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Abstract— When considering the proximity environment of a
small body, the capability to navigate around it is of paramount
importance to enable any onboard autonomous decision-making
process. Onboard optical-based navigation is often performed by
coupling image processing algorithms with filtering techniques
to generate position and velocity estimates, providing compelling
navigation performance with cost-effective hardware. These same
processes could be addressed with data-driven ones, at the expense
of a sufficiently large dataset. To investigate to what extent can
these methods substitute traditional ones, in this paper we develop
a possible onboard methodology based on segmentation masks, con-
volutional extreme learning machine architectures, and recurrent
neural networks to respectively generate simpler image inputs, map
single-frame data into position estimates, and process multiple-
frame position sequences to generate both position and velocity
estimates. Considering the primary of the Didymos binary system as
a case study and the possibility to complement optical observations
with LiDAR data, we show that recurrent neural networks would
bring only limited improvement in position reconstruction for the
case considered while they would be beneficial in estimating the
velocity, especially when considering complementing LiDAR data.

Index Terms— Image Processing, Navigation, Recurrent Neural
Networks, Segmentation, Small-Bodies
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Acronyms

CELM Convolutional Extreme Learning Machine
CNN Convolutional Neural Network
CoM Center of Mass
CPO Close Proximity Orbit
GD Gradient Descent
IC Initial Condition
IP Image Processing
KF Kalman Filter
LiDAR Light Detection And Ranging
LoS Line of Sight
LSTM Long-Short Term Memory
RNN Recurrent Neural Network
UNet U-shaped Network

I. INTRODUCTION

Missions towards small bodies, such as asteroids and
comets, are becoming increasingly interesting for national
space agencies, companies, and smaller players such as
research centers and universities [1]. The capability to
autonomously navigate around a known celestial body
is of paramount importance to enable any autonomous
decision-making process onboard a spacecraft [1]. When
considering the proximity environment of a small body
and all the navigation sensors available on the market,
cameras are usually preferred as they are light, compact,
and have low power demand. For these reasons, the use of
passive cameras, in combination with Image Processing
(IP) algorithms, provides compelling navigation perfor-
mance with cost-effective hardware.

Several IP algorithms have been deployed in various
exploration missions towards small bodies. Considering
a close proximity scenario about a small body, two
navigation regimes are discerned: mid and close-range.
In the mid-range regime, the main optical feature used
about the body is its global outline, while in the close-
range regime, local features such as craters, boulders, and
other surface characteristics are extracted and used.

In the mid-range regime, centroid algorithms are of-
ten considered a robust, easy-to-use baseline both for
rendezvous [2], flyby [3], and deflection [4] missions.
The simplicity of these algorithms generally comes at
the cost of low performance, especially when considering
high-phase angles and highly irregular shapes [5]. To
overcome these limitations, over the years modified cen-
troid algorithms have been developed that adopt scattering
functions [6], [7]. Another approach that can be used to
cope with high phase angles is represented by centroid
and apparent diameter algorithms. A very well-known
algorithm is the one introduced in [8], which develops
a non-iterative ellipse fitting to retrieve the position with
respect to a body modeled as a tri-axially ellipsoid. Other
important works are the one that uses limb fitting [5] or
Lambertian sphere correlation algorithms [9]. However,
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these methods, originally designed for regular celestial
objects such as planets and moons, are not well suited
for applications to irregular small bodies.

In the close-range regime, features-based methods are
usually preferred due to the abundance of resolved local
features and higher performance. For example, Rosetta
[10] adopted small-scale, high-resolution, digital models
called maplets centered on specific landmarks of interest,
scattered across the surface of the target body as reference
points. Combining together elevation, albedo, and photo-
metric models each landmark’s appearance is simulated at
varying illumination conditions. By correlating on-ground
these digital representations with their real counterpart
extracted from images, the position of the spacecraft is
reconstructed. A similar methodology is also developed
for onboard application in the Osiris-Rex mission [11],
exploiting natural features rendered and correlated thanks
to detailed maps generated in previous phases of the
mission. Another type of strategy is instead adopted by the
Hayabusa 2 mission [12], which uses artificial landmarks
left on the surface of the body for image processing and
navigation during critical operations. On the other hand,
Hera will deploy relative feature tracking algorithms in
combination with navigation filters for the most critical
phases in the vicinity of Didymos [9], [13]. Finally, there
also exist IP algorithms that use dynamic triangulation
[14], [15] exploiting features such as planets or local
features on the surface of a body, and extracting triads
of lunar craters and image invariant features with onboard
catalogs [16], to generate position and velocity navigation
solutions.

The majority of the methods introduced before can
often provide only pinpoint position estimates, which
alone do not contain velocity estimates. While estimating
the velocity from the difference of subsequent position
estimates could seem a viable solution, this is often very
detrimental due to noise on the position estimates. To
overcome this limitation and be able to reconstruct a full
state vector of the spacecraft comprising both position
and velocity components, these IP algorithms are often
coupled with navigation filters (often variations of a
Kalman Filter (KF)), which use a-priori information on
the initial conditions and a dynamic model to generate
sequential estimates onboard.

Within this context, both the onboard IP and KF
algorithms can be substituted by promising data-driven
methods performing both tasks at the same time. The IP
can be performed with deep-learning architecture such as
Convolutional Neural Network (CNN) and its variants,
which have demonstrated their exceptional capability to
extract high-level features from images and process their
non-linear mapping with labels, representing the state of
the art in computer vision for several tasks [17]. On
the other side, a KF can be substituted by recurrent
architectures that are specifically designed to process
time series. In a Recurrent Neural Network (RNN) the
full dynamic or the state transition matrix is implicitly
substituted by the Long-Short Term Memory (LSTM)

cells within the recurrent architecture. The transition from
one state to the next is learned through data, which is
a drawback of this approach. The architecture needs to
learn the proper representation and a simple change in the
dynamic model requires the generation of a new dataset
and a fine-tuning of the network.

Starting from these considerations, this work is sup-
ported by three streams of existing literature and research
previously analyzed by the authors and others: the use of
small bodies segmentation maps for navigation, the role
of RNN to improve single point estimates, and the design
and training of efficient networks for IP.

The first one is represented by the generation and use
of segmentation maps for optical-based navigation using
visible images. In the general computer vision domain,
image segmentation is an active field of research. In this
work, following the definition in [17], segmentation is
defined as the task that performs per-pixel classification
on an image. A good overview of the most important
techniques can also be found in [17]. In the current state
of the art, deep architectures such as those described in
[18] or in [19] seems to be the preferred choice [17] for
the most complex tasks. In [18] a successful architecture
referred to as U-shaped Network (UNet) is introduced
to perform segmentation for biomedical applications. The
success of this architecture pivots on two aspects: a
symmetrical architecture that lacks the fully connected
layer between encoding and decoding stacks and the idea
to concatenate copies of trained encoder layers on the
decoder to retain feature representation. Moreover, in [18]
the authors successfully demonstrate the capability to
train the network with a very limited dataset constituted
only of 30 images, largely relying on data-augmentation
techniques to virtually increase the size of the training
set. Another popular architecture is the one introduced
in [19], which represents a natural evolution of the UNet,
making use of less memory by avoiding the storage of the
entire pooling layers and instead opting for the storage of
the indices.

Considering image segmentation for space applica-
tions, a variety of methods and applications have been
investigated over the past decades to improve the au-
tonomous perception capabilities of interplanetary mis-
sions. In [20], image segmentation is used to classify
geological properties of the terrain while in [21] to
identify plumes and jets from comets and moons. In
[22], a series of advanced image processing techniques,
amongst which image segmentation, are demonstrated for
the enhancement of the scientific return of flyby missions
around small bodies. More recently, the simple implemen-
tation and easy access to pre-trained UNet and encoder
architectures have encouraged a proliferation of deep
networks for image segmentation in space applications.
For example, UNets are used in [23], [24] to obtain hazard
maps of the Moon or of small body surfaces [25] to
perform safe landing site selection. The works of [26] and
[27] offer comprehensive overviews of the performance of
segmentation architectures applied to the surface of small
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bodies and for landing site selection of planetary surfaces
respectively. Moreover, several works [24], [25], [28]
are now introducing uncertainty quantification metrics
[29], [30] that accompany the generation of segmentation
maps to increase robustness and applicability for future
missions.

Finally, of major relevance for this paper is the work
illustrated in [28], where a methodology is presented that
can be used to perform semantic segmentation of small-
body surfaces based on morphological features such as
craters, boulders, and terminator regions. This is done
with the use of a UNet CNN architecture, which can be
coupled onboard with other CNN for optical navigation,
as it is illustrated in [31]. In the latter, using segmentation
masks of two different asteroids, a CNN is tasked to
classify an approximate position in space around the
body while a Normalized Cross-Correlation algorithm is
used with an iterative procedure to further refine the
approximate position provided by the CNN. In [31] is
also observed that the prediction with regular shapes is
relying heavily on the geometric disposition of features
such as boulders and craters. On the other hand, the
prediction with irregular shapes is more reliant on the
characteristics of the global outline. From this perspective,
when using segmentation maps, regular bodies represent
a more challenging case study than irregular ones.

The second one is characterized by the role of RNN
architectures to improve the performance of single-frame
classification methods. This has been exemplarily shown
in [32], in which a CNN is tasked with the classification
of the location of an image from a variable resolution
grid of classes around the Earth. The approach presented
by the authors demonstrated to be capable to perform
adequate localization with a CNN, as well as being
able to improve performance by 50% when considering
sequences of images analyzed with a RNN. Such work has
been inspirational in [31], which attempted to replicate
the same idea but on a regular grid of points around
different asteroids and by using segmentation maps. From
these works as well as from the traditional onboard
usage of KF arises the interest to investigate to what
extent sequences of images can be used instead of single
frames to improve position reconstruction performance
and complement them with velocity estimates.

The third and last stream is represented by Convo-
lutional Extreme Learning Machine (CELM) networks
against CNN ones. The latter often relies on Gradient
Descent (GD) methods for training, which requires sub-
stantial computational resources, that in turn inhibit an
effective exploration of the architecture design space. In
this context, Extreme Learning Machine [33], [34], [35]
offers an alternative strategy and a new paradigm that
speedup training time while relying on random neurons
and simpler architectures. This concept is extended further
for computer vision tasks in [36], in which the concept of
CELM is introduced. The interested reader is directed to
[37] for a recent systematic literature review about CELM.
The core idea of CELM theory is that hierarchical pooling

architectures with randomized kernels are inherently capa-
ble to extract spatial information from images [38] better
or at the same performance level as CNN whose kernels
have been trained via GD methods. Training in a CELM
happens by solving a regularized Least Square (LS)
problem, which adjusts the weights β of the connection
between the two last layers in the network to match
training and validation data with network predictions.
Because training happens with a LS method, it is orders of
magnitude faster than GD. Moreover, since segmentation
maps represent a more comprehensive, yet simpler rep-
resentation of the environment with respect to grayscale
images, simpler architectures could be inherently more
suitable as IP methods. For similar reasons, the work
presented in [39] compares the performance of position
estimation with CNNs and CELMs around four different
shape models and with different labeling strategies. It is
found that for Didymos the performance of a CNN and
the one of a CELM are comparable. The findings in such
work have been instrumental for the assumptions under
which CELMs architectures are designed in this paper.

Pivoting on the work performed in these three research
areas, in this paper the authors investigate to what extent
can RNNs be used to refine position estimates taking as
input multiple frames rather than single ones and whether
RNNs can be used to determine the velocity components
of the spacecraft state vector. The authors prove that the
improvement on the position estimate is negligible, while
velocity is estimated accurately only when considering
rangefinder Light Detection and Ranging (LiDAR) data
to decrease the error in the radial direction. To do that,
a variety of trajectories around the primary body of the
Didymos binary system is considered as a case study,
since its interest for future exploration missions [40].

Finally, it is commented that with respect to traditional
IP methods and navigation filters, the data-driven architec-
tures presented in this work present both advantages and
disadvantages from an operational point of view. Gener-
alized data about the target body needs to be prepared
before arrival and needs to be constantly fine-tuned at
different stages of the mission to improve the performance
and stability of the networks. These need to be trained
on-ground using such data, but can then be uplinked
easily as an architecture and a collection of optimal
weights and biases. This would not be very different
from the type of human-in-the-loop effort such as in [10],
[41], [11], focusing entirely on the dataset generation
and network training other than the algorithms re-design
and fine-tuning. One drawback of the methodology is
explainability in terms of explainability of the predictions,
which is an active area of research.

The rest of the paper is organized as follows. In
Section II the generation of the datasets, as well as the
design and training procedure used for the CELM and
RNNs, are illustrated in detail. The performance of these
networks are then compared in Section III both for what
concerns the capability to improve the position estimate as
well as the one to generate a velocity estimate. Finally,
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in Section IV conclusions and future improvements are
briefly discussed.

II. METHODOLOGY

To obtain the position and/or velocity estimates from
a RNN, a training methodology is designed and divided
into two main parts, as illustrated in Fig. 1. In the first
one, CELM architectures are trained to generate position
estimates using segmentation maps of Didymos as input.
The best architecture is selected and used in inference
on a vast test dataset to generate sequences of position
estimates, which constitutes the input for the training of
the RNN. In the second part, an ensemble of RNN is
designed and trained to take as input variable sequences
of the position estimates previously generated with the
best CELM architecture with the goal of either improv-
ing the same position estimate or generating a velocity
estimate. The sequence of position estimates generated
with the CELM can either use only optical observables
or complement them with rangefinder LiDAR data. After
a sequence of N position vectors is obtained onboard, the
RNN is used to analyze it and produce an estimated state
vector valid for the Nth instance. This is either made up
of only position (p, pl), velocity (v, vl), or both (pv, pvl)
components. The l indicates whether or not LiDAR data
has been used to generate the position with the CELM.

CELM - Training

Background Surface

CraterBoulders

Train: 7500
Valid: 5000

800 ICs

7 ICs

Test: 48411

Y = πΘ∗

CELM
(X|θ∗CELM)

CELM - TestingTrain: 76800

Valid: 9600

Test: 9600

CELM - Dataset

πΘ∗

CELM

Y → pW
est

Shards generation

RNN - Dataset

12500

(p, v, pv, pl, vl, pvl)

RNN - Training

X

θ
∗

CELM

Fig. 1. Sketch of the combined training of the CELM and RNN
methods.

In inference the CELM and RNN are applied sequen-
tially after a first passage by a UNet that is used to

generate the segmentation masks from visible grayscale
images [28], [31]

In the schematic in Fig. 2, the networks of interest
in this paper are represented as a function π which
generates an output matrix Y as a function of the input
X, parameterized by the weights and biases θ and the
hyper-parameters Θ. The optimal sets of θ and Θ are
denoted by a ∗ superscript and are found via the training
and validation methodology described in detail in the next
sections.

A. Dataset of the Convolutional Extreme Learning
Machine architectures

Following the same procedure illustrated in [28], a
dataset of 12500 segmentation maps around the primary of
the Didymos binary system is generated in Blender1. Each
segmentation map is composed of 1024 × 1024 pixels,
each representing a specific morphological feature with a
value from 0 to 3: Background (0), surface (1), craters
(2), and boulders (3). The maps are obtained using the
Cycles rendering engine and assigning a pass index to
each layer. The dataset is split into training and validation
sets respectively made of 7500 and 5000 samples.

All the 12500 maps are uniformly distributed in spher-
ical coordinates across a region around Didymos with
range 5 < ρ < 30 km, azimuth −85 < ϕ1 < 85 deg,
and elevation −50 < ϕ2 < 50 deg in what is defined
as the W reference frame. The range interval is chosen
to always have the body resolved by the field of view
of the simulated sensor, which is 10× 10 deg wide. The
W reference frame is an inertially fixed reference frame,
centered on the Center of Mass (CoM) of the Didymos
asteroid, with the X-axis oriented towards the Sun and the
Z-axis as the north pole of the body [40]. This frame is
used since it simplifies the couplings between geometric
viewpoints around the body and illumination conditions,
as the Sun is always positioned towards the X-axis. Also,
the characteristic of these points is chosen as a reasonable
assumption for a realistic close-proximity scenario and
is based on previous experience gained by the authors
on the design of the close-proximity operations of the
Milani mission [40] and analogies with the Hera mission
[13]. Taking these considerations, the authors assume
a scenario about the Didymos asteroid is realistic if it
develops above the primary asteroid at various ranges
and with low-medium phase angles to allow scientific
acquisitions with passive sensors. It is also noted that
the absolute value of elevation from the equatorial plane
of the asteroid is kept below 50 deg, thus excluding
trajectories passing directly above the asteroid poles. This
choice has been inspired by the trajectories of Hera [13]
and Milani [40] which do not traverse the polar regions
of Didymos for most of their operational lives.

The segmentation maps are rendered assuming ideal
pointing and are accompanied by a set of labels that

1https://www.blender.org/, last time accessed: 3rd of May 2022.
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(δ, ρo) = πΘ∗

CELM
(X|θ∗CELM)

Y = πΘ∗

RNN
(X|θ∗RNN)

pCAM
est

ρl

qCAM→W

pW
est

(δ, ρo) (δ, ρl)

p1
est · · ·p

N
estpN

est

vN
est

(

pN
est,v

N
est

)

(p, pl)

(v
, v
l)

(pv, pvl)

UNET

t 1
· ·
· tN

CELM

RNN

Fig. 2. Sketch of the combined CELM and RNN methods in inference.

can be extracted from the image and can be used to
establish the position of a spacecraft w.r.t the asteroid.
Pivoting on the findings illustrated in [39], in this work
the strategy based on optical observables is adopted. The
CELM is therefore tasked to generate a 3-values vector
that represents quantities related to properties identified
in the image:

• The first two components represent the estimated
correction in pixel in the image plane between the
center of brightness and the projected CoM. This
quantity is also referred to as δ or scattering correc-
tion.

• The third component is the range ρ from the CoM
of Didymos.

Note that δ is translation invariant and, if properly
trained, can be predicted with random camera boresight
rotation to be rotation invariant. Using δ as a label a
network can be trained to ’center’ an small body using
its images as input. Using the same image preprocessing
pipeline described in detail in [39] (without the inclusion
of noise in the segmentation maps), data augmentation
is performed on the input, and each map-label pair is
transformed into a 128 × 128 matrix with the asteroid
not necessarily appearing centered in the frame but rather
randomly displaced in it.

B. Training of the Convolutional Extreme Learning
Machine architectures

Input and labels are normalized and then used to train
600 different convolutional architectures using the CELM
training paradigm [36], [39]. This consists essentially in
correcting only the connection between the last two layers
of the architecture by finding an optimal set of weights β
using a regularized LS method and random weights and

biases in the kernels used within the convolutional layers.
The training methodology of the CELM is illustrated in
the schematic in Fig. 3 and is the same used in [39]. The
training and validation datasets are also represented in
Fig. 3 respectively by black and green points in position
phase space around the Didymos asteroid. From these
points, segmentation maps are generated and used to train
and validate the CELM architectures with varying hyper-
parameters.

d = {1, 2, 3, 4, 5}
Kd = {Random Uniform, Random Normal, Orthogonal}
A = {nReLU, ReLU, hyperbolic tangent, none}
P = {Mean, Max}

(

Θ
1, · · · ,Θ600

)

Find Θ
∗

CELM
, θ∗

CELM
,β∗

×5

CELM - Training and Validation

Background Surface

CraterBoulders

Training: 7500

Validation: 5000

CELM - Training

CELM - Dataset

Fig. 3. Sketch of the first part of the training with the CELM.

The details of the hyper-parameters tested in the
600 different CELM architectures are illustrated in the
Appendix for the interested reader. Such vast exploration
of the architecture design space of the CELM is possible
only because training is orders of magnitude faster than
the one of CNN [38], [36], [37], [39], since the opti-
mization scheme to orient the weights and biases of the
network is not based on GD methods but LS ones and do
not require backward passes and iterations.
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The best CELM design is thus found as the one
achieving the minimum positioning error on the validation
set and referred to as πΘ∗

CELM
. This training framework

can be adapted for a real mission case to make efficient
use of the resources available for training and reduce
costs. The combination of exploration with a first pass to
find the best set of possible architectures and exploitation
with a second one dedicated to the optimization of their
weights and biases ultimately guarantees an efficient and
robust development of a network.

Using the output of the CELM, the position is gen-
erated following the same procedure illustrated in [39],
here briefly described. The δ is transformed into a LoS
(Line of Sight) vector in the CAM reference frame.
Using the attitude quaternion of the spacecraft (which is
assumed to be known from attitude determination from
a Star-tracker) and assuming to know the rigid rotation
between the inertial reference frame used by the Star-
tracker and a known asteroid frame, this Line of Sight
is transformed with the use of range ρ into a position
estimate in W reference frame. Note that in this paper no
error is simulated on the attitude quaternion so an ideal
measurement model from the Star Tracker is used. The
estimated position in W frame is thus computed as:

pW
est = qCAM→W · pCAM

est (1)

where pCAM
est is the estimated position in the camera

frame and qCAM→W is the quaternion that rotates from
the CAM to W frame. In this paper, ρ is either estimated
from the images with the best CELM architecture (ρo) or
with the use of a rangefinder LiDAR sensor (ρl). The latter
is simulated with the addition of normally distributed
noise on the true range ρt between CoM of Didymos and
the spacecraft as:

ρl = ρt + σl · Ω (2)

where Ω is a normal random distribution function, and
σl is the LiDAR standard deviation measured as σl =√
σ2
h + σ2

s , σh being the contribution by the instrument
uncertainty (assumed to be 1 m as an educated guess from
the DLEM rangefinder LiDARs from Jenoptik 2) and σs

the uncertainty provided by the deviation of the small-
body shape (σs = 13.63 m) due to irregularities from a
sphere centered in the CoM with a radius equal to the
mean value of 392.48 m.

C. Dataset of the Recurrent Neural Networks

Using the dynamical model illustrated in [40] and the
propagator tool developed to design the Close Proximity
Orbit (CPO) of Milani, a dataset of position-velocity
pairs is generated. The dynamical model considered three

2https://www.jenoptik.com/products/lidar-sensors-technologies/laser-
rangefinders/oem-modules-system-integration/dlem, last accessed 27th
of October 2022.

main accelerations: the gravity of Didymos, the third-
body effect of the Sun, and the solar radiation pressure.
Differently than the model in [40], the gravitational accel-
eration caused by Dimorphos, the secondary body of the
Didymos binary system, is not modeled since the focus of
this work is set on the primary. The gravity of Didymos
is modeled as a point mass for regions above 1.1 km and
using a polyhedra model below this range. This threshold
is clearly illustrated in the perturbation analysis in [40].
Also, instead of having the position of Didymos and the
Sun resolved precisely using ESA’s Hera mission kernels
as in [40] at any given time, both Didymos and the Sun
positions are assumed at a fixed epoch to simplify the
analysis, and allow an adequate comparison between the
different CPOs.

In such an environment, trajectories are designed us-
ing a strategy consisting of ballistic arcs patched together
at maneuver points, called waypoints. Each ballistic arc
between two consecutive waypoints is based on a step-
wise differential correction procedure and is the result
of an iterative targeting problem. First, initial conditions
are set that determine the ballistic trajectory to be flown
by the spacecraft. These include the position of the two
waypoints, the initial epoch, and the time of flight be-
tween waypoints. Second, a restricted two-body problem
Lambert’s solver is used to find a suitable first guess
solution for the initial velocity. Third, the initial state
is propagated forward using the dynamical model. The
deviation between the actual endpoint and the desired one
is used to compute a correction term on the initial velocity
generated at the previous step. The last step is iterated
until the discrepancy between the two end states is below
an arbitrarily defined threshold. More details about the
differential correction scheme can be seen in [40].

Using such scheme in combination with the dynamical
model, a total of 144411 trajectory points scattered
across Didymos are generated. These are divided into two
main groups, made of 96000 and 48411 points. The first
comprises short pieces of open trajectories computed from
800 Initial Condition (IC)s randomly distributed across the
position and velocity phase space, as illustrated in Fig. 4
and Fig. 5. These trajectories are obtained from a forward
propagation with a fixed timestep of 150 s for a total of
120 steps. This randomly distributed dataset is divided
into training, validation, and test splits respectively made
of 76800, 9600, and 9600 samples. Note that the splits
are divided consistently in different random trajectories
so that 640, 80, and 80 ICs are used for each split.
The second dataset comprises closed trajectories from
7 different ICs, which include intermediate maneuvers.
Closed trajectories are obtained by simply constraining
the first and last waypoints to be the same, using the
differential correction scheme used in [40] and described
before. This dataset is made of 48411 points which are
entirely used for testing. The CPOs described in this
dataset are representative of possible geometries to be
used in the proximity of a small body, and in particular,
are representative of real CPOs which can be adopted
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around the Didymos asteroid [40]. The geometries are
arbitrarily chosen from experience gained by the authors
on the Milani mission as well as loosely inspired from
geometries seen in previous missions around small bodies
such as in [41].

Once the position-velocity pairs have been determined
for all datasets needed for the design of the RNN,
segmentation maps are generated for each of the 144411
trajectory points. Each map is then used in inference
for the best CELM obtained in the previous section to
generate 144411 × 2 position estimates (with the use of
ρo or ρl).

After this passage, the entire dataset used for training
of the RNN is transformed into a sequence of fixed-
interval position-velocity pairs expressed in the W ref-
erence frame. It is noted that computing the position es-
timate apriori greatly simplifies and speed-up the training
of the RNN while retaining its capability to be devel-
oped for an onboard application. Ultimately, this choice
has proven to be successful in enabling an extensive
exploration of the architecture design space of RNN
architectures without the problem to have to deal with
a large amount of imagery data.

Each of the 807 different trajectories considered for
the RNN is divided into multiple shards defined by 3
parameters: the time interval between position estimates
∆T (which is a multiple of 150 s), the total number
of position estimates N from the CELM to be used to
generate an estimate with the RNN, and the initial sample
of the shard from the original trajectory j. In this paper,
5 possible combinations of (∆T ,N ) are investigated, as
illustrated in Tab. I, while j is rolled forward until there
are enough points in the trajectory to generate a shard of
N samples. For simplicity, the test sets are divided into
Te1 and Te2 , respectively representing the random shards
within the training envelope generated by the 80 ICs, and
the ones of the 7 CPOs illustrated in Fig. 4 and Fig. 5.

Tab. I
Number of shards in each train, validation and test sets for each

possible combination investigated.

∆T N Train Validation Te1 Te2
150 5 74240 9280 9280 48303
150 30 58240 7280 7280 47628
1800 5 46069 5760 5760 47104
3600 5 15337 1920 1920 45796
5400 3 30685 3840 3840 46432

D. Training of the Recurrent Neural Networks

The RNN is designed after a thorough hyper-
parameters search using a combination of LSTM cells
and a single layer of neurons. The RNN takes as input
a sequence of N previously estimated positions obtained
with the best CELM identified in the first part of the
training and produces the current estimate of the position,

velocity, or both, with and without the use of LiDAR. The
entire training procedure of the RNN is illustrated in 6.

Using the train and validation shards with the prop-
erties illustrated in Tab. I in combination with the six
different labeling strategies (p, v, pv, pl, vl, pvl), an
extensive hyper-parameter search for the definition of the
best RNN architectures is performed. The details of the
hyper-parameter search are illustrated in the appendix.

Repeating this methodology for each of the 6 label-
ing strategies considered in this work, best-performing
architectures are obtained. The characteristics of the best
performing RNN architectures found with the strategy
illustrated in the appendix are summarized in Tab. II.

Tab. II
Best hyper-parameters Θ∗ of the RNN for each labeling strategy.

Label p v p,v p v p,v

LiDAR No No No Yes Yes Yes
Name Rp Rv Rpv Rpl Rvl Rpvl

∆T [s] 150 3600 3600 150 3600 3600
N 30 5 5 30 5 5
lr 10−2 10−3 2 · 10−4 10−3 10−3 10−3

m 128 256 128 64 256 64
nlstm 16 128 128 256 512 256
nne 16 64 512 32 512 256

III. RESULTS

In this section, the results of the position and ve-
locity onboard reconstruction are analyzed. For a better
interpretation, a consistent color scheme and notation are
adopted. The performance of the RNNs are characterized
consistently by a palette of blue colors of the jet col-
ormap while the CELMs ones by red colors of the same
colormap, as it is possible to see from the legends in
Fig. 7 and Fig. 8. Also, the performance related to the
CELM are annotated as Ci, the ones related to the RNN
as Ri, the i representing the labeling strategy. To assess
the onboard state reconstruction capabilities, the following
global metrics are defined:

εp =
∥pest − ptrue∥2

∥ptrue∥2
· 100 (3)

εv =
∥vest − vtrue∥2

∥vtrue∥2
· 100 (4)

where pest and vest are the estimated position and
velocity vectors, ptrue and vtrue are the true position and
velocity vectors.

In Tab. III it is possible to see a summary of the
performance of the various methods with different label-
ing strategies. In particular, it is possible to see that the
coupling between LiDAR data and optical observables is
beneficial in terms of performance, which are one order
of magnitude better compared to estimates generated with
optical observables alone. It is also noted that the RNNs
reconstruct a better estimate whenever they are solely
focused on the position or velocity, as in the p, v, pl, and
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Fig. 4. Train, validation, and test sets of the RNN in the position phase space. All CPOs are used for testing.

Fig. 5. Train, validation, and test sets of the RNN in the velocity phase space. All CPOs are used for testing.

vl cases, and not in the mixed labeling strategies such as
in the pv and pvl cases.

Tab. III
Performance of the state reconstruction by CELM (C) and RNN (R)
with different labeling strategies. The values expressed are the µ(εp)

or µ(εv) and their corresponding (σ).

Labels Dataset C R R

p
Te1 2.69 (2.15) 1.28 (1.25) -
Te2 2.70 (2.01) 1.30 (0.87) -

v
Te1 - - 31.86 (27.75)
Te2 - - 33.67 (29.29)

pv
Te1 2.67 (2.05) 2.74 (1.66) 34.46 (28.82)
Te2 2.69 (2.00) 2.74 (1.67) 41.16 (33.12)

pl
Te1 0.24 (0.21) 0.22 (0.44) -
Te2 0.26 (0.18) 0.18 (0.12) -

vl
Te1 - - 4.07 (3.54)
Te2 - - 5.57 (7.71)

pvl
Te1 0.23 (0.20) 0.90 (0.68) 4.72 (4.71)
Te2 0.26 (0.18) 0.87 (1.66) 6.25 (7.90)

In Fig. 7 the distributions of εp and εv are illustrated
with box plots for the various labeling strategies on both
test sets (Te1 first and Te2 second). For completeness,
in Fig. 8 it is possible to see the same data generating

cumulative performance plots (Te1 solid and Te2 dashed).
From these figures, it is possible to better appreciate the
same trends identified by the global metrics in Tab. III. In
particular, the order of magnitude improvement in the per-
formance when considering the LiDAR, the capability of
the RNN to reconstruct the velocity, especially with data
from the LiDAR, and finally the capability of the RNN
to improve the position estimate, albeit only marginally,
as it is possible to observe by comparing Cp or Cpl with
Rp or Rpl. Finally, it is also noted that the training and
validation envelopes chosen for the RNN demonstrated to
have been chosen adequately for the testing conditions.

Finally, it is interesting to observe the reconstructed
states of the CPOs of the Te2 in the W reference frame
both in the position and velocity phase spaces respectively
in the scatter plots in Fig. 9 and Fig. 10. The size of
the points in these plots represents either εp or εv ,
accordingly. In particular, in Fig. 9 an oscillation is visible
mainly in the radial direction of the position estimate
obtained only with optical observables. This is caused
by the rotational state of the irregular shape model of
Didymos. It is therefore concluded that the irregular
shape model coupled with the rotation of the body is

8



800 ICs

7 ICs

Test: 48411

Y = πΘ∗

CELM
(X|θ∗CELM)

CELM

pCAM
est

IC

2 3
N-1

N

∆T
1

2

N

··
·1

(

p1
est · · ·p

N
est,p

N
true,v

N
true

)

j

j = 1

j = 2

TRNNXRNN

(∆T,N)

p

p v

v

RNN - Training and Validation
Find Θ

∗

RNN , θ
∗

RNN

Train: 76800

Valid: 9600

Test: 9600

··
·

(p, v, pv, pl, vl, pvl)

lr = {10−5, 10−3, 10−4, 10−5 }
m = {128, 256, 512, 1024 }
nlstm = {4, 16, 64, 256}
nne = {4, 16, 64, 256}

(

Θ
1, · · · ,Θi

)×5

ρl

qCAM→W

pW
est

(δ, ρo) (δ, ρl)

RNN - Dataset

RNN - Training

Shards generation

Fig. 6. Sketch of the second portion of the training with the RNN.

introducing higher errors in the range estimate which are
generated first in the Cp and then passed into Rp. These
oscillations are clearly visible in the close-up view of the
CPO trajectories projected in the XY plane of the W
reference frame in Fig. 9. When the LiDAR is used, as in
the Rpl and Cpl, the estimates are much closer to the true
CPOs, and the oscillation phenomenon is not observed so
strongly. This is an additional indicator this phenomenon
is mainly induced by the errors in the radial direction with
respect to Didymos, for which the LiDAR is capable to
provide a better estimate.

Using the same visualization in the velocity phase
space, Fig. 10 is obtained. First, it is possible to see
that the estimates without the LiDAR (Rv) are much
more loosely related to the true CPOs in velocity phase
space, while the ones obtained with the LiDAR (Rvl)
are indeed much more adherent to the true ones. Two
interesting phenomena are also observed in Fig. 10. First,
by comparing the training interval in Fig. 5 with the
testing one of various CPOs, it is possible to see that
CPO1 is the only one that is not contained within the
training envelope. Nonetheless, it is possible to see from
Fig. 10, that they are reconstructed partially correctly in
inference by the RNN, especially by Rvl. Second, of the
two groups of trajectories in the velocity phase space of
CPO1 divided by the sign of Vy, it is possible to see that
only the ones with positive Vy get reconstructed well in

all 3 components. Interestingly, the ones with negative Vy

are reconstructed well only in the X and Z components,
as it is clearly visible from the XY view in Fig. 10. It is
therefore concluded that a deficiency exists in the RNN
architecture to generalize the prediction outside the train-
ing interval. However, this is limited by only a component
and it is not clear in which other regions such behavior
would occur. The choice to design CPO1 outside of the
velocity training envelope of the RNN has been made
purposely to test the RNN generalization capabilities,
which demonstrated to be an interesting phenomenon to
be investigated.

From these results, a twofold conclusion can be drawn
on the capability of the RNN to reconstruct position
and velocity from sequences of multiple segmentation
masks. First, it can be concluded that a RNN can be
used to improve the reconstruction of the position vector.
However, this improvement is negligible, especially when
considering the case in which the LiDAR is used. Second,
for what concerns the velocity, the RNN is not capable to
generate an accurate estimate when only optical observ-
ables are used, which prompts the usage of the LiDAR
to decrease the positioning error in the radial direction
committed by the CELM. When optical observables are
complemented by LiDAR ones, the RNN is capable to
reconstruct the velocity accurately, and partially even
outside the training envelope. Finally, when considering
a mixed labeling strategy in which both the position and
velocity are estimated by the RNN, this proved to be more
complex than anticipated and generally brought slightly
less accurate estimates than when considering the two of
them singularly.

IV. CONCLUSIONS

In this paper, a set of RNN architectures is designed
and trained with various sequences of position estimates
obtained from optical observations of segmentation maps
extracted by CELM and optionally complemented with
LiDAR data.

It is proved that a RNN is capable of generating an
accurate prediction of the position of a spacecraft around
an asteroid from a sequence of position estimates. It is
observed, however, that the improvement in the position
accuracy is only marginal to a pinpoint image-position
prediction with a CELM. It is also observed that a RNN
can be successfully used to generate velocity estimates
from sequences of position extracted from images. The
estimate is influenced by the position reconstruction ac-
curacy, which in turn is highly dependent on the error
on the range, which being a value estimated across the
boresight direction is notoriously more sensible in optical-
based systems. To counteract this, the contribution of the
rangefinder LiDAR for a better range prediction has been
demonstrated to be of paramount importance both for
a more accurate position estimate and most importantly
for a more accurate velocity estimate. Finally, it is also
observed that in all RNN architectures considered, a
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Fig. 7. Box plot of the position (top) and velocity (bottom) reconstruction error.

Fig. 8. Cumulative performance of the position (left) and velocity (right) reconstruction error.

Fig. 9. True and estimated positions by Cp, Cpl and Rp, Rpl.

single 3-value position or velocity vector estimate has
proven to be more simple and accurate to achieve than
a combined 6-value position and velocity vector.

The RNNs described in this work offer the advantage
over a traditional KF of not needing an a-priori initializa-
tion of the state, which could be of particular relevance for
autonomous operations around an asteroid. On the other
hand, the dynamic of the environment is embedded in
the data used for training of the RNN. While an update
of the dynamic in a KF could be implemented with a
simple parameter change or by a different implementation
of a given dynamical model, when considering the RNN
approach presented in this work it would be necessary
to generate new data reflecting the updated dynamics
and retrain the RNN, which could be computationally
intensive.

Future works will be focused on the inclusion of
different dynamical settings to verify the generalization
capability of the RNN and possible additional mecha-
nisms to account for dynamic effects on the datasets.
Only Didymos has been considered for this study, but
the same methodology can be applied to any other small-
body of interest by considering dedicated datasets. Also,
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Fig. 10. True and estimated velocities by Rv and Rvl.

the LiDAR is assumed to be always available irrespective
of the range from the asteroid, which is an assumption
that may be invalid depending on the specific hardware
considered. Including the simulation of a duty cycle
of the LiDAR which could be activated only below a
predetermined distance could be interesting to assess the
effect on RNN, especially for what concerns the velocity.
In the current baseline images are acquired at a constant
frequency but the possibility to use variable time intervals
could be investigated together with the addition of a time
component in the labels.Finally, the segmentation maps
considered as input in this work are ideal. The effect of
real, onboard-generated maps as input is expected to cause
a small drop in performance that could be interesting to
investigate in future works.

APPENDIX

A. Details of the training of the Convolutional
Extreme Learning Machine architectures

Each CELM architecture is designed with a hierarchi-
cal convolution structure, which seems to be the one better
exploiting the random filtering capabilities [38]. While
going deeper into the network towards the fully connected

layer, the starting 128×128×1 tensor is squeezed; its size
is halved while its depth is doubled as a function of the
depth level following a power law from 16 to 256. Each
depth level is made up of the consecutive application of a
convolution, activation function, and pooling operations,
the convolutions being performed with 3 × 3 kernels.
Having defined a procedural set of rules to generate each
architecture, an ensemble of them is produced with the
set of hyper-parameters Θ illustrated in Tab. IV.

By considering the possible combination between d,
Kd, A, and P a total of 120 different architectures are
considered. To further extend the exploration, the ran-
dom initialization of each kernel distribution is executed
5 times, producing a total of 600 architectures considered
for training.

Once the forward pass of the CELM is executed on
the entire dataset, for each architecture a regularized LS
method is used with the 9 different regularization coef-
ficients C illustrated in Tab. IV. Note that, as illustrated
in [39], the training set is used to determine all possible
values of β depending on C, while the validation set is
used to determine the best value of C. For this purpose,
the size of the validation set has been set arbitrarily to be
a representative statistical sample. The combination of β
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Tab. IV
Sets of Θ explored for the CELM architectures.

Symbol Description Possible values
d Number of hidden layers

in the convolutional ar-
chitecture

1, 2, 3, 4, 5

Kd Random distribution of
the weight and biases of
the kernels

Random Uniform (-1,1), Ran-
dom Normal (0, 1), Orthogo-
nal

A Activation function used
after the convolution op-
eration

Normalized Rectified Linear
Unit (nReLU), Rectified Lin-
ear Unit (ReLU), hyperbolic
tangent (tanh), none

P Pooling strategy after the
activation function

Mean, Max

C Coefficient of the regular-
ized LS problem

10−4, 10−3, 10−2, 10−1,
100, 101, 102, 103, 104

determined from the training set and C from the validation
set is used in inference on the test set to produce an
estimate of the position.

The best architecture, πΘ∗
CELM

, is characterized by a
5 layers hierarchical pooling architecture which uses a
normalized ReLU as activation function, a mean pooling
strategy, and a Random uniform distribution of the ker-
nels.

B. Details of the training of the Recurrent Neural
Network architectures

Each RNN is generated in TensorFLow using a num-
ber of LSTM cells driven by nlstm parameter. As activa-
tion function of the cells, an hyperbolic tangent is used
while a sigmoid is used as recurrent activation function.
The LSTM cells are followed up by a single layer made
up of nne neurons which uses the ReLU as activation
function. The hyper-parameter search serves the purpose
to identify the values of nlstm, nne , as well as m and lr ,
that characterize the best performing RNN architecture
on the validation set. All the values of hyper-parameters
tested during training of the RNN are illustrated in V.

Adopting the methodology illustrated in [42] (that
recommends an iterative framework to find the optimal
architecture design by an incremental exploration of the
hyper-parameters space) with the empirical findings from
[43] (that stresses the importance of gradual changes
and global perspective while performing hyper-parameters
tuning), a 5 steps iterative grid-search hyper-parameter
finding is performed using adam optimizer with default
settings and a mean squared error metric as the loss
function for the components of the state vector.

In order to keep a consistent computational effort
throughout different steps, at each iteration, the number
of parameters to be tested is reduced while the epochs
are increased. A tournament kind of training is thus per-
formed as suggested from [42] defining as discriminative
global metric the best mean position error and/or velocity
error, using the εp and εv metrics defined in Section III
in (3) and (4).

Tab. V
Sets of Θ explored for RNN training.

Symbol Description Possible values

lr
Learning rate of

10−3,10−4, 10−5

Adam optimizer

m
Batch size for

128, 256, 512, 1024
gradient descent

nlstm
Number of LSTM cells

4, 16,64, 256
used in the RNN

nne
Number of neurons used

4, 16, 64, 256
in the RNN architecture

The training is performed one labeling strategy at a
time. In the first iteration, all possible combinations of
the RNNs represented by the hyper-parameters ΘRNN

from Tab. V are trained and validated on the 5 different
sets of shards in Tab. I for just 10 epochs, for a total of
1280 training episodes. The top best 128 sets of ΘRNN

which achieve the lowest global metric on the validation
set are stored and passed on to the next iteration. In the
second iteration, these 128 RNNs are trained from scratch
for 50 epochs, out of which only 10 top-performing RNNs
are passed into the next iteration. In the third iteration,
these are trained for 250 epochs to generate the single
best-performing set of ΘRNN . This corresponds to only
1 out of the 256 possible ones illustrated in Tab. V. In the
fourth iteration, this combination is further explored by 27
different combination in which m, nne, and nlstm are
changed around the best value found in the previous
iteration to the closest one possible (note that the this
corresponds to the next values following a power of 2 law,
so that for example the closest values of m = 64 would
be m = 32 and m = 128, which do not belong to the
original values illustrated in Tab. I). The RNNs obtained
with these settings are then trained for 250 epochs to
generate a single setup. In the fifth and last iteration,
this architecture is trained from scratch for 400 epochs
by changing manually only the learning rate lr.
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