R 21 567 85
NSP1_M85- 36 551 115
Spike_Y144- 27 519 87
NSP16_K160R 24 452 47
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sub-lineage). Based on this notion, we observed that co-occurring
pairs with different distributions allow to identify convergence
events, while co-occurring pairs with similar distributions allow
to identify divergence events. The obtained results were grouped
by 1) considering for each pair of mutations the number of lineages
where it instantiates a converging/diverging behavior and 2) con-
sidering for each remaining mutation (i.e., maintained through
two directly-related lineages) the number of lineages where it par-
ticipated to a converting/diverging behavior.

The essence of this work can be summarized as follows. The
lineage-independent analysis, which included a study of the most
significant co-occurring mutation pairs, complemented by the fold
enrichment calculation, suggested a way to find candidates for
‘‘variants’ defining mutations” that are not currently listed by ref-
erence sources (e.g., CoVariants)—as shown for the Delta variant
case, where we highlighted the mutations S112L, G142D, and
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V1104L in the spike protein. Then, considering the mutually exclu-
sive mutation pairs assigned to two different variants, we regard
them as candidates for characterizing different variant phenotypes.
Among them, we spotted Spike_S371L in Omicron which never
occurs together with Spike_A570D or NSP3_A890D in Alpha.

Convergent and divergent events can instead be used for antic-
ipating lineage evolution. Specifically, if two mutations are co-
occurring – one remaining (RM) and one acquired (AM) – whenever
RM appears in a lineage then we expect that AM will be next
acquired; in our analysis, we spotted several confirmations, e.g.,
Fig. 6 represents 5 (out of 17) converging events having either
NSP4_V167L or Spike_P681R as RM in a parent node and both
mutations in one of its descendant nodes. In convergence events,
we highlight the presence of remaining mutations that are widely
spread and defining several VOCs (see Table 6).

Conversely, if two mutations are mutually exclusive – one
remaining (RM) and one missing (MM) – whenever RM and MM
appear in a lineage, then we expect that MM will not be present
in some descendant node; in our analysis, we spotted several con-
firmations, e.g., Fig. 7 represents 19 (out of 307) diverging events
having both Spike_H69- or Spike_Y144- as RM in a parent not
and only one of them in its descendant nodes. In divergence events,
we highlight the presence of remaining mutations that are fre-
quent in the dataset but not specifically defining notable variants
(see Table 8).

The analysis elements proposed in this study pose the basis for
anticipating the evolution of the SARS-CoV-2 virus, by observing
mutation and lineages behaviors from a purely data-driven quanti-
tative point of view.



Fig. 8. Distributions of the counts of pairs with randomly detected convergent (left) or divergent (right) events, extracted from a sample of 16,692 pairs of mutations repeated
for 10,000 times.
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