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Abstract: In Nuclear Power Plants (NPPs), online condition monitoring and the fault detection
of structures, systems and components (SSCs) can aid in guaranteeing safe operation. The use of
data-driven methods for these tasks is limited by the requirement of physically consistent outcomes,
particularly in safety-critical systems. Considering the importance of regulating valves (e.g., safety
relief valves and main steam isolation valves), this work proposes a multistage Physics-Informed
Neural Network (PINN) for fault detection in such components. Two stages of the PINN are built
by developing the process model of the regulating valve, which integrates the basic valve sizing
equation into the loss function to jointly train the two stages of the PINN. In the 1st stage, a shallow
Neural Network (NN) with only one hidden layer is developed to estimate the equivalent flow
coefficient (a key performance indicator of regulating valves) using the displacement of the valve
as input. In the 2nd stage, a Deep Neural Network (DNN) is developed to estimate the flow rate
expected in normal conditions using inputs such as the estimated flow coefficient from the 1st stage,
the differential pressure, and the fluid temperature. Then, the residual, i.e., the difference between the
estimated and measured flow rates, is fed into a Deep Support Vector Data Description (DeepSVDD)
to detect the occurrence of faults. Moreover, the deviation between the estimated flow coefficients of
normal and faulty conditions is used to interpret the consistency of the detection result with physics.
The proposed method is, first, applied to a simulation case implemented to emulate the operating
characteristics of regulating the valves of NPPs and then validated on a real-world case study based
on the DAMADICS benchmark. Compared to state-of-the-art fault detection methods, the obtained
results from the proposed method show effective fault detection performance and reasonable flow
coefficient estimation, thus guaranteeing the physical consistency of the detection results.

Keywords: physics-informed neural network; deep neural network; fault detection; regulating valves;
nuclear power plant; DeepSVDD

1. Introduction

In general, a Nuclear Power Plant (NPP) consists of structures, systems and compo-
nents (SSCs), some of which are critical for safety and operational thermal efficiency of the
NPP [1]. Operational interruptions of these SSCs can result in a million-dollar loss a day [2].
Therefore, accurate online condition monitoring and anomaly detection are necessary and
crucial for these SSCs of a NPP [3]. One of the important SSCs is the regulating valve, which
is widely used in different parts of the NPP for various purposes to ensure the safe and
reliable operation of the whole system [4]. Such valves include safety/relief valves used in
the pressurizer for regulating the pressure of the nuclear reactor coolant inventory, main
steam isolation valves used in the main steam system for the rapid and tight closure of
primary containment isolation, and turbine regulating/control valves used in the turbine
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system for regulating the steam flow to the turbine [5]. It is highly desirable to detect faults
in regulating valves as early as possible before they become inoperable.

Over the past decades, a wide range of methods for Fault Detection and Diagnosis
(FDD) has been proposed within NPP applications, thus ranging from model-based and sig-
nal processing-based approaches to artificial intelligence-based and machine learning-based
techniques. In [6], a model-based method using a subspace identification model was devel-
oped to detect faulty sensors. In [7], a signal-processing method based on time–frequency
analysis was proposed, thus focusing on vibration signals to identify the operational status
of various components in NPPs. In [8], a novel method based on the transformation of
impact signals using the Wigner–Ville distribution was proposed to estimate the location
of loose parts. In [9], a Long Short-Term Memory (LSTM) network was developed to
perform sensor fault detection using labeled simulation data. In [10], a convolutional gated
recurrent network aided by particle swarm optimization for hyperparameters tuning was
proposed to perform fault diagnosis using a simulation dataset. A detailed review of the
methods developed for FDD in NPPs can be found in [2].

Despite these developments, there are few reported works on the detection of faults in
regulating valves. In [11], a method was proposed for the fault-critical point prediction of a
gate valve based on the characteristic analysis of the operational process variables using
experimental data. In [12], a fault prediction method combining Principal Component
Analysis (PCA) and a neural network using experimental data was developed. In [13],
a gate recurrent unit-based method was developed for the fault diagnosis of electric gate
valves using features extracted from vibration signals. In [14], a fault diagnosis method for
electric isolation valves was developed by combining a knowledge-based rule reasoning
model and a data-driven gate recurrent unit model.

The fault detection and diagnostic of regulating valves in other industries are also
receiving attention. In [15], a model-based method for fault detection and isolation was
proposed using fuzzy modeling to derive nonlinear models for the processes under normal
and faulty conditions. The residuals obtained from these models were then used for fault
detection. In [16], an online fault detection method was proposed for monitoring the signal
values of the valve supply current and spool position in relation to the spool positioning
control signal. In [17], a fault detection method was proposed based on canonical variate
analysis using the simulation data of a benchmark model for a pneumatic control valve
used in the power, food processing, and chemical industries. In [18], a method based on
Support Vector Machines (SVMs) was developed for fault detection in a pneumatic control
valve used in the manufacturing industry. In [19], a fault diagnostic and prognostic method
based on SVMs and an Adaptive Neurofuzzy Inference System (ANFIS) was developed for
a hydrocontrol valve used in the aerospace industry.

On the other hand, with the recent advancements in artificial intelligence, deep
learning-based approaches have attracted attention in the field of Prognostics and Health
Management (PHM), thanks to their powerful automatic feature extraction and nonlinear
fitting capabilities [20,21]. In [22], a valve stiction detection method based on the Convo-
lutional Neural Network (CNN) was developed. In [23], an internal leakage detection
method based on the CNN was developed using the power spectral density images of
acoustic emission signals. While these methods have performed well with large amounts
of data, pure data-driven deep learning approaches generally violate physics-based laws
with a lack of explainability of the detection and diagnostic results due to their black box
nature. Hence, with the Physics-Informed Neural Network (PINN), a new variant of the
Neural Network (NN) has been proposed in recent research works to make the black box
model physically meaningful, interpretable, and applicable to different industrial scenarios
by incorporating physical constraints from domain knowledge.

The demand for model interpretability and physical consistency in the PHM field
has led to the recognition of the PINN as a highly promising method to improve the
performance and interpretability of maintenance decision making [24]. In [25], a physics-
informed deep learning approach based on the CNN was developed using a physics-driven
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loss function derived from physical knowledge to improve fault detection accuracy. In [26],
a PINN method based on Autoencoders (AEs) was developed by integrating the physics
law of the current–voltage relation into the loss function to perform high impedance fault
detection. In [27], a physics-guided CNN was developed in which the CNN kernel was
designed using the physical knowledge of the faulty signal of rolling element bearings.
With respect to industrial actuators, only a few approaches of the PINN have been reported
in the literature. In [28], the PINN was used for system identification in servohydraulic
shaking tables. In [29], the PINN was used for the prediction of displacement in soft
pneumatic actuators. In [30], the PINN was used for distinguishing anomalies caused
by the faults of actuators and sensors. Notice that these applications of the PINN are for
specific objectives other than for fault detection in regulating valves.

In this context, a multistage PINN combined with a Deep Support Vector Data De-
scription (SVDD) for fault detection in regulating valves is proposed in this work. Two
stages of the PINN model are built by developing the process model of the regulating
valves to estimate the flow rate expected under normal conditions. In the 1st stage, a
shallow NN with only one hidden layer is used to estimate the equivalent flow coefficient
(a key performance indicator of the regulating valve) using the displacement of the valve
as input. In the 2nd stage, a Deep Neural Network (DNN) with multiple hidden layers
is used to estimate the flow rate, thus using as inputs the estimated flow coefficient from
the 1st stage, the differential pressure of the regulating valve, and the liquid tempera-
ture. The development of the two stages for the PINN instead of a single deep PINN is
motivated by the relevance of the flow coefficient, which serves as an input to the 2nd
stage. The physics-informed loss function must also take into account this parameter
(see Section 3.1.2), given its relevance in determining the flow capacity of the regulating
valves [31]. Thus, by implementing the two stages of the PINN, the model can well capture
the underlying physical relationships and dependencies within the system. To jointly and
effectively train the multistage PINN, the basic valve sizing equation is incorporated into
the PINN using a novel physical loss function. In this way, the PINN model can estimate
the flow coefficient without the need for real labels. Note that the addition of the physical
loss function is the primary difference between the PINN and conventional NN, which
allows for training the PINN so as to conform as much as possible to the relevant physical
principles under consideration. Finally, the residual of the estimation, i.e., the difference
between the estimated and the measurement of flow rate, is fed into the DeepSVDD [32],
which is a deep learning variant of the SVDD that uses a DNN as a mapping function
instead of a kernel function to detect the anomaly in regulating valves. In the DeepSVDD,
the classifier learns to recognize the boundaries or characteristics of a single class based on
the training data containing samples of only that class. The objective is to obtain a classifier
that enables recognition of that class, thereby allowing the detection of all other samples
not from the class as anomalies or outliers. This approach is commonly used in scenarios
where samples from other classes are rare, unknown, or unavailable during the training
process. In the present work, a strategy is also developed for online updating of the 1st
stage of the multistage PINN for the estimation of the online flow coefficient.

The proposed method is applied to a simulation case study and then validated on a
real-world case study based on the “Development and Application of Methods for Actuator
Diagnosis in Industrial Control Systems” (DAMADICS) benchmark [31]. The obtained
results, in comparison to other state-of-the-art methods, demonstrate the effectiveness of
the proposed method for fault detection in regulating valves.

The main contributions of this work are as follows:

(1) The development of a multistage PINN model for the estimation of the flow rate
signal of regulating valves;

(2) The formulation of a physically consistent loss function for training the multistage
PINN to estimate the flow coefficient based on the online updating strategy in the
absence of real labeled input data;
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(3) The use of DeepSVDD to analyze residuals for fault detection, without the need to
manually set the threshold.

The remainder of the paper is organized as follows. Section 2 formulates the prob-
lem. In Section 3, the proposed method is presented, and the metrics used to assess its
performance are outlined in Section 4. The application of the proposed method to both
simulation and real-world case studies is discussed in Section 5. Finally, Section 6 presents
the conclusions of the work.

2. Problem Statement

We consider a control/regulating valve, which is one of the important components of
an NPP in which multiple degradation modes can occur. The valve is typically monitored
by measuring a set of N physical quantities at a generic time, t, which can be formalized
into the vector:

x⃗(t) = [xt,1, · · · , xt,j, · · · , xt,N ] (1)

Such quantities include the fluid temperature, the displacement of the valve, and the
differential pressure, which are expected to contain information correlated to the flow rate,
Q(t), of the regulating valve, which is a crucial sensory measurement at time, t.

Without loss of generality, the dataset Dtrain = [⃗x(t), Q(t)]t=1,...,T collected over a
period of time during normal operating conditions of the regulating valve is assumed to be
available, which contains the following:

(1) The measurement X ∈ RT×N , which is historically collected during the past operation
of the regulating valve, which is an N-dimensional variable signal matrix, with xt,j,
t = 1, ...T, j = 1, ...N being the measurement of the physical quantity j at time t;

(2) The flow rate measurement Q ∈ RT collected during the past operation of the regulat-
ing valve, which is a vector, with Q(t), t = 1, ...T being the measurement of the flow
rate at time t.

Based on the above assumption, and considering a new test input x⃗test(t) and its
corresponding flow rate Qtest(t) measured at current time t, the objective of the present
work is to develop a data-driven dynamic process model, f (·), that represents the behavior
of regulating valves in normal condition, for which we have the following:

(1) It receives in input the online measurement x⃗test(t) at the current time t and produces
in output the estimate Q̂test(t) of the observation Qtest(t) expected in the normal
condition;

(2) It detects the occurrence of a fault using the analysis of the residual, Q̂test(t)−Qtest(t),
between the estimate Q̂test(t) and the observation Qtest(t) at the current time t.

3. Proposed Method

The proposed method for the detection of faults in regulating valves is sketched in
Figure 1. It consists of a multistage PINN for the estimation of the flow coefficient and flow
rate (Section 3.1), as well as a DeepSVDD for the analysis of residuals for fault detection
(Section 3.2). The implementation procedure of the proposed method for fault detection is
described in Section 3.3.
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Figure 1. Proposed method for fault detection in regulating valves.

3.1. Multistage PINN Model
3.1.1. Basic Valve Sizing Equation

Regulating valves aim to prevent, allow, and properly limit the flow of fluids through
the systems to ensure reliable operation. Generally, the correct sizing of a regulating
valve is crucial to maintain a desired set point. Based on fluid mechanics theory, a basic
control/regulating valve sizing equation can be derived [33]:

Q = Cv

√
∆p
ρ

(2)

cv =
Cv√

ρ
(3)

where Q is the flow rate; Cv is the liquid sizing coefficient indicating the flow capacity of
the valve; ∆p is the differential pressure across the valve; and ρ is the liquid specific gravity.
cv is defined here as the equivalent to Cv (equivalent flow coefficient, a key performance
indicator of regulating valves), as the value of ρ is unknown and always assumed to be
constant during operation [34]. This equation is used for formulating the physical loss
function for the multistage PINN training. The motivation of using the PINN to estimate
cv is that the values of the flow coefficient (liquid sizing coefficient) are unknown in this
work, so the flow rate cannot be computed even if the equation is in a closed form. In some
cases, flow coefficients can be obtained from some manufacturing specifications, but the
coefficient gradually changes over the period of operation as the valve ages, which makes
it difficult to obtain the accurate coefficient values during operation.

3.1.2. Definition of the Multistage PINN Loss Function

The proposed multistage PINN aims to estimate the flow rate signal at time t using
the input signals, x⃗(t) = [∆p(t), dis(t), tem(t)], where dis(t) is the displacement of the
regulating valve, and tem(t) is the fluid temperature. To estimate cv without using real
labels, the two-stage PINN is designed such that the 1st stage is modeled with a shallow
NN, fθA , which enables efficient online updating, and the 2nd stage is modeled with a
DNN, fθD , which is a deeper network used to capture the complex relationships in the data
for estimating the flow rate signal (Figure 1):

ĉ(t) = fθA(dis(t)) (4)
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Q̂(t) = fθD (∆p(t), ĉ(t), tem(t)) (5)

where θA and θD are the vectors of the shallow NN and DNN parameters, respectively.
The set of trainable parameters [θA, θD] are optimized jointly during the supervised training
phase, whose objective is to minimize the estimation error of Q̂ via a physically consistent
loss function:

argmin
θA ,θD

Ltotal (6)

with

Ltotal = (1− µ)Ldata + µLphy (7)

where Ldata is the data-driven loss function, Lphy is the physical loss function, and µ is the
hyperparameter that indicates the importance given to Lphy with respect to Ldata during
model training. The data-driven loss function is formulated using the mean squared error:

Ldata =
1
T

T

∑
t=1

(Q̂(t)−Q(t))2 (8)

where Q(t) is the actual value of the flow rate, and T is the number of patterns in Dtrain.
Conversely, the physical loss function is derived from the derivative of Q with respect to cv:

dQ
dcv

=
√

∆p (9)

Lphy =
1
T

T

∑
t=1

(
dQ̂(t)
dĉv(t)

−
√

∆p(t)) (10)

The formulation of the physical loss function is designed such that its reliance on the
actual labels of Cv can be eliminated, which is an achievable task through the utilization
of the Automatic Differentiation feature inherent in Neural Networks [35]. Consequently,
the estimation of ĉ(t) is rendered independent of the necessity for real labels, thereby
establishing it as a viable surrogate for the Health Indicator (HI). This, in turn, facilitates
the interpretation of fault detection results.

The hyperparameter µ in Equation (7) can be optimized based on the model perfor-
mance on the validation set. In this work, a two-step process is adopted for determining
the hyperparameter µ by optimization. First, the value of µ is set to 0 to determine the
optimal model architecture; then, a grid search approach is applied, where the value of µ is
varied between 0 and 1 to obtain the best physically consistent trained model.

3.2. Analysis of Residuals by DeepSVDD for Fault Detection

Following the development of the multistage PINN model for predicting Q, an unsu-
pervised method based on DeepSVDD is developed to analyze the residuals for detecting
the occurrence of a fault. DeepSVDD is used instead of deterministic threshold approaches,
which require the proper setting of the threshold. This is an application-specific com-
plex task that can result in either large false alarm rates if the threshold is too small or
large missed alarm rates if the threshold is too large. SVDD is a technique related to the
One Class-SVM (OC-SVM) that uses a kernel-based method for mapping the data into a
high-dimensional feature space to find the smallest hypersphere, instead of a hyperplane,
with center m and radius R > 0 that enclose the majority of the data in normal conditions.
DeepSVDD is an extension of SVDD that uses deep learning, like DNNs, to learn effective
representations of the data with an SVDD objective. DeepSVDD does not rely on predefined
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kernel functions, thus allowing for more effective feature extraction and making it suitable
for complex and large datasets.

Assume that a validation dataset Dval = [⃗x(k), Q(k)]k=1,...,N collected during normal
operating conditions is also available, which can be arranged into sequences of n matrices,
with each having a time window length of w with ss sliding steps and (w− ss) overlapping
between two consecutive time windows. The anomaly indicator (AI) for the ith time
window is defined as follows:

AIi = ∥⃗ri∥2
L2

; i = 1, 2, ..., n (11)

where r⃗i =
⃗̂Qi − Q⃗i is the residual of the ith time window predicted by

{
fθA , fθD

}
. The

anomaly indicators AIval , computed from Dval , are mapped onto nsd feature representations
using a DNN, fθsd , of the DeepSVDD. The aim of fθsd is to define a more compact space
where AIval falls within, whereas the AI from abnormal conditions does not. The boundary
of the discovered compact space is the hypersphere of the minimal volume characterized by
center m and radius R of the minimal volume (Figure 2). The center m of the hypersphere
can be calculated as the mean of the fθsd representations that result from the fθsd initialization
during the first forward iteration of the procedure. The training of the DeepSVDD is
achieved through the optimization of the following objective function:

argmin
1
n

n

∑
i=1

∥∥ fθsd(AIi)−m
∥∥2

+
λ

2

L

∑
l=1

∥∥∥θl
sd

∥∥∥2

F
(12)

where fθsd is the DNN of the DeepSVDD contains L hidden layers, and θsd =
{

θ1
sd, . . . , θL

sd
}

are the parameters of each layer. Specifically, fθsd(AIi) is the learned representation of the
input AIi from the network fθsd with parameters θsd. The primary goal of the DeepSVDD
is to learn θsd by identifying a hypersphere of the minimum volume with center m. Min-
imizing

∥∥ fθsd(AIi)−m
∥∥2 minimizes the volume of the hypersphere. The second term in

the objective function represents a weight decay regularizer with a hyperparameter λ > 0,
where ∥·∥2

F denotes the Frobenius norm. To bring the data as close to the center m as
possible, the DNN must extract the common factors of variation. Once trained, the radius
R is defined as the 90th percentile of

∥∥ fθsd(AIi)−m
∥∥

i=1,...,n calculated across all training
instances. During testing, the DeepSVDD model determines the outcome by comparing
R with the distance calculated between m and fθsd(AItest) (i.e.,

∥∥ fθsd(AItest)−m
∥∥

i=1,...,n),
where a fault is identified if the latter exceeds R.

Figure 2. Flowchart of DeepSVDD model.

3.3. Implementation Procedure of the Proposed Method

The implementation procedure of the proposed method described above is depicted
in Figure 3, thus comprising two parts: offline modeling and online monitoring.
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Figure 3. Implementation procedure of the proposed method.

3.3.1. Offline Modelling

The offline modeling utilizes historical normal operating data, divided into training
set Dtrain = [⃗x(t), Q(t)]t=1,...,T and validation set Dval = [⃗x(k), Q(k)]k=1,...,K. In the offline
modeling, the training of the proposed method consists of two phases: the training of the
multistage PINN and the training of the DeepSVDD.

The multistage PINN is, first, trained by minimizing the multistage loss function
(Equation (7)). The hyperparameter, µ in Equation (7), is set using a grid search approach
on the validation set.

To train the DeepSVDD, the following sequential steps are first implemented:

(1) Rearrange the validation set into n = (K− w)/ss matrices, with each having a time
window length w with (w − ss) overlapping between consecutive time windows,
as described in Section 3.2. This results in sequences of an array of n matrices,
Aval ∈ Rn×w×(N+1), with Aval

i = [⃗x(l), Q(l)]l=1:w being the matrix of the ith time
window, i = 1, 2, ..., n, in the array;

(2) Predict the flow rates for each ith time window in Aval using the trained multi stage
PINN,

{
fθA , fθD

}
;

(3) Compute the corresponding anomaly indicator AIi for the predicted flow rates in step
(2) using Equation (11), thus resulting in AIval = [AIi]i=1,...,n.

Then, the DeepSVDD is trained using the data AIval by optimizing Equation (12) to obtain
a decision function fsd(AIval).

Finally, a baseline for the equivalent flow coefficient curve, c⃗v, indicates the normal op-
erating condition of a regulating valve and is established through the following sequential
steps:

(1) The incremental displacement input, d⃗is
c
= [disc

i ]i=1,...,Nd , is artificially generated:

disc
i =

i
Nd , i = 1, ..., Nd (13)
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This represents the operational process of regulating valves from fully open to closed,
as described in [31]. Nd is set to 100 in this work;

(2) The generated d⃗is
c

is used as input to the 1st stage of the trained multistage PINN,
fθA , to estimate c⃗v, which is a health indicator reflecting the flow capacity at different
opening statuses of the regulating valve.

A plot of c⃗v against the artificially generated displacement, d⃗is
c
, establishes a baseline

for the equivalent flow coefficient curve of the regulating valve operating under normal con-
ditions.

3.3.2. Online Monitoring

The online monitoring of the proposed method requires w successive online observa-
tions, Xtest(t) = [⃗xtest(t)]t=1,...,w, to reconstruct the measurements Qtest(t) = [Q⃗test(t)]t=1,...,w
expected in normal conditions. After w successive online observations, for any subsequent
ss consecutive online observations, the matrix Xtest and the corresponding vector Qtest(t)
are retroactively updated from the current measurement backward to the size of the moving
time window w. The updated Xtest is then used for predictions. The online monitoring
comprises two parts:

(1) The estimation of the flow rates, Q̂test(t), expected in normal conditions for fault
detection;

(2) The estimation of the online equivalent flow coefficient, c⃗on
v , which is a health indicator

used for interpreting the consistency of the detection outcomes with physics.

With respect to (1), the trained multistage PINN
{

fθA , fθD

}
in Section 3.3.1 is stored as

f h1
θA ,θD

and is utilized to predict the Q̂test expected in normal conditions. The predictions
are used by the anomaly indicator calculator, thus providing input AItest to the trained
DeepSVDD, which outputs the prediction fθsd(AItest). The regulating valve condition is

then considered "normal" if
∥∥ fθsd(AItest)−m

∥∥2 ≤ R and “abnormal” otherwise.
With respect to (2), the trained multistage PINN

{
fθA , fθD

}
in Section 3.3.1 is separately

stored as f h2
θA ,θD

, which is fine-tuned online using Xtest. Fine-tuning involves updating only

the 1st stage of the PINN, f h2
θA

, by freezing the parameters θD of the 2nd stage f h2
θD

and

updating the parameters θA of f h2
θA

through the optimization of the multistage loss function
(Equation (7)). Subsequently, the equivalent flow coefficient curve, c⃗on

v , is established
by the updated model f h2

θA
using d⃗is

c
as input. The difference between the baseline c⃗v

and the online estimation c⃗on
v can reflect potential degradation modes by analyzing flow

capacity variation, and this can be used to interpret the physical consistency of the fault
detection results.

In this work, the response time of the proposed fault detection method depends on
the size, w, of the time window that is used to compute the anomaly indicators: it has been
set to 100 s with a delay of 10 s (sliding step, ss). After the initialization of the model for
online application, w is updatedevery 10 s. If a faulty transient process is shorter than the
ss, the fault cannot be detected instantly.

4. Performance Metrics

The performance evaluation of the proposed method for fault detection employs
various metrics, including accuracy, precision, recall, F1-score, and the Area Under the
receiver operating characteristic Curve (AUC) [36]. Specifically, the correct classification
of abnormal condition patterns is referred to as the true positive (tp), whereas the correct
classification of normal condition patterns is referred to as the true negative (tn). The false
positive ( f p) represents the misclassification of normal condition patterns as abnormal,
and the false negative ( f n) represents the misclassification of abnormal condition patterns
as normal.
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The Accuracy is defined as the fraction of correctly classified patterns among all
patterns:

Accuracy =
tp + tn

tp + tn + f p + f n
(14)

The Accuracy is used to evaluate the overall classification performance on both normal
and abnormal patterns. It is effective when there is no significant class imbalance.

The Precision is defined as the fraction of abnormal condition patterns correctly classi-
fied among those patterns identified as abnormal:

Precision =
tp

tp + f p
(15)

The Precision is used to evaluate the performance only on the detected abnormal
condition patterns: a high Precision value implies a low false alarm rate.

The Recall, or sensitivity, is defined as the fraction of abnormal condition patterns
correctly classified among the actual abnormal condition patterns:

Recall =
tp

tp + f n
(16)

The Recall is used to evaluate the performance only on actual abnormal condition
patterns: a high Recall value implies a low missed alarm rate.

The Speci f icity is defined as the fraction of normal condition patterns correctly classi-
fied among the actual normal condition patterns:

Speci f icity =
tn

tn + f p
(17)

The Speci f icity is used to evaluate the performance only on actual normal condition
patterns: a high Speci f icity value implies a low false alarm rate.

The F1− score (F1) is the harmonic mean of Precision and Recall:

F1 =
2

1
Precision + 1

Recall
(18)

The F1− score is used to evaluate the comprehensive performance considering the
false and missed alarm rate. It provides a single value that captures the trade-off between
Precision and Recall, thus making it particularly useful when dealing with uneven class
distributions.

The Receiver Operating Characteristic (ROC) curve is a curve generated by plotting
the recall against the false positive rate (FPR):

FPR =
f p

f p + tn
(19)

The Area Under the ROC Curve (AUC) is calculated using an average of trapezoidal
approximations. It particularly shows the performance on distinguishing normal and
abnormal conditions. The values of the performance metrics Accuracy, Precision, Recall,
F1− score, and AUC, range between 0 and 1, with a larger value indicating better perfor-
mance.

5. Applications

Considering the unavailability of real data collected from regulating valves in NPPs,
two case studies based on the DAMADICS benchmark [31] have been considered: (1) a syn-
thetic case study designed to emulate the real industrial application of a control/regulating
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valve (Section 5.1) and (2) a real case study concerning the time series data collected from the
operational activities of regulating valves installed in actual industrial plants (Section 5.2).

5.1. Synthetic Case Study
5.1.1. Benchmark Description

The model of an industrial control valve within the DAMADICS benchmark [31] is
adopted to simulate operational data. This type of control/regulating valve is commonly
used in various industrial systems, including NPPs, and therefore, it is employed in this
work to simulate the operational scenarios of regulating valves, thus addressing the real
data scarcity issue prevalent in NPPs. The structure of the control valve considered is
depicted in Figure 4. During its operation, an electrical signal from the external controller
is converted into a pressure signal via a diaphragm. The positioner ensures the generation
of the correct pressure, following which a pneumatic servo motor adjusts the valve plug to
the desired position for controlling/regulating the flow rate. The DAMADICS benchmark
model, denoted as fm(·), is shown in Figure 5. The input signals to the model are the
command signal, ⃗com, which is provided by the user or the operational schedule to maintain
the optimal functioning of the industrial component; the upstream and downstream fluid
pressures p⃗1 and p⃗2, which represent the uncertainties in working conditions; and the fluid
temperature ⃗temc

, which influences the flow principles of the fluid. The output signals,
i.e., the measured signals, consist of the displacement signal d⃗is, the differential pressure of
the valve ∆⃗p, the flow rate Q⃗, and the liquid temperature ⃗tem.

Figure 4. Structure of the control valve in DAMADICS benchmark; adapted with permission from [31],
Elsevier, 2006.

Figure 5. DAMADICS module for data generation.

5.1.2. Data Generation

Data generation is performed using the DAMADICS model fm(·). Given the flexibility
of the benchmark, the user can define appropriate simulation inputs for specific applications.
To obtain the data of the variable commands and working conditions that reflect the
operational activities of regulating valves in NPPs, the relevant preset inputs to fm(·)
(Figure 5) have to be properly defined. In this work, they are defined as follows:
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(1) The command signal, ⃗com, is defined as a chirp signal, wherein a chirp represents a
signal with a varying frequency over time. By employing a chirp signal as the com-
mand signal, the dynamic behavior of the component under diverse input frequencies
can be comprehensively simulated. This is motivated by the fact that the frequency
response of an NPP regulating valve is an important performance indicator, which
can be tested by subjecting the valve to input signals of varying frequencies [37]. The
vector ⃗com is expressed as follows:

⃗com(t) = ac · sin(φ(t) · t
s f

) + bc, (20)

φ(t) = 2 · π · (0.1 +
t

s f
). (21)

Here, φ(·) is a linear function that samples the instantaneous phase to emulate suffi-
ciently diverse commands in realistic conditions. The parameters ac and bc are ran-
domly sampled for each simulation from Uniform distributions, with ac ∼ U(0, 0.5)
and bc ∼ U(0.2, 0.8). Additionally, s f serves as the scaling factor for t, thus following
s f ∼ U(200, 600);

(2) The upstream and downstream fluid pressures, p⃗1 and p⃗2, are defined as follows:

p⃗1(t) = ap1 · sin( f p1 · t) + bp1, (22)

p⃗2(t) = ap2 · sin( f p2 · t) + bp2 (23)

where ap1, bp1, ap2, and bp2 are randomly sampled from their respective Uniform
distributions: ap1 ∼ U(0Pa, 5e5Pa), bp1 ∼ U(3e6Pa, 4e6Pa), ap2 ∼ U(0Pa, 2e5Pa),
and bp2 ∼ U(1.5e6Pa, 2e6Pa). The pressure values are set considering the actual
conditions in NPPs [38]. This ensures that the parameters are simulated within a
realistic envelop of conditions. The frequencies f p1 and f p2 are defined frequencies of
the sinusoidal signal, thus following f p1 ∼ U(0.01, 0.15) and f p2 ∼ U(0.01, 0.15);

(3) The temperature of each simulation is defined as follows:

⃗temc
(t) = tcon + W(t) (24)

where tcon is sampled from a Gaussian distribution tcon ∼ N (50 ◦C, 20 ◦C), and W(t)
is the white noise function accounting temperature fluctuations. The value of the
temperature is set considering the real environment of the safety regulating valves,
which is linked to the cooling systems in NPPs [39].

The simulation procedure for generating data is detailed in Algorithm 1 below. Subse-
quently, the generated normal operating condition dataset, Dnc, containing Ksim = 200 time
series trajectories with each having a length of T = 500 time series observations, is used for
model development (with Dtrain representing 75% of the data and Dval representing the
remaining 25%). Similarly, the test dataset, Dtest, is generated such that a fault is injected
at a specific time instant in each time series (Figure 6). In this case, three fault modes,
which commonly manifest in the operation of regulating valves, are considered: (1) the
sedimentation of the valve plug or valve seat (denoted as “f1”); (2) the erosion of the valve
plug or valve seat (denoted as “f2”); and (3) internal leakage or valve tightness (denoted as
“f3”). For each fault mode, Ksim

f = 30 time series trajectories are generated, with each one
having a length of T = 1500 time series observations.
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(a) (b)
Figure 6. An example of faulty time series: (a) the fault is injected at 500 s; (b) the evolution of the
flow signal.

Algorithm 1: Data generation using the benchmark model.

Input: Ksim: number of simulated time series trajectories; T: time horizon per
trajectory; U(·): uniform distribution; N (·): normal distribution;

Output: Dnc: generated dataset under normal conditions
1 for i = 1 to Ksim do
2 ac

i ∼ U(0, 0.5); bc
i ∼ U(0.2, 0.8) // sampling from U(·)

3 ap1
i ∼ U(0, 5e5); f p1

i ∼ U(0.01, 0.15); bp1
i ∼ U(3e6, 4e6)

4 ap2
i ∼ U(0, 2e5); f p2

i ∼ U(0.01, 0.15); bp2
i ∼ U(1.5e6, 2e6)

5 tcon
i ∼ N (50, 20)

/* time evolution of each time-series */
6 for t = 1 to T do
7 ⃗comi(t)← ac

i · sin(φ(t) · t) + bc
i

8 p⃗1i(t)← ap1
i · sin( f p1

i · t) + bp1
i

9 p⃗2i(t)← ap2
i · sin( f p2

i · t) + bp2
i

10 ⃗temc
i (t)← tcon

i + W(t)
11 ∆⃗pi(t), d⃗isi(t), ⃗temi(t), Q⃗i(t)← fm( ⃗comi(t), p⃗1i(t), p⃗2i(t), ⃗temc

i (t))

12 Dnc ←
{

∆⃗pi, d⃗isi, ⃗temi, Q⃗i

}

5.1.3. Results and Discussion

The PINN model,
{

fθA , fθD

}
, was built using a shallow NN, fθA , with one hidden layer

made by five neurons and a DNN, fθD , with three hidden layers made by ten neurons each.
The activation function Tanh was used in all layers except the output layers of fθA and fθD in
which the Sigmoid function was employed to guarantee the scale of c⃗ ⊆ [0, 1] [40]. To train
the PINN, the Adam optimizer [41] was utilized with a learning rate η = 0.001, a batch
size of Lbatch = 512, and a number of epochs of Nepoch = 200. Other architectures, e.g., a
shallow NN with 10 neurons and a DNN with 20 neurons in each of the three hidden layers,
have also been explored. However, these alternative architectures considered resulted in
no improvement in performance while significantly increasing the computational burden
of the model training. Thus, the relatively simple architecture presented in this work was
preferred. The weight of the physical loss, µ, was set to 0.02 through a grid search approach
based on the reconstruction accuracy of the model on the validation dataset. Figure 7 shows
an example of the curve that contains the estimated equivalent flow coefficient generated
by the trained fθA under normal conditions, which follows the expected behavior of the
flow coefficient with respect to displacement [31], As shown in Figure 7, the flow coefficient
decreased monotonically as the displacement increased. Although the lack of real flow
coefficients made it impossible to validate the exact values in Figure 7, the obtained results



Energies 2024, 17, 2647 14 of 23

follow the expected physical trend of the flow coefficient of the valve. In this work, this
trend was compared with another curve that contained the estimated equivalent flow
coefficients in abnormal conditions. Through this comparison, the relative difference
between the two curves was used to observe the degradation in the flow capacity of the
regulating valve. Figure 8 shows an example of the reconstructed flow rate signals in
the validation set along with the corresponding residuals. The Root Mean Squared Error
(RMSE) of the flow rate signals reconstructed by the PINN came out to 1.735.

For the DeepSVDD model, the architecture of the DNN fθsd was composed of one
hidden layer with 64 neurons and an output layer with 32 neurons (nsd = 32 feature
representations), which were activated by the Relu function. The batch size was set to 32,
the number of epochs was set to 100, and the Adam optimizer was once again employed
for model training. The 32 extracted feature representations were then used to build a
hypersphere that enclosed the majority of the data in normal conditions, thus enabling
the detection of faults outside the hypersphere. To compute the robust anomaly indicators
with the minimal false and missed alarms, the sizes of the time window w and the sliding
step ss were set to 100 and 10, respectively, with w− ss (i.e., 100 − 10 = 90) overlapping
between the two consecutive time windows.

Figure 7. An equivalent flow coefficient curve, c⃗v, indicating the relationship between the dis-
placement of regulating valve, dis, and the corresponding flow coefficient, Cv, that represents the
flow capacity.

(a) (b)
Figure 8. Flow rate signal reconstructions of normal condition (synthetic case): (a) the reconstructed
signal; (b) the residuals.

To verify and evaluate the performance of the proposed method, the state-of-the-art
fault detection methods presented in Table 1 were considered for comparison.
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Table 1. Comparison methods.

Method Description Notation

DNN DNN model with three hidden layers and ten neurons in each layer. M1

AAKR The Auto Associative Kernel Regression (AAKR) [42] method for recon-
structing all signals, {∆p, dis, tem, Q}. The optimal bandwidth parameter
h is set to 0.15 using a grid search approach on the validation dataset,
and the anomaly indicator defined in Equation (11) is used.

M2

AAKR The AAKR model in M2 is considered, but the anomaly indicator is

defined as AIM3
i =

∥∥RA
i
∥∥2

L2 , where RA
i is the residual matrix between

predictions and measurements of {∆p, dis, tem, Q}.

M3

PCA The PCA method [43] is developed to reconstruct the signals
∆p, dis, tem, Q. The number of principal components selected for sig-
nal reconstruction is 3, which explains at least 80% of the data variability,
and the anomaly indicator defined in Equation (11) is used.

M4

PCA The PCA method in M4 is used, but the anomaly indicator is defined as
AIM5

i =
∥∥RP

i
∥∥2

L2 .
M5

To ensure a fair comparison, each of the aforementioned methods for signal recon-
struction was combined with DeepSVDD for fault detection.

Performance comparisons for the simulated fault modes are reported in Tables 2–4.
Both the proposed method and M1 method showed the satisfactory performance (above
0.95) across all metrics for the three simulated fault modes of regulating valves, with the
proposed method demonstrating the best performance. Although, with respect to the fault
f3 (internal leakage, Table 4), the model M2 provided slightly larger value of Speci f icity
(a measure of how well a model is able to detect normal condition cases), and its value
of Recall (a measure of how well a model is able to detect the abnormal condition cases)
with respect to all of the three simulated faults was significantly smaller than that of the
proposed method. Due to the strongly nonlinear relationships in the data, both the PCA and
AAKR methods exhibited limitations in accurately and robustly reconstructing the signals.
Consequently, these limitations led to a decrease in their fault detection performances.

Table 2. Detection performance on f1: Sedimentation of valve plug or valve seat.

M1 M2 M3 M4 M5 Proposed

Accuracy 0.9672 0.6537 0.4013 0.3132 0.3071 0.9702
Precision 0.9544 0.9203 0.7625 0.5015 0.4651 0.9585
Recall 1.0000 0.5430 0.1867 0.0619 0.0567 1.0000
Specificity 0.8951 0.8968 0.8724 0.8650 0.8569 0.9049
F1-score 0.9767 0.6830 0.2999 0.1101 0.1010 0.9788
AUC 0.9476 0.7199 0.5295 0.4635 0.4568 0.9524

Table 3. Detection performance on f2: Erosion of valve plug or valve seat.

M1 M2 M3 M4 M5 Proposed

Accuracy 0.9667 0.4616 0.4191 0.3807 0.3473 0.9715
Precision 0.9537 0.8485 0.7852 0.7224 0.6386 0.9602
Recall 1.0000 0.2633 0.2126 0.1600 0.1152 1.0000
Specificity 0.8935 0.8968 0.8724 0.8650 0.8569 0.9089
F1-score 0.9763 0.4019 0.3346 0.2620 0.1952 0.9799
AUC 0.9468 0.5800 0.5425 0.5125 0.4861 0.9545
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Table 4. Detection performance on f3: Internal leakage or valve tightness.

M1 M2 M3 M4 M5 Proposed

Accuracy 0.9803 0.9105 0.3882 0.3285 0.3371 0.9820
Precision 0.9709 0.9763 0.6530 0.3636 0.4542 0.9732
Recall 1.0000 0.8850 0.1430 0.0320 0.0545 1.0000
Specificity 0.9429 0.9591 0.8552 0.8933 0.8752 0.9476
F1-score 0.9852 0.9284 0.2346 0.0588 0.0973 0.9864
AUC 0.9714 0.9220 0.4991 0.4627 0.4649 0.9738

Regarding the estimated equivalent flow coefficient curves, Figure 9 shows a set of {⃗cv}
generated from the fine-tuned models f h2

θA
using a validation dataset. {⃗cv} represents the

healthy region of c⃗v under normal conditions, thus considering uncertainties and noise in
the dataset. Figure 10 compares the {⃗cv} of the normal conditions and the

{⃗
c f 1

v

}
of fault f1,

where c⃗ f 1
v was lower at all dis points, thus indicating a decrease in the flow capacity due to the

occurrence of the f1 fault mode (valve seat sedimentation), which is exactly consistent with the
mechanism of f1 (valve seat sedimentation can cause the possible shrinkage of the opening
area, which in turn decreases the flow capacity). In contrast, Figure 11 indicates an increase
in the flow capacity for the f2 fault mode (valve seat erosion), as the opening area expands
in relation to the nominal area. Similarly, Figure 12 shows an increase in the flow capacity
for the f3 fault mode (internal leakage). Consequently, the estimated flow coefficient curves
generated by the proposed multistage PINN model follow the physics-based mechanisms of
different fault modes, thus offering insights useful for maintenance engineers.

The proposed method demonstrates satisfactory fault detection performance and
provides consistent interpretations for the detected faults based on the physical mechanism.
This aligns with the physics-based understanding of different fault modes, thus making it
useful for potentially assisting maintenance engineers in comprehending the detected faults.

Figure 9. Set of equivalent flow coefficient curves, {⃗cv}, generated from the fine-tuned model f h2
θA

under normal conditions.

Figure 10. Set of equivalent flow coefficient curves,
{⃗

c f 1
v

}
, generated from the fine-tuned model f h2

θA

under f1 fault mode.
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Figure 11. Set of equivalent flow coefficient curves,
{⃗

c f 2
v

}
, generated from the fine-tuned model f h2

θA

under f2 fault mode.

Figure 12. Set of equivalent flow coefficient curves,
{⃗

c f 3
v

}
, generated from the fine-tuned model f h2

θA

under f3 fault mode.

5.2. Real Case Study
5.2.1. Dataset Description

The time series data collected from a real industrial control valve within the DAMADICS
benchmark project [31] were considered for the validation of the proposed method. The nor-
mal condition dataset consists of 55,000 time series observations of four signals, {∆p, dis, tem, Q},
which were partitioned into training and validation sets containing 45,000 and
10,000 observations, respectively. The training set was used for training the model, and
the validation set was used for hyperparameter setting. Figure 13 shows the time series
evolutions of Q and dis under normal operating conditions. The test dataset used to assess
the fault detection performance of the proposed method contains 2095 observations in the
normal condition and two fault modes of 415 observations in Partly opened bypass f ault
(denoted as “f4”) and 205 observations in Positioner supply pressure drop (denoted as “f5”).

(a) (b)
Figure 13. Time series evolutions of measurement signals under normal operating conditions:
(a) flow signal Q(t) and (b) displacement of the valve dis(t).
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5.2.2. Results and Discussion

The implementation of the proposed method with respect to the real case study was
similar to those of the synthetic case except that the learning rate, η, and the weight of
physical loss function, µ, were set to 0.003 and 0.3, respectively. Figure 14 shows an example
of the reconstructed flow rate signals in the validation set along with the corresponding
residuals. The RMSE of the flow rate signals reconstructed by the PINN was 4.184.

The performance of the proposed method was again compared with that of the state-of-
the-art methods presented in Section 5.1.3. Tables 5 and 6 present the performance metrics
for faults f4 and f5, respectively. With respect to fault f4 (Table 5), model M2 demonstrated
the highest performance in terms of the accuracy, F1− score, and AUC. Model M2 and the
proposed method showed comparable Speci f icity values, thus indicating that both models
are capable of detecting normal conditions. On the other hand, the proposed method had
the highest Precision among all the models, thus suggesting its superior ability to detect
abnormal conditions, which implies the lowest false alarm rate. With respect to fault f5
(Table 6), the proposed method consistently outperformed all the other models across
the Accuracy, Precision, Recall, Speci f icity, F1− score, and AUC, which demonstrates its
effectiveness in detecting both normal and abnormal conditions. It is important to note
that, whereas model M4 achieved a perfect Recall value indicating perfect performance in
detecting abnormal conditions, its performance concerning other metrics was significantly
lower than that of the proposed method. This also highlights the importance of considering
multiple performance metrics to assess the overall effectiveness of a fault detection method.
Comparing these results to the synthetic case, the performances of models M2, M3, M4,
and M5 in this case study surpassed those previously obtained. This can be attributed to the
relatively stable working conditions observed in the real case, as shown in Figure 13 (where
the dis signal varied within a limited range of 40% to 60%). In summary, the proposed
method demonstrates superior overall performance for fault detection in regulating valves.

(a) (b)
Figure 14. Flow rate signal reconstructions of normal condition (real case): (a) the reconstructed
signal and (b) the residuals.

Table 5. Detection performance on f4: Partly opened bypass.

M1 M2 M3 M4 M5 Proposed

Accuracy 0.8774 0.9811 0.8774 0.7925 0.8491 0.9623
Precision 0.4583 0.8462 0.4583 0.3333 0.4074 0.8889
Recall 1.0000 1.0000 1.0000 1.0000 1.0000 0.7273
Specificity 0.8632 0.9790 0.8632 0.7684 0.8316 0.9895
F1-score 0.6286 0.9167 0.6286 0.5000 0.5790 0.8000
AUC 0.9316 0.9895 0.9316 0.8842 0.9158 0.8584
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Table 6. Detection performance on f5: Positioner supply pressure drop.

M1 M2 M3 M4 M5 Proposed

Accuracy 0.8594 0.8828 0.8281 0.7109 0.6797 0.9063
Precision 0.7500 0.7742 0.6136 0.4638 0.4348 0.8333
Recall 0.6563 0.7500 0.8438 1.0000 0.9375 0.7813
Specificity 0.9271 0.9271 0.8229 0.6146 0.5938 0.9479
F1-score 0.7000 0.7619 0.7105 0.6337 0.5941 0.8065
AUC 0.7917 0.8385 0.8333 0.8073 0.7656 0.8646

The trained proposed method was used to generate the equivalent flow coefficient
curve. Figure 15 shows a set of {⃗cv} curves generated from the fine-tuned models f h2

θA
using the validation dataset, thus representing the healthy region of c⃗v. For the partly
opened bypass fault f4, the estimated

{⃗
c f 4

v

}
was significantly above {⃗cv} (Figure 16), thus

indicating an equivalent increase in flow capacity due to the open bypass of the regulating
valves. For the positioner supply pressure drop fault f5, the estimated

{⃗
c f 5

v

}
was partially

overlapped with {⃗cv} (Figure 17), thus indicating that the flow capacity of the regulat-
ing valve remained approximately equal to nominal. This observation aligns with the
fault mechanism, thus indicating that the flow capacity of the regulating valve remained
unaffected by the positioner supply pressure drop.

In summary, the proposed method shows superior fault detection performance and
provides physical insights into the detected fault modes that are consistent with the physics-
based mechanisms.

Figure 15. Set of equivalent flow coefficient curves, {⃗cv}, generated from the fine-tuned model f h2
θA

using validation dataset under normal conditions (real case).

Figure 16. Set of equivalent flow coefficient curves,
{⃗

c f 4
v

}
, generated from the fine-tuned model f h2

θA

using test dataset under partly opened bypass fault (f4).



Energies 2024, 17, 2647 20 of 23

Figure 17. Set of equivalent flow coefficient curves,
{⃗

c f 5
v

}
, generated from the fine-tuned model f h2

θA

using test dataset under positioner supply pressure drop fault (f5).

6. Conclusions

In this paper, a novel method based on the multistage PINN has been developed for
the detection of faults in regulating the valves of NPPs. The method consists of a muiltistage
PINN proposed to estimate the flow rate signal of a regulating valve expected under normal
conditions and a DeepSVDD employed to analyze the residuals (the differences between
the estimates and measurements of the flow rate) for the detection of faults, thus eliminating
the need for manual threshold setting. Additionally, the fundamental valve sizing equation
was integrated into the multistage PINN, thus enabling the estimation of the equivalent
flow coefficient curve Cv, which in turn facilitates the interpretation of the fault detection
results. The proposed method was applied to two case studies from the DAMADICS
benchmark: (1) a synthetic simulation case implemented to emulate the operations of
regulating valves in NPPs and (2) a real dataset collected from operating industrial control
valves. The obtained results show that the performance of the proposed method is more
satisfactory than other state-of-the-art methods, particularly in scenarios with varying
working conditions. The results also show that the deviation of the estimated Cv from
its nominal values can provide a rational interpretation of the occurred fault mode from
the perspective of the flow capacity, which intuitively can assist maintenance engineers in
subsequent maintenance decisions.

Future work will be devoted to (1) the exploration of more advanced NN techniques,
such as recurrent NN, Bayesian NN, and PINNs, integrated with the physical loss function
proposed in this work to enhance the model capabilities in capturing temporal dependen-
cies and complex patterns in the data and (2) the use of real data collected from operational
regulating/safety valves in NPPs to calibrate the developed model and further validate its
performance.
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Abbreviations
The following abbreviations are used in this manuscript:

AAKR Auto Associative Kernel Regression
AE Autoencoder
AI Anomaly Indicator
AUC Area Under the receiver operating characteristic Curve
CNN Convolutional Neural Network

DAMADICS
Development and Application of Methods for Actuator Diagnosis
in Industrial Control Systems

DNN Deep Neural Network
FPR False Positive Rate
HI Health Indicator
LSTM Long Short-Term Memory
NN Neural Network
NPP Nuclear Power Plant
PCA Principal Component Analysis
PHM Prognostics and Health Management
PINN Physics-Informed Neural Network
RMSE Root Mean Squared Error
SSCs Structures, Systems, and Components
SVDD Support Vector Data Description
SVM Support Vector Machine
tp True Positive
tn True Negative
f p False Positive
f n False Negative
N Number of physical quantities
x⃗(t) Physical quantities measured at time t
Q(t) Flow rate measurement at time t
Dtrain Training dataset
Dval Validation dataset
f (·) The data-driven model that represents the behaviour of the regulating valve

in normal condition
∆p Differential pressure across the valve
dis Displacement of the regulating valve
ρ Fluid specific gravity
tem Fluid temperature
cv Physical loss function
θA Shallow NN parameters of the multistage PINN
θD DNN parameters of the multistage PINN
Ltotal Loss function of the multistage PINN
Ldata Data-driven loss function
Lphy Physical loss function
µ Importance given to Lphy
w Length of time window
ss Number of sliding steps
r⃗i Residuals of ith time window
n Number of time windows
fθsd

Neural network of DeepSVDD
m Center of the hypersphere of DeepSVDD
R Radius of the hypersphere of DeepSVDD
T Number of patterns in the training dataset
K Number of patterns in the validation dataset
Aval Array of time windows generated from Dval

c⃗on
v Equivalent flow coefficients estimated online
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fm(·) DAMADICS model of control valve
⃗com Command signal for data generation

p⃗1 Upstream fluid pressure
p⃗2 Downstream fluid pressure
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31. Bartyś, M.; Patton, R.; Syfert, M.; de las Heras, S.; Quevedo, J. Introduction to the DAMADICS actuator FDI benchmark study.

Control Eng. Pract. 2006, 14, 577–596. [CrossRef]
32. Yi, J.; Yoon, S. Patch svdd: Patch-level svdd for anomaly detection and segmentation. In Proceedings of the Asian Conference on

Computer Vision 2020, Kyoto, Japan, 30 November–4 December 2020.
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