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Optical Network Failure Management (ONFM) is a promising application of Machine Learning (ML) to
optical networking. Typical ML-based ONFM approaches exploit historical monitored data, retrieved in
a specific domain (e.g., a link or a network), to train supervised ML models and learn failures character-
istics (a signature) that will be helpful upon future failures occurrence in that domain. Unfortunately, in
operational networks, data availability often constitutes a practical limitation to the deployment of ML-
based ONFM solutions, due to scarce availability of labeled data comprehensively modeling all possible
failure types. One could purposely inject failures to collect training data, but this is time consuming and
not desirable by operators. A possible solution is Transfer Learning (TL), i.e., training ML models on a
Source Domain (SD), e.g., a lab testbed, and then deploy trained models on a Target Domain (TD), e.g., an
operator network, possibly fine-tuning the learned models by re-training with few TD data. Moreover, in
those cases when TL re-training is not successful (e.g., due to intrinsic difference of SD and TD), another
solution is domain adaptation, which consists of combining unlabeled SD and TD data before model
training. We investigate domain adaptation and TL for failure detection and failure-cause identification
across different lightpaths leveraging real OSNR data. We find that, for the considered scenarios, up to
20 percentage points of accuracy increase can be obtained with domain adaptation for failure detection,
while for failure-cause identification only combining domain adaptation with model re-training provides

significant benefit, reaching 4-5 percentage points of accuracy increase in the considered cases.

1. INTRODUCTION

Machine Learning (ML) is currently under investigation as a
promising enabler for automated design, control and manage-
ment in Optical Networks (ONs). It has been shown [1] that ML
can be used to extract useful information from the high volume
of data retrievable in ON monitors. In particular, ML applied
for automated Optical Network Failure Management (ONFM) is
of paramount importance, as it goes beyond limitations (e.g., in
terms of cost and required time) of traditional troubleshooting
procedures, which are heavily based on manual observation of
network alarms by human domain experts.

As discussed in [2], several studies have demonstrated the
potential of ML and data analytics in leveraging field data to
automate ONFM and effectively perform Quality of Transmis-

sion (QoT) monitoring [3], failure detection [4, 5], failure-cause
identification [6, 7], failure localization [8-11] and failure pre-
diction [12]. Most ML-based ONFM approaches rely on super-
vised learning techniques and on monitoring of signal-quality
data, e.g., Optical Signal-to-Noise Ratio (OSNR) and /or Bit Error
Rate (BER), made available by modern coherent receivers or by
Optical Spectrum Analysers (OSAs). The idea behind such ap-
proaches is that ML models learn the “signature” of past failures
observing historical data. For such historical data, a correspon-
dence between system characteristics (i.e., the features) and an
output label, indicating known failure scenarios (e.g., the pres-
ence/absence of a failure, or the failure cause) is available. Then,
this signature is recognized in future observations of similar
failures. In general, ML has been demonstrated to accurately
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Fig. 1. Example of TL for lightpath failure detection.

recognize such failure signatures under specific assumptions
(e.g., a single lightpath, a certain number of spans in an optical
transmission system, etc.) [4, 6]. However, a main limitation
to practical ML deployments for ONFM comes from the fact
that, in real network scenarios, availability of historical failure
data can be scarce for several reasons (e.g., lack of monitoring
equipment at every network node, high cost of acquisition of
large datasets, high resilience of optical transmission systems,
which makes failures occurrence rare phenomena, etc.).

Let us consider the example in Fig. 1, which shows a sim-
ple ON constituted by four Reconfigurable Optical Add/Drop
Multiplexers (ROADMSs) interconnected through four optical
fiber links, equipped with inline Optical Amplifiers (OAs). Two
lightpaths (LPs) are routed in the network, namely, LP A through
nodes 1-2-4, and LP B between nodes 1 and 3.

In this example, we assume that the OSNR at the receivers
of LPs A and B can be degraded due to, e.g., an unexpected
OA gain decrease, and therefore a failure may occur for any of
the two lightpaths. Our objective is to train a ML model for
failure detection on LP B, i.e.,, we aim at understanding, e.g.,
by observing lightpath’s OSNR at the receiver (e.g., through an
Optical Spectrum Analyzer (OSA)), if an anomaly is affecting
LP B, which would lead to a failure. In case no historical data
is available for failures on LP B, a supervised ML model cannot
be trained to achieve our goal. So, one alternative is to train
the ML model on a different domain (e.g., another lightpath, as
LP A in Fig. 1, where failures are purposely injected to collect
data) and then to deploy the trained model and apply it to the
domain of interest, i.e., LP B. However, often the Source Do-
main (SD), i.e., LP A in Fig. 1, can be significantly different from
the Target Domain (TD), i.e., LP B in in Fig. 1, e.g., in terms of
path length, types/number of ROADMSs, Wavelength Selective
Switches (WSSes) and OAs along the route, used wavelength,
baud rate, modulation format, etc. Therefore, the failure signa-
tures learned by training on SD are only partially useful when
applied to TD.

As a consequence, further data from the TD must be collected
to re-train the ML model originally trained on SD. This is a
costly solution, as, if complete re-training of the ML model is
necessary each time the model is applied to a different lightpath,
a very large re-training overhead will be necessary on a real
operational network. For these situations, Transfer Learning
(TL) is considered as a possible solution. TL allows to exploit the
existing ML models trained on the SD, and then, by collecting
only a small amount of data from the TD, TL allows to fine-
tune the original models, enabling faster and more efficient
adaptation of ML models to various lightpaths.

However, in some cases, TL might not be sufficient to gain

satisfactory performance, as the SD and TD might have very
different characteristics. Another solution is domain adaptation,
which consists of combining unlabeled SD and TD data before
model training with SD data, in order to achieve a more effective
utilization of the available data from SD and TD.

In view of this, TL [13, 14] and domain adaptation techniques
[15] constitute two promising tools to reduce the amount of
additional data from the TD to fine-tune the ONFM models that
were originally trained only with SD data.

In this paper, we investigate the application of TL to fail-
ure detection and failure-cause identification in ONs, focusing
on two distinct types of failures, i.e., 1) extra attenuation and 2)
excessive filtering. We consider real OSNR data observed at a
lightpath receiver as inputs for the ML-based failure detection
and failure-cause identification, which are modeled as ML clas-
sification problems. This paper extends our previous work [16]
by including the following additional contributions:

¢ we formally describe the adopted domain adaptation and
TL methods and discuss how we applied them to our
ONFM use cases;

¢ we consider two ONFM use cases: failure detection and
failure-cause identification ([16] covered only failure detec-
tion);

¢ we describe in detail the proposed ML-based framework for
failure detection and failure-cause identification exploiting
domain adaptation and TL across different lightpaths; and

¢ we provide extensive numerical results for both use cases.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work and clarifies the novelty of our work. Sec.
3 formally defines the ML-based failure detection and failure-
cause identification problems. Sec. 4 discusses the domain-
adaptation algorithm considered in this paper. The various
steps constituting the ONFM framework are described in Sec.
5. We provide numerical evaluation in Sec. 6. Conclusion and
possible future extensions are discussed in Sec. 7.

2. RELATED WORK

Several studies have adopted ML for ONFM (see, e.g., ref.
[17] for a review on the topic) and many other ON use cases
[1, 18, 19]. In particular, the interest on TL has increased in
the past few years for applications at both physical layer and
control/management of an ON, especially concerning QoT es-
timation and prediction. For example, authors in [20] exploit
evolutionary TL to optimize the weights and the architecture
of a neural network for QoT estimation in multi-domain Elastic
Optical Networks (EONs). TL for QoT estimation has been also
investigated in [21, 22], where authors use TL to transfer knowl-
edge across different network topologies, and in [23], where the
performance of TL-based domain adaptation and active learning
approaches, working with limited-size datasets, are evaluated
and compared with standard ML-based QoT estimators. Ref.
[24] adopts TL to reduce uncertainty in the Generalized Signal-
to-Noise Ratio (GSNR) computation across different lightpaths
sharing the same types of equipment. A similar evaluation is
performed in [25] to predict QoT in terms of Q-factor, consid-
ering systems with different modulation formats, transmission
distances, and fiber types. TL for QoT estimation is also dis-
cussed in [26], where authors present a life-cycle management of
an ML algorithm deployed in an optical network. Interestingly,
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Fig. 2. OSNR window of duration W including OSNR observa-
tions with Tognr sampling period.

in [27] knowledge transfer is applied between ML algorithms
of different natures, i.e., Recurrent and Feedforward Neural
Networks, and TL is used to address nonlinear equalization in
short-reach optical links.

Focusing on networking problems, authors of [28] adopt TL
to perform Routing, Modulation and Spectrum Allocation in
EON:ss to reduce learning time and improve network blocking
performance. In [29], TL is used to predict spectrum defrag-
mentation and perform spectrum optimization in multi-core
EONSs.

To the best of our knowledge, no previous study has consid-
ered TL in the context of ONFM, in particular concerning failure
detection and failure-cause identification use cases. In this paper,
using real data coming from fault injection on a lab testbed, we
investigate for the first time failure detection and failure-cause
identification with domain adaptation and TL across different
lightpaths, considering as source and target domains lightpaths
with different number of traversed ROADMs (i.e., number of
hops) and optical fiber links.

3. ML-BASED FAILURE DETECTION AND FAILURE-
CAUSE IDENTIFICATION PROBLEM STATEMENT

We model failure detection and failure-cause identification as
ML-based binary classification problems. In both problems, we
concentrate on a given lightpath for which we are given the
OSNR at the receiver, monitored with sampling period of Tosnr
seconds (e.g., Tosnr = 1s). Classification is performed consider-
ing OSNR windows of duration W seconds, each one including
a sequence of 1 + W/Tpgnr consecutive OSNR observations
(also including the OSNR samples at the start and end times of
the window), as qualitatively shown in Fig. 2.

According to the problem at hand (i.e., either failure detection
or failure-cause identification), given an OSNR window as input,
we classify it in the following way:

¢ for the failure detection problem, we distinguish between
classes 1) normal and 2) failure;

e for the failure-cause identification problem, we discriminate
between 1) extra attenuation and 2) excessive filtering failure
causes.

Note that, for the failure-cause identification problem, we
assume as inputs (in both ML training and test phases) only
OSNR windows corresponding to some failure, i.e., we neglect
normal windows. Development of multi-class classifiers, able to
distinguish between normal (i.e., non-failed), extra attenuation,
and excessive filtering at once, is an open problem for future
work.

4. DOMAIN ADAPTATION METHOD

Pure application of TL, i.e., training ML models on a SD and
testing/deploying the learned model on the TD, possibly with
partial re-training with limited amounts of TD data, may be
insufficient in some cases, and lead to ML models’ performance
deterioration. This is mainly due to the intrinsic differences
between SD and TD data distributions, i.e., in our case, the dif-
ferent lightpaths constituting the two domains can have different
path lengths, types/number of ROADMs, WSSes and OAs along
the route, used wavelength, baud rate, modulation format, etc.
Therefore, in this paper we also adopt a domain-adaptation al-
gorithm, called CORrelation ALignment (CORAL), originally
proposed in [30]. CORAL is an unsupervised domain-adaptation
approach which aims at aligning the features distribution of data
points in SD and TD. Although several other domain-adaptation
approaches can be used [13], we adopt CORAL, because, besides
SD data, it requires only unlabeled TD data, which is a more
realistic scenario in the context of ONFM.

In short, CORAL calculates the covariance of TD data and
then uses it to transform the statistical distribution of the features
in SD data such that they are distributed as in the TD. Finally,
the transformed SD data are used to train the ML model in the
TD in a supervised manner. More formally, let X5 and Xt be the
matrices including the values of the features for data points in
SD and TD, respectively; the basic idea of CORAL is to transform
SD features distribution Xs and obtain a new distribution Xg,
which is aligned to the TD features distribution by following the
steps below:

1. compute SD and TD covariance matrices, i.e.,
Cs = XsX§ @
Cr = XrX} (2)
where th (respectively, X%) is the transpose of matrix Xg
(resp., XT);

2. decorrelate SD features distribution using SD covariance
matrix (i.e., perform so-called features whitening) as:

Rs = Cg512Xs 3)

3. align the decorrelated (whitened) SD features distribution
using TD covariance matrix (i.e., perform so-called features
re-coloring) as:

X = C1/*Ks @

After CORAL is applied, TL can be adopted by training ML
models with SD data considering new features distribution X§g
associated with the original labels in the SD, and then perform
partial retraining with few TD data, where original unchanged
features distribution X7 is considered and associated with TD
labels.

This process guarantees that information on features dis-
tribution in the TD is leveraged during first model training
performed with labeled SD data. This scenario is in line with
realistic situations in which ONFM should be applied to TD
where large amounts of unlabeled data is available (e.g., because
OSNR is continuously monitored in a deployed TD lightpath),
whereas only a limited amount of labeled TD data is available,
e.g., because the operational TD lightpath has been rarely af-
fected by failures. Therefore, the large amounts of unlabeled
SD/TD data can be used before the initial ML model training,
when CORAL is used to perform SD/TD domain adaptation;
then, the available labeled TD data will be leveraged at a second
step to fine-tune the ML model.



5. ONFM FRAMEWORK WITH DOMAIN ADAPTATION
AND TL ACROSS DIFFERENT LIGHTPATHS

In this section, we describe the proposed ONFM framework used
to perform failure detection and failure-cause identification with
domain adaptation and TL across different lightpaths. The main
building blocks of the ONFM framework are shown in Fig. 3 as
a sequence of steps of our framework. In the figure we detail
the main decisions taken at each step, and also show how SD
and TD data are involved in the various steps. In the following
subsections the various building blocks are described in more
detail.

A. OSNR Data Collection and Normalization

As first step, OSNR traces are collected from lightpaths with
different characteristics, in terms of number of hops, pres-
ence/absence of a failure, type of failure (i.e., either extra at-
tenuation or excessive filtering), and failure location along the
route. For each observed lightpath I, we assume a total of D
OSNR samples are collected, and we identify the sequence of
samples as OSNR, (), where k = 0,1, ..., (D — 1) indicates the
k-th observation instant, i.e., ty = k- TognR-

As we will discuss in Sec. 6, different SD/TD pairs are identi-
fied in order to perform different analysis on the effectiveness of
our TL method. As an example, in case of failure-cause identifi-
cation, data in SD can be extra attenuation and excessive filtering
OSNR data for lightpath /1, and data in TD can be extra attenua-
tion and excessive filtering OSNR data for lightpath I;. Recall
that, as discussed in Sec. 1, in realistic scenarios TD datasets are
typically much smaller than SD datasets. Although we collected
the same amount of OSNR data for all the lightpaths, we emu-
late the typical difference of size between SD and TD datasets
by ignoring part of the TD data during numerical evaluation.

In this phase, raw OSNR data are normalized as follows:

OSNR(ty) — ming[OSNR; (t;)]

OSNR(t) = S TOSNR, (17)] — min [OSNR, (£7)]

(5)

Such OSNR normalization provides modified OSNR values
ranging between 0 and 1, and allows building ML classifiers
which are independent of specific OSNR absolute (i.e., raw) val-
ues collected at the receivers. In fact, for different lightpaths,
even if they may have similar failure characteristics (e.g., two
lightpaths in normal conditions, or two lightpaths both suffering
from excessive filtering), OSNR values may fluctuate around
very different mean values, according to system settings in the
two lightpaths (e.g., spans length, number of hops, center wave-
length, types/number/gain of the traversed optical amplifiers,
etc.). Therefore, in such situations, simple observation of OSNR
raw data would not be sufficient to perform failure detection
and failure-cause identification independently from the specific
lightpath.

B. OSNR Window Formation and Features Extraction and
Scaling

For each lightpath I in both SD and TD datasets, the sequence of
D OSNR samples is converted into a set of windows of duration
W (which is varied in the different experiments carried out in
this paper), including OSNR samples collected every Tposnr
seconds, as discussed in Sec. 3. Note that different windows
may overlap, e.g., if window “a” contains samples from f; to
t10, the successive window “b” contains samples from £ to ¢17.
Once windows are formed, they are treated independently one
from another at train/test phases, as we concentrate on the

detection and failure-cause identification of failures observing
a “snapshot”of the OSNR windows. In other words, we do
not include any temporal relation between any two distinct
windows in our ML classifiers, and it may even happen that two
overlapping windows are included in separate training and test
sets, respectively’.

Each window is characterized by a certain label y, which
represents the lightpath failure status, i.e., 1) normal vs. 2) failure
for failure detection, or 1) extra attenuation vs. 2) excessive filtering
for failure-cause identification, respectively.

For both failure detection and failure-cause identification
problems, we consider the same features vector x characteriz-
ing each OSNR window and constituted by the following 16
features:

e x; = min: minimum OSNR value in the window;

® xy = max: maximum OSNR value in the window;
® x3 = mean: mean OSNR value in the window;

e x4 = std: OSNR standard deviation in the window;

* x5 = p2p: “peak-to-peak” OSNR, i.e., p2p = max — min;

x¢ = RMS: OSNR root mean square in the window;

® X7 — Xx1¢4: the ten strongest spectral components in the win-
dow, extracted by applying Fast Fourier Transform (FFT)
on the OSNR window.

These features have been selected as they are similar to those
used in our previous works [17] and [31], where BER windows
have been considered to perform ML-based failure detection,
failure-cause identification and failure-magnitude estimation. In
these previous works, sensitivity analysis has been performed to
manually select features and in particular to select the amount
of relevant FFT components.

Note that, to avoid that specific features provide different
impact on ML algorithm training due to their different scale,
before training we perform feature normalization so as to obtain
features ranging between -1 and 1. More formally, assuming
training set Sy, consists of Ny, data points, for a given fea-
ture x; we calculate its mean and range considering data points
in Sy, as follows:

1 i .
mean|x;] = ) xf, vi=1,2,..16 (6)
Ntmin jesmwin
range[x;] = max xf.' — min x{, Vi=1,2,..16 7)
jestrain jestmin

where xf indicates the value of the i-th (i = 1,2, ..., 16) feature and
for the j-th (j € Syy44,) training sample. Then, we apply features
normalization by modifying feature values for all data points
(i.e., in sets Syy4ip, Syar and Sgest sets, i.e., training, validation and

test sets, respectively) as follows:

f — mean|x;]

X ——,
! range[x;]

X . .
Vi=1,2,..,16; V] € Strain U Spar U Stest
®
Note that the values of mean[x;] and range[x;] are calculated
considering training points only, and are used to perform feature
normalization also for data points in validation and test sets.

!Note that temporal dependencies between consecutive windows can be lever-
aged, e.g., adopting time-series ANNSs like recurrent neural networks, gated recur-
rent units or long-short-term-memory ANNs. Considering this aspect is left for
future work.
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Fig. 3. Block diagram of the TL-based ONFM framework.

C. SD/TD Domain Adaptation

Domain adaptation is then applied to align features distribution
of SD and TD data using CORAL algorithm as discussed in
Sec. 4. In this phase, we consider several scenarios in which we
vary the amount of SD and TD unlabeled data to perform do-
main adaptation, in order to assess the impact of this parameter
on the accuracy provided after applying CORAL and TL. Note
that, to apply domain adaptation, every time the TD lightpath is
changed, a certain amount of unlabeled data is necessary from
this domain, which can be collected in a commissioning phase
before the TD lightpath is operational and actually transporting
user traffic. After this phase, new training needs to be performed
once the features of the SD lightpath have been re-colored. Al-
though this solution may appear ineffective, we observe that
the new training on SD data can be performed in the very early
stages of TD lightpath lifetime, during which the available ML
models can be still used to perform failure management on TD
data.

D. ML Model Selection and Training

For both failure detection and failure-cause identification, we
consider ML classifiers based on Artificial Neural Networks
(ANN), as in [17].

For each value of W considered to generate our SD and TD
datasets (see Sec. 5.B), we perform ML model selection by ap-
plying 5-fold cross-validation on SD data and testing different
ANN s with different number of hidden layers, hidden neurons
per layer and activation functions. Note that, in this phase, only
SD data are used to design the initial ML models. More specifi-
cally, we consider a number of hidden layers between 1 and 7, 3
to 15 hidden neurons per layer and ReLu, Tanh and Sigmoid ac-
tivation functions [17]. After testing the different combinations
of hyperparameters, the final ANN structures are selected as the
ones with highest accuracy and limited training duration (i.e.,
below 30 minutes, considering the used hardware/software).

In our experiments, the best performing ANNSs obtained for
failure detection have 2 hidden layers, each with 9 hidden neu-
rons and ReLu activation function, whereas sigmoid activation
function has been used in the output layer. The same ANN hy-
perparameters have been selected after cross-validation also for
the failure-cause identification problem, with the only difference
being that in this latter case we consider 10 hidden neurons per
layer, instead of 9.

After model selection, all SD data points are then used to
perform model training before applying TL.

E. ML Model Re-training and Testing

As final step, we select a limited amount of TD data to fine-tune
the trained model. Our main objective is to assess how many
additional data points from the TD are necessary to approxi-
mate the classification performance of analogous ML models
trained only with the TD dataset. Therefore, we consider differ-
ent amounts of TD data to perform model fine-tuning.

Then, considering an independent test set, constituted by
TD data not used for ML model fine-tuning, we evaluate the
performance of knowledge transfer from SD to TD in terms of
classification accuracy.

Note that fine-tuning the ML model by leveraging a limited
amount of TD data consists of performing additional steps of the
ANN training to update its weights in order to fit the TD data
distribution, starting from the knowledge (i.e., the ML model)
obtained after the initial training using SD data.

6. NUMERICAL RESULTS

A. Testbed Setup

We perform TL-based failure detection and failure-cause identi-
fication using real data obtained on a testbed of the National In-
stitute of Information and Communications Technology (NICT)
located in Sendai (Japan). The testbed is shown in Fig. 4 and con-
sists of 4 ROADMs, identified as Node 2, Node 3, Node 4 and
Node 1, interconnected through optical fibers, and equipped
with one pre-amplifier and one booster (OA in the figure) at
their input and output, respectively. Each fiber link can emulate
fiber spans of up to 80 km using a Variable Optical Attenuator
(VOA) with maximum 20 dB attenuation. Two failure scenarios,
i.e., 1) extra attenuation and 2) excessive filtering, are emulated by
including in a fiber span either an attenuator with extra 11 dB
attenuation (emulating the extra attenuation scenario) or a WSS
with passing bandwidth of 12.5 GHz (emulating the excessive
filtering scenario). In the latter case, due to the WSS insertion loss
of 14 dB, the VOA attenuation is reduced to 6 dB to compensate
the effect of the WSS on the last span overall attenuation.

Figure 4 also shows the routing of one of the lightpaths con-
sidered in our numerical analysis, routed through nodes 2, 3, 4
and 1, and where failure (either extra attenuation or excessive fil-
tering) is introduced in the last optical span (i.e., between nodes
4and 1).

The set of lightpaths considered in our analysis is shown in
Tab. 1, together with the location of failures emulated in each
case. To perform data collection, each lightpath is set-up in
the testbed separately, i.e., no other lightpath is simultaneously
set-up in the testbed. For each lightpath, the same 100 GHz band-
width with central frequency 194.8 THz is used to transmit a 10
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Fig. 4. Schematic of NICT’s Sendai Testbed setup and example of the emulated failure scenarios.

Gbit/s signal using OOK modulation format. For each lightpath,
we consider 3 cases (i.e., no failure, extra attenuation and exces-
sive filtering) and, in each case, OSNR samples are collected for
6 hours at a sampling period of Togyr = 1 second, so the entire
dataset consists of around 72 hours of OSNR monitoring at light-
paths receivers and therefore for each lightpath, around 20000
OSNR windows are available. To generate datasets used for the
TL-based failure detection and failure-cause identification, we
use distinct values of window duration, i.e., W = 10, W = 30
and W = 50 seconds.

B. Benchmark Scenarios

We numerically evaluate our TL-based failure detection and
failure-cause identification framework using CORAL algorithm
(simply referred to as CORAL in the following) and compare it
to the following benchmark scenarios:

e SD only: this is a lower-bound scenario where we train the
ML model using 5000 windows from SD data and then
test on TD data without any re-training or SD/TD domain
adaptation;

e Pure TL: in this case, we train the ML model with 5000 win-
dows from SD data and then perform partial re-training
with a small amount of labeled TD data, yet without ap-
plying CORAL for domain adaptation; similarly to Pure TL
case, in the CORAL scenario we still train the ML model
using 5000 windows from SD data, but before this step
we perform domain adaptation using a certain amount of
SD/TD unlabeled data;

Table 1. Set of lightpaths considered.

1D No. of Source Dest. Location
hops node node of failure
LPIa 1 Node 4 Node 1 Link 4-1
LP1b 1 Node 2 Node 3 Link 2-3
LP2 2 Node 3 Node 1 Link 4-1
LP3 3 Node 2 Node 1 Link 4-1

e TD only: this scenario acts as an upper bound, as we per-
form the entire training of the ML model with 5000 win-
dows taken from TD data.

In all the following numerical results, the test set consists of
5000 “independent” windows from TD data, (i.e.,, windows
which were not used either for TL re-training or for CORAL-
based domain adaptation), constituted by different lightpaths,
according to the specific analysis to be performed.

C. Discussion: Failure Detection

We start our analysis by considering failure detection and con-
centrate on extra attenuation failure type, where 11dB of addi-
tional attenuation has been introduced in one of the optical links
of the lightpaths, as explained in Sec. 6.A. Similar results (not
reported here for sake of conciseness) have been obtained for
the detection of excessive filtering failure type.

We provide numerical results in terms of classification ac-
curacy (i.e., percentage of OSNR windows correctly classified
as normal or failure for failure detection, and extra attenuation
or excessive filtering for failure-cause identification) for the TD
lightpath, which varies according to the specific scenario under
analysis.

C.1. Impact of CORAL algorithm and TL re-training

Figure 5 shows TD failure detection accuracy for TL across
lightpaths LP1a and LP3, obtained when performing CORAL-
based domain adaptation and partial re-training using increas-
ing amounts of TD labeled data (CORAL scenarios in the figure).
We compare accuracy values with the benchmark scenarios de-
scribed in Sec. 6.B, i.e., SD only, Pure TL and TD only. More
specifically, in SD only and TD only, we do not perform domain
adaptation with CORAL algorithm, and consider a fixed ML
model trained only with the SD or TD data, respectively, while
in Pure TL, the model obtained in SD only is the starting point
for partial re-training with increasing amount of TD data.

On the other hand, we consider three CORAL cases where
different amounts of unlabeled SD and TD data are used to
perform domain adaptation before ML algorithm training. More
specifically, from each of the two domains (SD and TD), 1000,
3000 or 5000 OSNR windows are taken, and these scenarios are
referred to as “CORAL (1000)”, “CORAL (3000)”, and “CORAL
(5000)” in the following, respectively. In the three cases, the
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same SD data points, together with their labels, are used to train
the ML models which are then re-trained using few TD data
points as shown the x-axis. In this analysis, window duration
is assumed as W = 30 seconds in all cases.

Comparing Figs. 5(a) and 5(b), we can observe that accuracy
for LP1a is higher compared to LP3. This is due to the higher
discrepancy in OSNR variations that can be observed comparing
normal and failure cases for shorter lightpaths (such as LP1a).
In both TL cases (i.e., LP3-to-LP1la and LP1la-to-LP3), partial
re-training with TD data performed with Pure TL brings limited
accuracy improvements compared to the poor performance of
SD only, i.e., up to around 9 percentage points for TD=LP1a and
10 percentage points for TD=LP3, respectively, when 400 TD data
points are used for re-training. A more significant amount of
TD data would be necessary to perform re-training, resulting in
time-consuming re-training process which reduces the benefits
of the TL approach.

Noticeably, a high benefit compared to SD only is provided
by domain adaptation with CORAL, even without re-training
using TD data. As observed for the values x = 0 in the abscissa
of Fig. 5, remarkable accuracy improvement of at least 20 and
16 percentage points (i.e., from 65% to 85% and from 57% to
83%, respectively) is obtained for TD=LP1la and TD=LP3, re-
spectively. Then, according to the amount of SD data points
used, re-training with TD data leads to an additional accuracy
improvement (linearly increasing with the amount of used TD
data) of around 7-9 percentage points for TD=LP1a, and 3-4 per-
centage points for TD=LP3, when 400 TD data points are used,
approaching accuracy of 95% and 89.5% in the two TD-only
scenarios.

For a given amount of TD data used for re-training (i.e., for
a given value in the x-axes of Figs. 5(a)-(b)), accuracy variation
is only slightly affected by an increase in the amount of SD/TD
data used for domain adaptation (see the three CORAL cases in
the figures), and is always below 2.1 and 2.6 percentage points

2Note that we assume that unlabeled SD/TD data, used to perform domain
adaptation with CORAL, are collected and exploited before ML model selection
and training. Then, since a history of failures (i.e., labels from the TD) is not needed
to perform CORAL, TD data used to perform domain adaptation has a different
role compared to TD labeled data used for ML model fine-tuning, and therefore
the amounts of unlabeled and labeled data exploited in the domain adaptation
and TL phases are assumed as independent.
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Fig. 6. Failure detection (normal vs. extra attenuation): LP1la TD
accuracy for increasing amount of TD data used for re-training
and different SD lightpaths (window duration W = 30's).

in the two TL scenarios of Figs. 5(a)-(b), respectively.

This analysis strongly supports the use of domain-adaptation
algorithms like CORAL when performing TL for failure detec-
tion, since, for the considered lightpaths and optical transmis-
sion characteristics, leveraging limited amounts of TD data to
perform Pure TL might be not sufficient to a satisfactory increase
in detection accuracy. For this reason, in the following, we do
not consider further cases with Pure TL.

C.2. Impact of SD selection

Now we concentrate on the impact of the SD lightpaths when
applying CORAL and TL to a fixed TD lightpath. To this end, we
focus on the case with W = 30 seconds and TD=LP1a, and show
in Fig. 6 how TD accuracy of LP1a changes when considering
different SD, i.e., LP1b, LP2 and LP3 and for increasing TD
data points used for re-training. As expected, regardless of the
specific SD, detection accuracy increases with increasing amount
of TD data used for re-training. Moreover, we observe that the
case when SD=LP1b is the one with the highest accuracy, due
to the fact that SD and TD have the most similar characteristics,
i.e., both LP1a (=TD) and LP1b (=SD) are single-hop lightpaths.
This occurs even if SD and TD lightpaths are entirely disjoint,
i.e., despite the fact that, when training on SD data, the failure
signature is learned on a link (i.e., Link 2-3), which is different
from the failed link in the TD (i.e., Link 4-1).

D. Discussion: Failure-Cause Identification

In this section, we discuss failure-cause identification, i.e., we
consider the performance of classifiers designed to distinguish
between 11dB extra attenuation and 12.5 GHz excessive filtering
failure types.

D.1. Impact of OSNR window duration W

As a first analysis, we evaluate the performance of the proposed
failure-cause identification framework by comparing it with
SD-only and TD-only baseline scenarios, varying the amount
of SD/TD data used for domain adaptation, the number of
TD data used for retraining, and for different values of window
duration, i.e.,, W = 10, 30, and 50 seconds, as shown in Fig. 7. For
this case, we consider a fixed SD/TD scenario, i.e., we assume
SD=LP1la and TD=LP3, but similar considerations have been
obtained for other SD/TD pairs. Comparing the different values
of window duration W (i.e., comparing Figs. 7(a)-(b)-(c)), we first



observe that, as expected, increasing W leads to an improvement
in TD accuracy, as more information is included in windows
with longer duration. Moreover, comparing CORAL cases with
SD only and TD only, we observe that, independently from the
value of W, the accuracy improvement provided by domain
adaptation (i.e., CORAL algorithm) using 5000 SD data points is
in the order of 2 percentage points, which is comparable with
the improvement provided by re-training with a few hundreds
of TD data.

This shows that, unlike the failure-detection scenario, where
domain adaptation provides a much more significant improve-
ment compared to re-training with TD data (see Sec. 6.C), in
some cases, it is worth to combine domain adaptation and model
re-training to have more significant increase in classification ac-
curacy, mainly due the fact that, in such cases, the baseline
accuracy provided by SD only is already satisfactory.

D.2. Impact of unlabeled data used for CORAL

We now evaluate in more detail how failure-cause identification
accuracy is affected by the amount of SD/TD data points used
for domain adaptation, shown in the x axes of graphs in Fig.
8. Here we consider fixed TD, i.e., LP1a, and different SDs, i.e.,
LP1b, LP2 and LP3, in subfigures (a), (b) and (c), respectively,
and a fixed value of W = 10 seconds.

We observe that the most significant improvement compared
to SD only is obtained for the case when SD=LP3 (see Fig. 8(c),
where curves increase in a steeper manner for increasing amount
of SD/TD data points used for domain adaptation. In this case,
the accuracy in SD only has the lowest value among the different
SDs, confirming that CORAL-based domain adaptation is more
beneficial when failure-cause-identification knowledge acquired
from the SD is poor. Observing the different curves laying be-
tween SD only and TD only, differing from the amount of TD
data used for re-training, we see that a small accuracy, within 2
percentage points in most cases, is obtained when passing from
0 to 400 labeled TD data points used for re-training.

D.3. Impact of TD selection

We conclude our discussion analysing failure-cause-
identification performance when transferring knowledge
from a fixed SD lightpath (LPla in our case) to different
TD lightpaths, i.e.,, LP1b, LP2 and LP3, as shown in Fig. 9,
considering different amounts of SD/TD data used in CORAL,
increasing labeled TD data used for re-training, and assuming
W = 10 seconds.

As usual, the highest improvement of CORAL over base-
line scenario is obtained in the case of lower SD-only accuracy,
i.e., when TD=LP1b (see Fig. 9(a)). Moreover, since starting
accuracy of the SD only is already high for all TD cases (always
above 91%), we again find that the global improvement, which
allows approaching performance of TD only, is almost equally
distributed between domain adaptation based on CORAL and
model retraining with TD data. As an example, let us consider
the case of Fig. 9(c), and let us observe the case when no re-
training is performed (i.e., line “No Labeled TD data” in the
figure), although similar considerations can be drawn for other
scenarios: comparing this curve with SD only (straight solid line),
we observe that, applying CORAL with 5000 SD/TD data, accu-
racy increases from 92.88% to 94.94% (i.e., around 2 percentage
points); then, performing re-training with 400 labeled TD data
points (see line “400 Labeled TD data” in the figure) provides an
additional increase of ~2.5 percentage points, which is compa-
rable to the improvement provided by domain adaptation with

CORAL.

7. CONCLUSION AND FUTURE WORK

We provided ML-based algorithms performing domain adapta-
tion and transfer learning across different lightpaths for failure
detection and failure-cause identification in optical networks.
The proposed framework uses unlabeled data from source and
target domains/lightpaths and implements CORAL algorithm
for domain adaptation, and it also leverages small amounts of
labeled TD data to perform model fine-tuning (i.e., knowledge
transfer).

Considering real OSNR traces emulating normal and failed
lightpath states (due to excess filtering or attenuation) in a 10
Gbit/s testbed, we found that significant improvements are
obtained in both failure detection and failure-cause identifica-
tion by combining the effect of 1) domain adaptation (based on
CORAL algorithm) and 2) model re-training. This is true, in
particular, when accuracy provided with simpler knowledge-
transfer approaches, i.e., train on a SD and directly apply the
model on a different TD (SD only in this paper) is already high,
which happens for failure-cause identification in our case. Here,
we found that the two approaches (domain adaptation and
model re-training) provide a comparable accuracy improvement,
in the order of 2-2.5 percentage points each.

Conversely, when performance of SD only is poor, as in our
failure-detection scenarios, the most significant advantage is
brought by domain adaptation, which leads up to 20 percentage
points of accuracy improvement over SD only, whereas model
re-training still provides limited increase of accuracy.

We finally observe that several further investigations could be
developed, which are left for future work. For example, TL and
domain adaptation can be applied to different ONFM tasks, e.g.,
for failure localization and/or for failure magnitude estimation.
Also the problems of failure detection and failure-cause identi-
fication studied here could be investigated by including other
meaningful dimensions, such as, e.g., performing TL across dif-
ferent network topologies, transmission technologies (e.g., direct
vs. coherent detection, different baud rates, modulation formats,
coding rates, etc.) or equipment vendors. Furthermore, another
possible extension can target an extension of the binary clas-
sification developed in this paper into a multi-class scenario,
where ML models are able to distinguish between normal, extra
attenuation and excessive filtering cases at once.
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