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ABSTRACT

The SODA Synthesizer is an open-source, modular, end-to-end

hardware compiler framework. The SODA frontend, developed in

MLIR, performs system-level design, code partitioning, and high-

level optimizations to prepare the specifications for the hardware

synthesis. The backend is based on a state-of-the-art high-level

synthesis tool and generates the final hardware design. The backend

can interface with logic synthesis tools for field programmable

gate arrays or with commercial and open-source logic synthesis

tools for application-specific integrated circuits. We discuss the

opportunities and challenges in integrating with commercial and

open-source tools both at the frontend and backend, and highlight

the role that an end-to-end compiler framework like SODA can

play in an open-source hardware design ecosystem.
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1 INTRODUCTION

Machine learning (ML) and artificial intelligence (AI) have become

ubiquitous, with applications ranging from the smallest edge de-

vices to large high-performance computing systems. For example, in

sensor networks, ML algorithms can be used to filter and save only

the relevant data or to reconstruct the data from missing links [12].

Autonomous systems, including vehicles or scientific experimental
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instruments, must quickly process newly acquired data to make

real-time decisions and react to variations in the environment [18].

In areas such as finance or healthcare, they are used to identify

anomalies and provide predictions [16]. Scientific simulations may

employ surrogate models to speed up computation [1]. The diver-

sity of these application domains and of the algorithms used in each

area is leading to a Cambrian explosion [8] of specialized systems

that try to accelerate computations while fitting specific domain

requirements. These requirements include the usual metrics such as

power, performance, and area, but may also impose new constraints

on the system’s overall size, security, cooling needs, and real-time

awareness.

Domain scientists typically implement and validate their algo-

rithms in high-level programming frameworks. On the other hand,

providing hardware-accelerated solutions targeted to specific do-

mains requires large teams of hardware experts to identify common

algorithm patterns and design custom accelerators by directly imple-

menting the register transfer level (RTL) code. The quick evolution

of high-level programming frameworks and the intense research on

novel algorithmic methods make the conventional hardware design

approach impractical and time-consuming, leading to a significant

hardware productivity gap.

Approaches based on High-Level Synthesis (HLS) allow semi-

automatically translating algorithms described in higher-level lan-

guages to RTL. However, they typically require large restructuring

of the existing C/C++ codes with the tool- and hardware-specific

annotations, necessitating long porting from functional languages

and significant optimization efforts by hand. The conventional HLS

approaches still require a mix of manual and automated flows,

which can fail to propagate relevant information downstream, lead-

ing to loss of information and integration issues. Once the custom

RTL designs are finalized, they must deal with commercial tools

and process development kits (PDKs) for fabrication. These tools

and PDKs are often significantly diverse across multiple vendors

and typically include proprietary technologies, thus increasing the

efforts required to adapt designs to the specific process technology

target. As the fabrication complexities increase with novel technol-

ogy nodes, only the large hardware design companies can access

state-of-the-art design capabilities and dedicate the necessary re-

sources to address the mismatches and gaps at different levels of

the design stack. However, these companies typically focus on

fabricating solutions with broad commercial applicability. These

challenges severely limit the capability to bring disruptive new
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Figure 1: The SODA framework is an open-source, multi-level, modular, extensible, hardware generator composed of a high-level

compiler and a lower-level HLS backend

advanced computing concepts to late-stage product development,

thus not permitting their use in mission-critical applications with

limited commercial interest.

We argue that a new ecosystem of open-source design automa-

tion tools spanning the whole stack is required to address all these

challenges. This ecosystem should include high-level compilers,

hardware generators, simulation and verification infrastructures, in-

tellectual properties (IPs), logic synthesis and physical design tools,

and PDKs. Existing tools must be strengthened and integrated to en-

able various end-to-end flows, thus enabling agile hardware designs.

The open-source ecosystem also needs to effectively and efficiently

incorporate not only the existing standalone open-source tools, but

also inteface with the proprietary hardware design ecosystems to

leverage advanced methodologies with well-established and proven

industry practices. We furthermore argue that novel HLS method-

ologies, well integrated into such an open-source ecosystem, are

vital to establishing a fast, automated, iterative, and economically

sustainable design process.

In such a context, we introduce the SODA (Software Defined

Accelerators) Synthesizer [3], an open-source, modular, and exten-

sible end-to-end compiler-based framework for generating highly

specialized hardware accelerators from algorithms designed in high-

level programming frameworks. SODA is composed of a compiler-

based frontend to interface with high-level programming frame-

works and apply high-level optimizations, and a compiler-based

backend to generate Verilog code and interface with external tools

that compile the final design (either application-specific integrated

circuits (ASICs) or field programmable gate arrays (FPGAs). A key

feature of SODA is interoperability with other tools and extensi-

bility that enable the realization of an end-to-end agile hardware

design flow. This paper presents an overview of the SODA Synthe-

sizer framework and highlights two case studies demonstrating

interoperability with lower-level open-source logic synthesis and

physical layout tools. We leverage the SODA framework to synthe-

size designs with the OpenROAD [9] flow and two of the supported

open-source physical design kit (FreePDK 45 nm and ASAP 7 nm).

We conclude the paper by discussing future research directions

for the SODA framework in the context of the open-source design

automation ecosystem.

2 THE SODA SYNTHESIZER

The SODA Synthesizer (Figure 1a) consists of two interoperating

parts: i) SODA-OPT [2], the frontend compiler for system-level par-

titioning and high-level optimizations, and ii) PandA-Bambu [7], a

state-of-the-art HLS compiler. The input to the SODA framework is

code written in high-level programming frameworks, typically us-

ing Python, which is transformed into valid and optimized Verilog

RTL designs that can be implemented on different FPGA or ASIC

targets.

The input provided to the compilation pipeline is translated into

a high-level intermediate representation (IR) in the early stages of

the high-level optimizer. This high-level IR is defined with many

dialects in the Multi-Level Intermediate Representation (MLIR) [10].

SODA-OPT performs hardware/software partitioning of the input

program and architecture-independent optimizations by leveraging

features of the MLIR framework. SODA-OPT produces two differ-

ent types of LLVM IR as outputs. The first output is an optimized

LLVM IR file without external dependencies that represents the

kernels identified for acceleration and is passed as an input to the

PandA-Bambu [7] HLS compiler. The other output is an LLVM IR
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file representing the host program that orchestrates calls to the

accelerators. All the optimizations performed by the SODA frame-

work are implemented as different compiler passes. The generated

hardware design’s performance, area, and power are highly influ-

enced by the sequence of transformations and their parameters,

which are presented in detail in Section 3. SODA-OPT and PandA-

Bambu offer great control over the optimization process, which is

integrated with the design space exploration engine that selects a

suitable combination of compiler passes and parameters, optimizing

the design for a chosen target metric (performance, area, power,

etc.).

2.1 SODA-OPT Frontend

SODA-OPT (Figure 1b) is the SODA Synthesizer’s compiler fron-

tend. It is developed by extending MLIR- a framework recently

contributed to the LLVM project - that allows building modular

and reusable compiler infrastructure by defining dialects, i.e., spe-

cialized, and self-contained IRs that respect MLIR’s meta-IR syntax.

The conventional approaches followed by HLS design flows

require significant code changes or use compiler hints provided

via pragma annotations. These hints guide the optimizations (e.g.,
exposing more or less parallelism by controlling the unrolling factor

of loops) during the HLS process. SODA-OPT takes an orthogonal

approach by leveraging the semantic information carried by context-

specific MLIR dialects and automatically applies the high-level

transformations while preparing the input program for hardware

synthesis.

SODA-OPT provides compilation passes to Search, Outline, Op-

timize, Dispatch, and Accelerate parts of the initial specification

coming from high-level frameworks. SODA-OPT defines the soda di-
alect. This customMLIR dialect allows automatic partitioning of the

input application into a host program responsible for orchestrating

the runtime execution, and the custom hardware accelerators [2].

SODA-OPT analyzes the MLIR input and identifies code regions

(search) amenable for acceleration. The code regions identified are

then extracted into separate MLIR modules (outline). The outlined

modules undergo the SODA-OPT optimization passes. Taking ad-

vantage of the modular design of the MLIR framework, SODA-OPT

can leverage MLIR dialects and the associated optimizations di-

rectly provided with the MLIR distribution in the LLVM compiler

framework or provided externally. For example, SODA-OPT lever-

ages MLIR’s linalg and affine dialects to identify operators and
perform loop optimizations.

Machine Learning frameworks (e.g., TensorFlow, ONNX-MLIR,

and TORCH-MLIR), software for scientific computing (e.g., NPCOMP),

and general-purpose programming languages (e.g., the FLANG

Fortran compiler) are designing MLIR dialects, optimizations, and

lowering passes to optimize their input programs. SODA-OPT can

directly interface with all the frameworks that lower to dialects

provided in the MLIR distribution.

2.2 SODA Synthesizer Backend

Bambu (Figure 1c), an open-source state-of-the-art HLS tool from

the PandA framework, is the SODA framework’s compiler backend.

Bambu generates the accelerator designs starting from the LLVM

IR produced by SODA-OPT.

Bambu supports several frontends based on standard compil-

ers (GCC or Clang), but can additionally accept LLVM IR inputs

through a specific Clang plug-in. This feature allows SODA-OPT to

act as an additional specialized frontend to Bambu. Bambu builds an

internal IR to perform various necessary HLS steps (e.g., bitwidth

analysis, loop optimizations, resource allocation, scheduling, and

binding algorithms), and generates the RTL designs in a hardware

description language (Verilog or VHDL). In addition to the synthe-

sizable RTL code, it can also automatically produce testbenches for

verification. Bambu enables the SODA framework to target FPGAs

(from Xilinx, Altera, Lattice, NanoXplore) and ASICs. For ASICs,

SODA supports Verilog-to-GDSII generation using both commer-

cial (Synopsis Design Compiler) and open-source (OpenROAD [9])

logic synthesis tools. Bambu ingests LLVM IR generated after SODA-

OPT high-level optimizations for HLS, resulting in more efficient

accelerators compared to accelerators synthesized starting from

C/C++.

Bambu, by default, generates RTL designs following the finite

state machine with datapath (FSMD) model, but also integrates

methodologies to support parallel accelerator designs. It can, in

fact, integrate FSMD accelerators as processing elements in coarse-

grained dataflow designs [4], or in high-throughput, dynamically

scheduled, multithreaded parallel templates [13]. Bambu also ex-

poses modular synthesis methodologies [14]: differently from other

HLS tools, it can generate modules representing functions that may

be reused or replicated across an entire design and composed in a

complex multi-accelerator system.

MLIR descriptions are naturally parallel and hierarchical, making

it possible to trigger Bambu’s advanced synthesis methodologies

from SODA-OPT. Rather than requiring manual annotations on the

input code, we can define the design hierarchy at a higher level of

abstraction by exploiting MLIR. This approach demonstrates how

clear interfaces and integration between the two tools facilitate

hardware design, removing the need to provide input code with

hardware information in the form of annotations.

The downstream logic synthesis and physical layout tool can

then take the RTL descriptions generated by Bambu as input and,

together with physical constraints and design rules, generate the

final implementations for FPGAs or ASICs. However, even though

the generated RTL code can theoretically work for any type of tar-

get device and process technology, several steps of the HLS process

can benefit from a detailed knowledge of the targets. In particu-

lar, characterizing functional units and components in the resource

library for specific target devices and technology, and integrating

technology-specific interconnect models can improve the quality

of the results of the generated designs. The characterization pro-

cess adds valuable information like area, delay, and power for each

element of the resource library. Module binding and scheduling

HLS steps can then use this information to optimize for various

metrics (e.g., overall latency and area of the accelerator) and meet

constraints like the target frequency. For example, if sufficient slack

exists, two functional units can be chained together to execute in

the same cycle.

Bambu provides a specific tool, named Eucalyptus, to perform

resource characterization. Eucalyptus runs micro-benchmarks with

the backend logic synthesis tools and annotates the relevant infor-

mation for each resource in the resource library. Currently, Bambu
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already includes characterization for a variety of FPGA devices and

various ASIC technology libraries. However, new targets can be

added without recompiling the toolchain. This approach extends

the opportunities for design space exploration and allows almost

automatic tradeoff evaluations across different target technologies.

3 EVALUATION

We present two case studies to demonstrate the end-to-end ca-

pabilities of the SODA framework, i.e., automatically generating

specialized hardware accelerators from high-level programming

frameworks. We generate ASIC implementations for two different

sets of inputs: PolyBench [17] kernels and a LeNetmodel, leveraging

the OpenROAD [9] flow for two technology libraries: ASAP 7 nm [5]

and FreePDK 45 nm, respectively.

3.1 PolyBench kernels

In the first case study, we synthesized kernels from PolyBench [17]

directly described in MLIR, generating and analyzing the resulting

ASIC designs. These kernels are representative of many algorithmic

patterns used in scientific computing or high-level data science pro-

gramming frameworks. The ASIC implementations were generated

using the OpenROAD flow with the ASAP 7 nm technology library.

Table 1 shows the execution clock cycles, the maximum fre-

quency (in MHz) reachable, the design area (in 𝜇𝑚2), and the energy

(in nJ) for each generated design. We highlight the impacts of SODA-

OPT on the final designs of each kernel. The results for kernels that

are directly lowered to LLVM IR and synthesized by Bambu are

presented in the No optimizations columns, while the results for ker-

nels that first undergo SODA-OPT’s high-level optimization pipeline

are presented underWith optimizations. For each kernel, we also

report the implementation results considering input/output tensors

of different sizes (each tensor has the same number of elements for

each dimension), which leads to a different number of operations

executed, different optimization opportunities and, consequently,

different custom designs. We set both the SODA Synthesizer and

the OpenROAD flow to a frequency of 1 GHz.

SODA-OPT’s high-level optimizations have a favorable impact

on the generated designs: they show significant speedups and

are energy-efficient but incur comparatively small area overheads.

SODA-OPT’s optimizations (e.g., loop unrolling) expose better par-

allelism, resulting in better performance but larger design area

footprints. Table 1 also presents an interesting trend: the 1 GHz

design constraint was met by all the non-optimized cases, while the

maximum frequency for the optimized cases was typically reduced

for larger tensor sizes. The ASIC designs could not be generated for

a few optimized cases with larger tensor sizes because of routing

congestion during the OpenROAD flow.

3.2 Neural Network: LeNet

In the second case study, we automatically translated a LeNet model

trained in TensorFlow to the linalg dialect and employed SODA-
OPT to search, outline, and optimize different regions of the network.

We then generated different specialized accelerators with the SODA

framework. In this case, the ASIC implementations were generated

using the OpenROAD flow with the FreePDK 45 nm technology

library.

Figure 2: ASIC implementations of LeNet layers.

Table 2 shows the execution clock cycles, the design area (in

𝜇𝑚2), and the power efficiency (in GFLOPS/W) obtained for non-

optimized and optimized SODA implementations of accelerators

for the different layers from the LeNet convolutional neural net-

work model. SODA-OPT’s optimizations provide a speedup of the

accelerators proportional to the increase in the area of the acceler-

ators. The power efficiency of the generated accelerators may be

slightly reduced due to an increase in power consumption of the

faster solutions. Figure 2 shows the floorplans (visualized from the

standard GDSII format) of the same accelerators, highlighting the

increase in the area of the better-performing optimized designs.

4 RESEARCH OPPORTUNITIES

A modular hardware compiler infrastructure is critical in providing

the necessary agility to move from high-level specifications to

hardware implementation with minimal or no human intervention.

Such infrastructure is essential to an open-source ecosystem that

should enable agile hardware design with a quick, fail-fast design

cycle. However, the larger open-source ecosystem also provides a

variety of near, medium, and longer-term opportunities for applied

use and research performed with the tools.

The current tools from the open-source ecosystem have demon-

strated interoperability and the possibility of establishing several

end-to-end design flows that enable fast prototyping of advanced

design concepts. However, there is still the need to strengthen in-

tegration among tools from various institutions - with different

research focuses - bringing them closer to production quality. As

the SODA Synthesizer demonstrates, modular and interoperable

open-source compiler infrastructures such as LLVM IR and MLIR

are paving the way for integration across various tools. Commu-

nity initiatives and projects such as CIRCT [6], which leverages

the MLIR infrastructure to build hardware compilers, are starting

to lead the way. However, significant foundational work is still

needed to retrieve and reuse past and current leading-edge research

performed in isolated tools.

Another key aspect is interoperability with commercial solu-

tions. While open-source tools have been mainly research-focused,
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Kernel Size

No optimizations With optimizations Trade-offs

Cycles
Max. freq. Area Energy

Cycles
Max. freq. Area Energy

Speedup
Area

(MHz) (𝝁𝒎2) (nJ) (MHz) (𝝁𝒎2) (nJ) Overhead

atax

2 118 1164.28 1,658 1.63 38 986.65 2,539 1.13 3.11 1.53

4 463 1384.20 1,970 8.20 63 1182.30 8,211 5.20 7.35 4.17

8 1,819 1371.31 3,056 33.03 113 634.15 22,677 34.21 16.10 7.42

bicg

2 113 1778.91 1,605 1.26 24 1206.61 4,425 0.72 4.71 2.76

4 458 1532.42 1,881 4.00 39 1098.86 12,015 3.87 11.74 6.39

8 1,810 1314.11 2,974 34.98 78 400.86 30,744 21.01 23.21 10.34

gemm

2 161 1401.78 3,100 4.66 27 1411.24 5,067 1.09 5.96 1.63

4 1,258 1286.68 4,597 37.74 51 782.38 21,089 16.36 24.67 4.59

8 10,450 1451.15 2,590 143.30 139 – – – 75.18 –

gemver

2 246 1250.11 3,778 9.01 66 1374.54 5,832 2.78 3.73 1.54

4 974 1031.52 7,835 68.27 91 652.62 18,595 43.50 10.70 2.37

8 3,833 1121.75 7,547 292.83 141 – – – 27.18 –

gesummv

2 142 1554.66 2,336 2.25 35 1235.27 4,866 1.12 4.06 2.08

4 514 1032.78 2,468 12.09 50 1128.52 10,431 5.10 10.28 4.23

8 1,922 1279.50 3,614 44.16 101 638.13 25,487 52.07 19.03 7.05

mvt

2 114 1583.37 1,737 1.09 24 892.39 4,408 1.07 4.75 2.54

4 450 1355.68 4,760 20.15 41 1125.35 13,366 3.59 10.98 2.81

8 1,819 1216.38 3,544 60.56 81 559.19 32,757 16.08 22.46 9.24

three_mm

2 340 1155.26 3,577 9.42 42 1176.22 9,424 3.50 8.10 2.63

4 2,719 1106.28 7,994 163.69 75 305.15 40,428 90.69 36.25 5.06

8 22,130 1243.23 5,614 656.84 231 – – – 95.80 –

two_mm

2 274 1234.98 4,082 11.51 45 1337.67 6,915 0.78 6.09 1.69

4 2,163 1019.49 7,063 128.57 75 422.71 34,326 20.94 28.84 4.86

8 17,762 1281.06 4,251 508.85 – – – – – –

Table 1: PolyBench results with OpenROAD and the ASAP 7nm technology library

Kernel
No Optimizations With optimizations Trade-offs

Cycles
Area Power eff.

Cycles
Area Power eff.

Speedup
Area

(𝝁𝒎2) (GFLOPS/W) (𝝁𝒎2) (GFLOPS/W) Overhead

CONV_01 10,262,618 29,073 4.43 4,627,982 124,255 2.68 2.22 4.27

BIAS_02 251,694 10,395 11.48 40,826 60,048 9.01 6.17 5.78

RELU_03 151,342 7,385 41.55 38,446 35,695 38.39 3.94 4.38

CONV_04 85,380,948 36,814 3.32 83,380,180 37,556 3.34 1.02 1.02

BIAS_05 62,932 10,409 11.00 10,222 60,007 8.41 6.16 5.76

RELU_06 37,844 7,464 41.75 9,620 35,950 37.04 3.93 4.82

Table 2: Evaluation of non optimized and optimized LeNet operators in ASIC technology (FreePDK 45 nm at 500 MHz)

they sometimes lack the production-ready quality of proprietary

tools. Conversely, commercial tools are typically difficult to directly

integrate into automated flows and require significant manual ef-

forts, since some of their algorithms and interfaces are proprietary.

Regarding these aspects, we are investigating the integration of the

SODA framework with several different tools of the open-source

and proprietary ecosystems. For SODA-OPT, in particular, we have

implemented initial support for commercial FPGA synthesis tools
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(Vitis HLS) by also generating optimized LLVM IR inputs, extending

the work in [20]. SODA-OPT can already reason about system-level

design. It performs code partitioning, optimizations specific for

custom hardware generation, and composition of a system archi-

tecture, generating glue code for control processors or assembling

accelerators in dynamically scheduled architectures. A similar ap-

proach could be further extended by integrating rapid prototyping

platforms in the open-source hardware ecosystem, such as the Em-

bedded Scalable Platforms (ESP) [11]. We are currently working to

integrate both SODA-OPT and Bambu with ESP. SODA-OPT can drive

the system-level design, leveraging the services offered by ESP to

invoke accelerators. Bambu can provide ESP with an open-source

HLS backend for custom accelerators, which will be generated

from code partitioned, optimized, and mapped on the ESP SoC by

SODA-OPT.

Considering the availability of open-source IPs and architectural

templates, several of these modules can either become targets for

SoC design (e.g., platforms provided with RISC-V cores) or part of

the HLS tool resource library. For example, Bambu can integrate

templates of systolic arrays in its resource library, allowing it to

generate specialized processing elements, similar to the approach

presented in [13].

The presented case studies demonstrate our support for an open-

source logic synthesis flow, leveraging the OpenROAD flow with

different PDKs. With the same resource characterization and inte-

gration mechanisms discussed in Section 2.2, it would be possible

to support the SkyWater 130 nm and 90 nm PDKs and related

toolchains. Such integration would also enable chartered fabrica-

tion runs using such technologies. Furthermore, integrating solu-

tions like LS Oracle [15] in the OpenROAD flow, which further

optimizes the logic synthesis process, will allow another level of

design space exploration across the tools, potentially without even

directly exploiting resource characterization. Similarly, we have

demonstrated [3] support for commercial logic synthesis tools (Syn-

opsys Design Compiler) and leading-edge proprietary PDKs (Global

Foundries 14/16 nm) previously. However, we cannot distribute the

information obtained through the resource characterization step

due to license agreements and the resource characterizationmust be

repeated every time. Bambu’s current resource library for the FPGA

targets includes characterization for select commercial FPGAs from

AMD/Xilinx, Intel/Altera, NanoExplore, and Lattice.

Finally, an additional opportunity enabled by the open-source

ecosystem is supporting domain-specific FPGAs. SODA could inte-

grate with solutions such as OpenFPGA [19], performing high-level

analysis to identify patterns that might require additional hard

macros in the hardware substrate while still leveraging fine-grained

reconfigurability. The HLS tool could perform design space explo-

ration, leveraging the hard macros through the resource library, or

even synthesizing the hard macro on the fly. The SODA framework

would then be able to automatically provide the domain-specific

FPGA organization and generate it using the logic synthesis and

physical layout tools.

We believe that creating and strengthening integration between

open-source hardware design tools will be critical with the upcom-

ing investments in advanced manufacturing. Providing end-to-end

solutions, from high-level specification to fabrication, will allow

exploring new computing concepts and make domain-specialized

systems viable for many more areas. Integrating with industrial

tools will also enable quicker technology transitions, removing

research and development cost barriers. Finally, a rich open-source

ecosystem will make training the next generation of hardware

design workforce and researchers much more effective.

5 CONCLUSIONS

This paper overviews the SODA framework, an end-to-end, multi-

level, open-source hardware compiler composed of a frontend based

on the MLIR infrastructure and a backend leveraging a state-of-

the-art HLS engine. Through its frontend, SODA interfaces with a

variety of high-level programming frameworks typically used by

domain scientists for the novel "converged" applications. Through

its backend, it can generate complete hardware designs targeting

FPGAs from different vendors and ASICs. The end-to-end nature of

the framework provides the agility needed to go from algorithmic

formulation to hardware implementation.We presented case studies

showing the SODA framework in the larger open-source ecosystem

of hardware design tools, and discussed the integration with other

tools, such as the OpenROAD flow with the FreePDK 45 nm and

the ASAP 7 nm technology libraries. We also discussed the oppor-

tunities that the SODA framework provides and made a case that

SODA can be a key technology enabler for fully integrating other

frameworks into an ecosystem.
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