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ABSTRACT

The computational requirements of complex vision-based naviga-
tion algorithms influence the design of on-board processors for
satellites, often leading to the adoption of solutions based on field
programmable gate arrays (FPGAs). Following this trend, the HER-
MES project (qualification of High pErformance pRogrammable
Microprocessor and dEvelopment of Software ecosystem) aims at
providing both radiation-hardened FPGAs for aerospace applica-
tions and dedicated tools to program them at a high level of abstrac-
tion. In this paper, we demonstrate the use of design automation
methods developed within HERMES to implement a deep neural
network model on a space-grade FPGA, optimizing it to fit memory
footprint and performance constraints.
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1 INTRODUCTION

Aerospace applications increasingly rely on the processing of data
coming from imaging sensors, for both payload operations and
vision-based navigation. While routine spacecraft operations such
as decoding commands from a ground station, logging status re-
ports, management of subsystems, and attitude control can be exe-
cuted by simple microcontrollers, computer vision algorithms re-
quire more processing power, often significantly higher than what
is available on space-grade, radiation-hardened CPUs. In this con-
text, commercial-off-the-shelf (COTS) devices and heterogeneous
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platforms can provide the required performance, and devices based
on field programmable gate arrays (FPGAs) are particularly suited
because of their low overhead in size, power consumption, and cost.
Alongside performance and power consumption, the reliability
of accelerators and soft-cores implemented on FPGA is a major con-
cern when they are deployed in harsh environments. For this reason,
European institutions funded several efforts to develop a new gener-
ation of radiation-hardened FPGAs, and the supply from European
industries is quickly improving to meet current and future demands.
HERMES - qualification of High pErformance pRogrammable Mi-
croprocessor and dEvelopment of Software ecosystem [11] is one
of such efforts, with the dual target of developing next-generation
FPGAs for aerospace applications and providing tools that facili-
tate their usage. In fact, one obstacle to the adoption of FPGAs is
often the required expertise in low-level hardware programming,
which is not common among software engineers. HERMES thus
relies on High-Level Synthesis (HLS), and in particular on the open-
source Bambu HLS tool [7], to automatically generate optimized
FPGA implementations starting from high-level software descrip-
tions. Bambu has been extended during HERMES to support three
space-grade FPGAs from NanoXplore (NG-MEDIUM, NG-LARGE,
and NG-ULTRA) through the integration of the NanoXplore logic
synthesis tool and through a process of characterization, i.e., by
collecting latency and resources consumption of functional units
on each of the boards to inform the allocation and scheduling steps
during the HLS process. Other improvements to Bambu included
support for industry-standard AXI protocol interfaces, and the in-
troduction of caches to reduce the memory access latency [8].
The HERMES use cases included computer vision kernels to be
accelerated on space-grade FPGAs. Vision-based navigation algo-
rithms that could benefit from hardware acceleration also include
machine learning (ML) techniques used for image classification,
segmentation, and other compute-intensive tasks. In this paper, we
use a deep neural network (DNN) model designed to analyze images
and distinguish a satellite from the background (background seg-
mentation) to describe a synthesis and optimization flow from the
training of the DNN in a high-level ML framework to the generation
of a bitstream to program the FPGA. We start from the combination
of HLS and the Multi-Level Intermediate Representation (MLIR)
that was proposed in the SODA framework [1] to automatically
synthesize DNNs, and we customize the compilation pipeline to fit
the memory footprint and resource constraints of a NanoXplore
FPGA. In fact, by default SODA targets an ASIC design with the
highest possible performance: the frontend optimization pipeline
preferably applies techniques that sacrifice area to reduce latency
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(e.g., loop unrolling), which is undesirable when targeting a space-
grade FPGA with a fixed number of logic and memory resources.
Preliminary results help us to plan a roadmap of improvements
to Bambu and to the MLIR frontend that will provide users with
more flexibility to synthesize diverse DNN models and obtain high
performance at a reasonable cost in terms of area.

The rest of the paper is structured as follows:

o We briefly introduce necessary background concepts and the
state of the art in Section 2;

e We describe our design and optimization flow in Section 3;

e We present preliminary results obtained synthesizing DNN
models in Section 4;

e We conclude the paper with some final remarks in Section 5.

2 STATE OF THE ART

FPGAs are extensively used in computing systems for space mis-
sions [9, 14], where performance, power consumption, and relia-
bility are equally critical. Vision-based navigation algorithms for
satellites, in particular, require significantly faster processing than
what space-grade CPUs can provide, as they need to process high-
definition images at high frame rates performing feature extraction,
matching, object tracking, and other compute-intensive tasks. In
this domain, FPGAs can reach the highest performance per Watt
ratio among other COTS platforms [13]. The NG-ULTRA platform
from NanoXplore, which is the main target for HERMES [11], is a
system-on-chip (SoC) integrating a quad-core CPU and a radiation-
hardened FPGA, prioritizing high reliability through hardening
techniques in the manufacturing process and a design featuring
triple modular redundancy, error correction, and memory integrity
checks; in cases where the application to be accelerated is not safety-
critical, a commercial FPGA not designed for use in space may be
used instead, sacrificing reliability for performance.

A possible downside of FPGA-based platforms is that they re-
quire a bigger programming effort when designing accelerators
manually with a hardware description language (HDL) such as Ver-
ilog or VHDL. However, many HLS tools exist that can efficiently
translate high-level software code into an HDL representation [4],
simplifying the design and the verification of FPGA accelerators.
The generated HDL code can be integrated into a larger design as
an IP block, translated into a bitstream through commercial logic
synthesis and implementation tools, and deployed on the FPGA.
Increasing the degree of automation in the design flow through
HLS allows software developers with limited hardware design ex-
pertise to exploit the increased performance provided by FPGAs.
Most HLS tools are part of commercial design suites that support
target platforms from a single vendor, while Bambu [7] is an open-
source HLS tool supporting FPGAs from AMD/Xilinx, Intel, Lattice,
and NanoXplore. Accelerators synthesized through Bambu can be
interfaced with a host CPU, external memory, or other accelerators
through the AXI protocol, and they can include a custom cache to
mitigate the effect of external memory accesses [8].

The vision-based application considered in this study includes a
DNN model for background segmentation, i.e., a neural network
trained to distinguish pixels belonging to an object in the fore-
ground (in this case, a satellite or other spacecraft) from pixels
belonging to the background, as shown in Figure 1. Training such
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Figure 1: Background segmentation task.

models can be difficult because of the absence of a reference dataset
with labeled images specific to the domain; synthetic datasets have
been proposed where both the background and the spacecraft are
rendered through a simulator with varying conditions of lighting,
spacecraft position and orientation, Earth atmospheric conditions,
and so on [15]. Another option is to apply transfer learning or other
post-training techniques to existing convolutional neural network
(CNN) models [10]; these models, however, tend to be too large to
fit on the limited memory resources of an FPGA.

Traditionally, the input to HLS tools is a program written in
C/C++, together with timing and resource utilization constraints.
When the application to be accelerated is a pre-trained DNN, how-
ever, its designers would have to manually translate a higher-level
representation (usually Python-based) to C/C++, which is highly
impractical. Tools like hls4ml [6] or FINN [2] cover such an ab-
straction gap by parsing DNN models and replacing operators with
corresponding C/C++ functions, taken from a library of templates
that already contain HLS optimization directives. Domain-specific
compilation frameworks provide more flexible solutions that do not
depend on pre-optimized libraries; in particular, the MLIR frame-
work [12] allows to interface with popular DNN frameworks and
progressively lower models through multiple levels of abstraction
(called dialects). ScaleHLS [16] exploits MLIR to analyze and trans-
form input code from C or PyTorch, generating annotated C++ code
for the AMD/Xilinx HLS tool through a design space exploration
engine that automatically identifies the best combination of op-
timization directives. Code generated through ScaleHLS is only
useful when targeting AMD/Xilinx FPGAs, and because it relies
on early HLS estimates it may lead to underestimating resource
consumption. The SODA framework [1] integrates an MLIR-based
frontend [3] and Bambu, obtaining an open-source, end-to-end de-
sign automation flow from DNN frameworks to hardware design
that can target any FPGA supported by Bambu. The SODA-OPT
optimization pipeline in the frontend applies several transforma-
tions with the aim of exposing instruction-level parallelism so that
Bambu can later schedule multiple operations in parallel; such a
strategy proved to be very effective for polyhedral benchmarks
and isolated DNN layers translated into ASIC designs, but it causes
excessive resource consumption when considering a complete DNN
and when the target is a space-grade FPGA.
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Figure 2: The SODA framework design flow [1].

3 ACCELERATOR DESIGN

The starting point for this work is the SODA framework and design
flow [1] (Figure 2), an end-to-end compiler-based design automa-
tion framework able to synthesize DNN models into hardware
accelerators. In its original version, SODA takes as input a model
designed and trained in TensorFlow. The model is serialized in
the Protobuf format and translated into an MLIR representation
(tf dialect), which is then lowered through subsequent dialects in
the SODA-OPT frontend and eventually translated into an LLVM
IR that can be synthesized with Bambu for one of the supported
FPGA/ASIC targets. SODA-OPT also performs system-level design:
in fact, it is not the whole MLIR IR that undergoes progressive
lowering and synthesis, but only the kernels marked by the user
through the custom soda dialect, while the rest of the application is
compiled into a host executable. During the lowering process, a de-
fault optimization pipeline is applied that unrolls loops to increase
instruction-level parallelism and prepares the kernels for HLS.

The goal of this work is to synthesize an accelerator targeting a
space-grade FPGA from NanoXplore, and the basic SODA flow has
a few limitations that make it unsuitable for this purpose. Table 1
lists the type and quantity of available resources on the three FPGA
platforms considered in the HERMES project. (Changing the synthe-
sis target to one of them simply requires adjusting Bambu options,
as they have already been characterized and downstream logic syn-
thesis with NanoXplore tools is already supported in Bambu [8].)
Their limited capacity in terms of digital signal processing elements
(DSPs), registers, look-up tables (LUTs), and memory elements re-
quires careful consideration of the trade-off between performance
and resources consumption, whereas by default, SODA focuses on
extracting the maximum performance even if it incurs a higher cost
in terms of resources.

The first choice that reduces resources consumption, and at the
same time improves performance, is to start from a quantized DNN
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Table 1: Main available resources in space-grade FPGAs from
NanoXplore.

Device Registers LUTs DSPs Memory blocks
NG-MEDIUM 32256 34272 112 56
NG-LARGE 129024 137088 384 192
NG-ULTRA 505344 536928 1344 672

model. TensorFlow models are usually designed and trained in
single- or double-precision, but it is possible to exploit the Tensor-
Flow Lite converter to quantize weights and activations into 8-bit
integer numbers, resulting in a smaller and faster model which is
more suitable for inference on edge devices. After conversion, the
model can be serialized in the Flatbuffer format and translated into
an MLIR IR in the tf1lite dialect, which is then lowered with a very
similar pipeline to the one used for tf to obtain a synthesizable
LLVM IR. Because integer functional units can be implemented
more efficiently on FPGA, such a quantized model will result in
lower resources consumption and shorter execution time. The ac-
curacy of the model results is likely going to be lower than the
one obtained with the original floating-point model; however, if
it falls below mission requirements, post-quantization fine-tuning
and re-training techniques in TensorFlow Lite can be applied.

The default transformation and optimization pipeline in the
SODA-OPT frontend also needs to be modified. We don’t use the
outlining feature, as the whole DNN needs to be accelerated, and
host code is not provided in the input MLIR IR. We then disable
the three full loop unrolling commands in the affine dialect, as
they would result in unacceptable area consumption. The memory
footprint of a DNN model is also a concern for space-grade FPGAs,
since if the weights cannot fit the limited on-chip memory blocks,
each load and store access to an external memory will have a sig-
nificant cost in terms of latency. The default SODA-OPT pipeline
optimizes memory usage only at the layer level, as it was designed
with single-layer accelerators in mind, leaving buffers between one
DNN layer and the next to be lowered with the default MLIR strat-
egy. In this way, however, each buffer becomes a dynamic memory
allocation operation in the memref dialect. We introduced a new
MLIR pass that allows instead to generate optimized, statically allo-
cated memory pools, mitigating resource constraints and improving
overall performance.

Taking inspiration from similar efforts targeting embedded de-
vices [5], our pass starts from the analysis of def-use chains to deter-
mine liveness information for existing buffers, indicating whether
two or more of them are used concurrently within the program.
We use liveness information to build a Memory Exclusion Graph
(MEG) where nodes represent buffers and edges represent conflicts
between them; the pass then has to solve a graph coloring problem
on the MEG to generate an optimized set of memory pools where
multiple buffers can be allocated, sharing the same memory region
at different times during execution. Graph coloring is known to be
NP-complete, so we use a simple heuristic to solve it in a timely way.
The current heuristic provides satisfactory results, but more sophis-
ticated algorithms could be implemented in the future to enhance
the accuracy and efficiency of the memory optimization process,
leading to even better resource utilization and performance in the
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func.func @main(%arg0: memref<1x128x128x3xi8>, %arg1: memref<1x128x128x1xi8>) {
%alloc = memref.alloc() {alignment = 64 : i64} : memref<126x126x32xi32>
;./;alloc70 = memref.alloc() {alignment = 64 : i64} : memref<126x126x32xi8>
%alloc_2 = memref.alloc() {alignment = 64 : i64} : memref<124x124x16xi32>

%alloc_4 = memref.alloc() {alignment = 64 : i64} : memref<124x124x16xi8>

(a) Default memref buffers between DNN layers.
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func.func @main(%arg0: memref<1x128x128x3xi8>, %arg1: memref<1x128x128x1xi8>, %arg2: memref<2875456xi8>) {
%view = memref.view %arg2[%c0][] : memref<2875456xi8> to memref<126x126x32xi32>
%view_0 = memref.view %arg2[%c2097152][] : memref<2875456xi8> to memref<126x126x32xi8>
%view_2 = memref.view %arg2[%cO0][] : memref<2875456xi8> to memref<124x124x16xi32>

%view_4 = memref.view %arg2[%c2097152][] : memref<2875456xi8> to memref<124x124x16xi8>

(b) Statically allocated, optimally sized memory pool.

Figure 3: MLIR IR before and after applying our static memory allocation pass.

generated hardware accelerators. With this optimization pass we
reduce the memory footprint of the accelerators and we solve the
memory allocation problem statically, avoiding the generation of
runtime calls to dynamic memory allocation primitives which are
not synthesizable on FPGA. Figure 3 illustrates the effect of our pass
on the MLIR IR: on the left the default MLIR buffer generation strat-
egy results in frequent memref.alloc operations between DNN
layers, on the right a single memory pool has been statically sized
and added to the function arguments, and buffers are represented
through memref . view operations that access it.

Finally, one important aspect that is missing in the current de-
sign flow concerns vectorization, which is another possible way to
balance resources consumption and performance. Vectorization is
possible through standard passes within the 1inalg and affine
MLIR dialects, so integrating appropriate options in the SODA-OPT
pipeline would immediately result in the generation of a vectorized
LLVM IR, possibly with a customizable vector size. Future efforts
will focus on design space exploration in the MLIR frontend, and on
supporting the synthesis of vectorized functional units in Bambu.

4 EARLY RESULTS

The final target of our study is a DNN accelerator that performs
background segmentation on images captured by a satellite that de-
pict another spacecraft. Traditional DNNs for image segmentation
are composed by concatenating a feature extraction model with a
series of upsampling layers, both containing mostly convolution
operations. Our model has a similar structure, requiring several
million multiplications and roughly 13.000 floating-point weights,
although we cannot disclose more details about its design and train-
ing due to industrial secrecy. Because synthesis and simulation
times are substantially long for a hardware design containing such
a high amount of operations, we first tested our design flow on a
smaller DNN, i.e., a simple digit classifier trained on the MNIST
dataset, composed of a convolutional layer followed by a fully con-
nected one. The DNN has been designed and trained in TensorFlow,
translated into MLIR, and synthesized for a NanoXplore NG-ULTRA
FPGA with a target clock period of 20ns following the design flow
described in Section 3.

Table 2 shows performance and area metrics for different de-
sign and synthesis configurations. The first configuration we tested

(fp32-external) was to synthesize the model as it was trained, with
floating-point weights and calculations. Because Impulse, the NanoX-
plore logic synthesis tool, struggled to meet the requested clock
period in the place and route phase, we aimed for low area con-
sumption by disabling loop unrolling and constraining Bambu to
prioritize resource sharing. We also had to place all storage in
external memory because of an unknown error during logic syn-
thesis, resulting in additional clock cycles for every load and store
operation. Subsequently, we added integer quantization in Ten-
sorFlow Lite keeping the rest of the synthesis options unchanged
(int8-external), placing storage in internal BRAMs (int8-internal),
and removing the resource sharing constraints (int8-internal-opt).
Looking at the results in the table, this last configuration achieves
the highest performance in terms of execution time: Bambu man-
ages to exploit a higher degree of parallelism by using more FPGA
resources, integer functional units are smaller and faster than their
floating-point counterparts, and memory access times are reduced
by keeping all storage on the FPGA. The critical path, however,
exceeds the requested 20ns.

Considering the results obtained on a smaller model, we immedi-
ately quantized the larger DNN model for background segmentation
to 8-bit integer values, as the floating-point version would not likely
fit the resource constraints of the target FPGA since the digit clas-
sifier model is at least one order of magnitude smaller in terms of
number of multiplications. The effect of our memory optimization
pass was not significant on the digit classifier model as it was com-
posed of only two layers, but it was instead extremely relevant when
we moved to the larger DNN model for background segmentation.
The input model, in fact, contained 9.54MB of allocated memory
buffers which were reduced to 2.74MB after applying the pass. Early
synthesis results are reported in Table 3: the achieved performance
is quite low, to the point that the simulation process reached its
timeout set at 200 million clock cycles, while only about 5% of LUTs
and registers are occupied. This means that there is still ample room
to explore optimization strategies that better exploit parallelism,
although the inability of Impulse to reach the desired target period
is a concern, as well as the increased synthesis times that slow
down the exploration process. Implementing vectorization passes
in the frontend and corresponding vectorized functional units in
Bambu will undoubtedly prove helpful to increase performance; it
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Table 2: Synthesis results for a simple digit classifier on NG-ULTRA.

Configuration  Latency Clock Cycles Frequency Memory blocks LUTs Registers DSPs
fp32-external 51.729 ms 2114052 40.9 MHz 0 30078 24410 4
int8-external 16.844 ms 844744 50.1 MHz 0 3470 3976 12
int8-internal 11.350 ms 670316 59.1 MHz 37 2523 2963 9
int8-internal-opt  3.951 ms 178436 45.2 MHz 40 4625 6779 27

Table 3: Synthesis result for the DNN backround segmentation model on NG-ULTRA.

Configuration

Latency Clock cycles Frequency Memory blocks LUTs Registers DSPs

int8-internal-opt >5s >200M

will also likely introduce less complicated logic in the accelerator
datapath with respect to achieving the same level of parallelism
through loop unrolling and replication of scalar functional units,
simplifying bitstream generation in Impulse after the accelerator
has been synthesized.

5 CONCLUSION

The HERMES project and the SODA framework provide applica-
tion developers with a set of tools that simplify the generation of
accelerators for space-grade FPGAs, enabling automated synthesis
of DNN models into custom hardware. We have applied such tools
and introduced new features to generate an accelerator for a con-
volutional neural network performing background segmentation,
obtaining a baseline design that will serve as a starting point for the
exploration of new optimizations, with vectorization as our next
target feature. In the future, it will also be fundamental to collab-
orate with the application experts who designed and trained the
model, to verify that our modifications (in particular quantization)
do not break the model’s functionality and maintain acceptable
accuracy on a relevant dataset.
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