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Abstract: Safety related to pavement ageing is a major issue, as cracks and holes in the road surface
can lead to severe accidents. Although pavement maintenance is extremely costly, detecting a deteri-
oration before its surface becomes completely damaged remains a challenge. Current approaches still
use wired sensors, which consume a lot of energy and are expensive; further to that, wired sensors
may become damaged during installation. To avoid the use of cables, in this work, a prototype
of a Zigbee-based wireless sensor network for pavement monitoring was developed and tested in
the laboratory. The system consists of a slave sensor and a roadside unit; the slave sensor sends
wireless acceleration data to the master, and the master saves the received acceleration dataset in a
csv file. Further data processing can be performed in the master on this acceleration dataset. Two
laboratory tests were performed for dynamic calibration and simulating five-axle truck pavement
displacement. The preliminary results showed that the Zigbee-based wireless sensor network is
capable of capturing the required ranges of displacement, acceleration, and frequency. The ADXL354
sensor was found to be the most appropriate accelerometer for this application, with as small as
155 uA power consumption.

Keywords: pavement monitoring; wireless sensor networks; MEMS accelerometers; Zigbee

1. Introduction

Detecting a deterioration in pavements before they become totally damaged remains
a costly and very challenging task. Many devices have already been proposed, but most
of them still use wired sensors; more and more researchers are currently investigating
pavement monitoring systems which are low-cost, low-energy, and wireless. Geophones,
accelerometers, and strain sensors are usually used to monitor pavement condition by
measuring the strain, displacement, and vertical velocity of the pavement. Many proposed
setups still use cables. The monitoring system described in [1] was based on strain gauges,
soil pressure gauges used as load cells, thermocouple temperature sensors, and moisture
sensors embedded into the pavement. All these sensors are connected to a data logger on
the roadside via cables. Geophones are used in the system presented in [2] to measure
the vertical velocity at the pavement surface and convert it into vertical displacement
(deflection). Other systems are based on MEMS (micro-electromechanical systems) ac-
celerometers [3–9], packaged in a nylon box or covered with resin. These accelerometers
are buried into the pavement and then connected to the data logger or master, which is
placed next to the road. In the case of the exploitation of data collected with geophones
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or accelerometers, the measurements are converted into vertical displacements by signal
processing using integration [6,8].

On the other hand, thinking of a digital twin of the system, finite element (FE) mod-
eling can be used for the analysis of flexible pavements. In [10], a three-dimensional (3D)
FE analysis was carried out on a portion of flexible pavement to predict rut depth under
different conditions of temperature, loading, and for different material properties. Another
3D pavement FE model was described in [11] to assess the influence of truck parameters
such as wheel set, axle set, vehicle travel speed, and tire pressure on rutting. In this work, a
preliminary study was carried out using the state-of-the-art ABAQUS software to model
the pavement response and understand the specific effects of moving loads. This analysis
enabled us to evaluate the magnitude of the displacement at the surface of the pavement
under moving vehicle loads. This was used to define displacement signals for vibrating ta-
ble tests but also to predict the response in full scale tests carried out on the fatigue Carousel
available at Univ. Eiffel in Nantes. The fatigue Carousel is an accelerated pavement testing
facility which allows for testing our sensor prototypes under real-life conditions.

In this paper, a novel pavement monitoring system was thus built around a Zigbee-
based wireless sensor network prototype and tested in the laboratory. This prototype aims
to solve the current problem related to the costs of the monitoring system, getting rid of ca-
bles, and heading towards the lowest possible power consumption. MEMS accelerometers
were chosen because they are easy to integrate, less costly than other sensors, and consume
little energy. Three MEMS accelerometers were selected for a comparative evaluation in the
prototype under two laboratory test conditions. The Zigbee communication protocol was
chosen primarily because it has the lowest power consumption in both transmit and receive
modes. According to the literature, the measured deflection of the pavements should be
between about 0.1 mm and 1 mm with a frequency ranging from 0.5 Hz to 20 Hz, resulting
in acceleration values from 5 mg to 200 mg. The sensor and system must therefore be able
to operate in the low g and low-frequency acceleration ranges.

2. Materials and Methods
2.1. System Architecture and Prototype

The prototype developed was based on the architecture shown in Figure 1a. The
on-board unit consisted of an ESP32 Pico-D4 microcontroller(Espressif, Shanghai, China),
a Zigbee module (DIGI), and an ADS1115 ADC(Texas Instrument, Dallas, TX, USA). The
microcontroller collects the accelerometer data either from the ADS1115 or directly via
the I2C communication protocol or SPI for digital accelerometers. It then sends the data
directly to the wireless road system using the Zigbee protocol. The road system receives
the data from the on-board unit, saves it in a csv file, and then processes it using the digital
signal processing algorithm to be implemented. The prototype system, shown in Figure 1b,
was developed and tested in the laboratory.
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2.2. Finite Element Modeling

A preliminary study using FE modeling was carried out to assess the response of
the pavement tested on the fatigue Carousel, subjected to moving loads. The pavement
was modeled using the ABAQUS software. All the modeled pavement layers are shown
in Figure 2a; the same thicknesses and material properties were adopted as those of the
pavement tested on the fatigue Carousel. The pavement section consisted of four layers,
from bottom to top, respectively: a 2000 mm thick soil layer; a 750 mm thick granular
sub-base layer; a 30 mm thick asphalt base course; and a 50 mm thick asphalt surface course.
Infinite elements were used at the side and bottom surfaces of the model to dampen the
propagation of waves, avoid spurious reflections, and detect relevant artifacts in terms of
high-frequency oscillations.
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Figure 2. (a) Three-dimensional structure and layer configuration of the pavement; (b) real loading
condition.

The pavement of the fatigue Carousel was loaded as depicted in Figure 2b by dual
wheels with a total load of 65 kN. The load was assumed to be uniformly distributed over
the tire contact areas. A dynamic moving load simulation was carried out to account for the
effects of inertia and of the moving tire loads on the pavement. The dynamic simulation
was performed using the VDLOAD user subroutine of the FE code to allow the load to
move across the structure with a speed of 6 m/s. The adopted values of material properties
and layer thicknesses are gathered in Table 1.

Table 1. Values of material properties and layer thickness used in the simulation.

Layer Young’s Modulus E (MPa) Poisson’s Ratio Density (kg/m3) Thickness (mm)

Surface course 31,468 0.35 2400 50
Base course 37,554 0.35 2400 30

Granular sub base 160 0.35 2400 750
Soil 95 0.35 2400 2000

2.3. Laboratory Tests

A first laboratory test was carried out using the vibrating pot available in the ESYCOM
laboratory. This test enabled the dynamic calibration of each sensor and the collection
of important sensor characteristics such as sensitivity, noise, power consumption, and
resolution. The shaker used was the LDS V460 equipped with a Bruel & Kjaer PT01
feedback accelerometer (Virum, Denmark) to monitor vibration acceleration. A sinusoidal
acceleration signal of low g and different frequencies was used to test three different
accelerometers. The test setup is shown in Figure 3b.
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The second laboratory test was carried out using a vibrating table available at the
SII laboratory of the Eiffel University in Nantes. The aim of this test was to observe the
ability of the MEMS (micro-electromechanical systems) sensors and of the wireless sensor
network to measure the signal typical of a five-axle truck passing on the road. The vibrating
table, manufactured by Team corporation, can be controlled on the move, as it is equipped
with a Messotron LVDT WLC 100 displacement sensor (Seeheim-Jugenheim, Germany).
The signal from the displacement transducer was considered to be the reference and used
to compare with the displacements resulting from the processing of the data collected
by the accelerometers. The test configuration is shown in Figure 3b. A typical signal
from a five-axle truck that was used for the laboratory test is shown in Figure 3a. This
signal was obtained from a previous experiment carried out by a researcher at Univ. Eiffel
in Nantes, which consisted of measuring the pavement response under the loading of a
reference truck on a freeway, using geophones and accelerometers, and then converting it
into displacement.

While on-board MEMS sensors measure accelerations, it is more relevant, for analyzing
the response of the pavement, to determine the displacement of the roadway. Acceleration
can be converted into displacement using a two-stage integration. Digital signal processing
is therefore required to convert the collected acceleration time history into displacement.
Digital signal processing was performed in the master (Raspberry Pi) using python libraries
such as numpy, scipy, and matplotlib. The signal processing procedure for converting the
raw acceleration signal into displacement was developed with a concept based on [6] which
is sketched in Figure 4.
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3. Results and Discussion
3.1. FE Results

Figure 5a shows the variation in the vertical displacement over the top surface of the
pavement. The signals correspond to the point where the contour provides the maximum
deflection. The corresponding displacement time history at one node along the load
path is represented in Figure 5b. The results indicate that a displacement amplitude of
approximately 0.35 mm can be expected for the pavement of the Fatigue Carousel under
such a load. Thus, during the laboratory tests, a displacement amplitude of this type was
adopted to test the system.
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3.2. Laboratory Test Results

Three MEMS accelerometers were tested: ADXL355, ADXL354, and MS1002. The test
results are summarized in Table 2, which shows the output type and sensitivity of each
sensor along with the power consumption and noise.

Table 2. Sensor characteristics obtained with the vibrating pot test.

Accelerometer Type ADXL355 ADXL354 MS1002

Output Digital Output Analog Output Differential Analog
Output

Sensitivity - 384 mV/g 1340 mV/g

Power Consumption
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Noise 0.0024 m/s2 0.022 m/s2 0.0076 m/s2

It can be seen that ADXL354 has the lowest power consumption compared with
the other two sensors at 155.2 µA, while MS1002 has the highest power consumption at
12.11 mA. ADXL354 has an analog output with a sensitivity of 384 mV/g. Thus, ADXL354
seems to have the best characteristics for the pavement monitoring system as it has the
lowest power consumption and good accuracy.

The vibrating table test was carried out at a lower displacement amplitude (0.25 mm)
than the signal reported in Figure 5b. This was adopted on purpose to observe whether
the accelerometer sensor and the entire system were able to detect very low displace-
ment/acceleration levels, since very low g’s are expected to be measured.

The example of raw acceleration signals is shown in Figure 6a. The results of the test
with a displacement amplitude of 0.25 mm at a speed of 45 km/h are shown in Figure 6b–d.
The result is compared with the signal from the vibration table’s integrated displacement
sensor, shown in blue. The results show that the proposed digital processing method was
capable of converting the measured acceleration value into displacement. However, an error
is still visible when comparing the signal-processed displacement with the displacement
sensor data.
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Figure 6. (a) Example of raw acceleration signals from the test of the three sensors; (b–d) displacement
conversion for all the sensors.

4. Conclusions

In this work, a prototype Zigbee-based wireless sensor network using a MEMS ac-
celerometer for pavement monitoring was proposed, built, and tested in the laboratory. A
preliminary numerical study was carried out to assess the kind of deflection to be expected
under the moving load induced by a full-scale fatigue test. In this case, the prototype de-
veloped was used to comparatively assess the performance of three MEMS accelerometers
by means of two laboratory tests, namely a dynamic calibration and the simulation of the
displacement produced by a five-axle truck. A signal processing step was also carried out to
convert the accelerations into displacements. The results of the laboratory test showed that
the system is capable of monitoring pavement deflections. Also, it has been demonstrated
that the ADXL354 is the most suitable accelerometer due to its low power consumption
and good accuracy. The system will shortly be tested under real-life conditions at the
accelerated pavement testing facility.
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