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Abstract
Interest in the exploitation of the cislunar environment is growing exponentially. The establishment of lunar

outposts and orbiting gateways is pivotal to enable the next generation of human exploration in the solar system.
This paper investigates the refinement process of prototype Earth–Moon transfers, originally designed in the Earth–
Moon, Sun-perturbed bi-circular restricted four-body problem, into the full ephemeris. Reference bi-impulsive
trajectories, extracted from a dataset of locally optimal solutions, serve as seeds for the generation of flyable
cruises to the Moon in the real environment. Complex transfer geometries pose challenges in refinement. A
meticulous search for a suitable departure calendar epoch is necessary to facilitate the process. Moreover, passage
through an intermediate astrodynamic model, such as the elliptic one, further favors convergence to the high-fidelity
representation. As a new era of lunar exploration approaches, this work demonstrates the flyability of complex
Earth–Moon transfers within the real solar system, and elucidates the process of achieving such trajectories.
Keywords: Earth–Moon transfers, Cislunar environment, Ephemeris model, Trajectories refinement.

1 Introduction

Space exploration is witnessing a flourishing momen-
tum, evidenced by the recent interest of private com-
panies that, alongside national agencies, are laying the
groundwork for the next space race era. Nowadays, the
space domain and its exploitation are indeed considered
strategical to the technological and scientific advance-
ment of humanity. The colonization of our natural satel-
lite is the first necessary step toward human expansion
across regions of the solar system [1]. Many missions
have been recently launched in the cislunar space (CAP-
STONE [2], ArgoMoon [3], EQUULEUS [4], Chang’e-6)
and many others are planned for the near future (e.g.
LUMIO [5]). Current effort in advancing scientific and
technological knowledge is laying the foundations for the
incoming space era.

Among all challenges, the design of a spacecraft
trajectory is a delicate process. Hence, the develop-
ment of new analysis tools, methods, and procedures
is paramount to enhance the efficiency and effectiveness
of future space missions. As the dynamics governing the
motion of a spacecraft becomes increasingly chaotic, the
complexity of the problem grows exponentially [6]. The
cislunar environment is an example of this. Here, the
simultaneous presence of various attractive phenomena
enables the design of unique trajectories. Traditional
techniques, such as the patched conic approximation,
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though simple, fail to fully exploit the richness of the dy-
namics, thereby limiting their applicability. Conversely,
overly complex models, albeit representing the real oper-
ative scenario, are impractical for generating space tra-
jectories from scratch. Intermediate astrodynamic mod-
els are thus usually adopted to trade-off complexity and
realism [7, 8].

Common trajectory design practices in the cislu-
nar environment exploit natural dynamic structures of
the Earth–Moon circular restricted three-body prob-
lem (CR3BP) [9, 10]. For example, invariant mani-
folds [6] emanating from periodic orbits [11] may en-
able efficient routes across the space. A more realis-
tic framework is achieved by introducing the solar at-
traction in the model, thus obtaining the Earth–Moon,
Sun-perturbed bi-circular restricted four-body problem
(BCR4BP). Low-energy transfers crossing the outer re-
gion of the Earth–Moon realm can benefit this additional
gravitational attraction to reduce the spacecraft fuel re-
quirements [12, 13].

Recently, numerous studies addressed the problem of
refining prototype trajectories into higher-fidelity mod-
els. A hierarchical structure of astrodynamic frame-
works is adopted in [7] and [8] to smoothly transition
into the ephemeris system through multiple shooting. A
cooperative evolutionary algorithm is employed in [14] to
optimize interior Earth–Moon transfers in the real sys-
tem. [15–17] express transfer segments via the Theory
of Functional Connections and a homotopy continuation
approach is used for refinement purposes.
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Fig. 1: BCR4BP model (not to scale). Non-rotating,
quasi-inertial coordinates in orange.

In this work, several Earth–Moon bi-impulsive trans-
fers of complex geometries, originally adhering to the
BCR4BP dynamics, are transitioned into the real
ephemeris. Suitable conditions enabling smooth refine-
ments are investigated. The choice of the departure cal-
endar epoch (ET0) is critical. Therefore, a routine is
proposed to set this important parameter. The benefit
of passing through an intermediate astrodynamic model
is assessed as well. The importance of this study lies in
enhancing understanding of the dynamic rules governing
lunar trajectories, thereby permitting more informed de-
sign practices for future missions.

The remainder of the paper is structured as follows.
Section 2 introduces the dynamic models and describes
the cislunar environment. In Sect. 3, the process of re-
fining complex Earth–Moon transfers is idealized. The
procedure is then practiced in Sect. 4 and eventually
conclusions are drawn in Sect. 5.

2 Background

2.1 Dynamic models

2.1.1 Earth–Moon, Sun-perturbed bi-circular restricted
four-body problem

In the BCR4BP, the Earth and the Moon revolve cir-
cularly about their common barycenter which, in turn,
orbits the Sun as depicted in Fig. 1. The equations of
motions are formulated in the rotating frame (rf) cen-
tered at the Earth–Moon barycenter, with the x axis
directed toward the Moon. In the planar problem, the
non-dimensional dynamics is expressed as [18]

ẍ = 2ẏ + ∂Ω4

∂x

ÿ = −2ẋ + ∂Ω4

∂y
,

(1)

Tab. 1: Normalized BCR4BP physical parameters.

Sym. Value Description
µ 1.215 066 830×10−2 Mass parameter
mS 3.289 005 410×105 Sun mass
ρS 3.888 111 430×102 EM–S distance
ωS −9.251 959 850×10−1 Sun angular velocity

where

Ω4 = 1
2(x2 + y2) + 1−µ

rE
+ µ

rM
+ 1

2µ(1−µ)+

+ mS

rS
− mS

ρ2
S

(
x cos(αS) + y sin(αS)

) (2)

is the effective potential and

αS = ωS(τ − τ0) + αS
∣∣
τ0

(3)

is the instantaneous Sun phase angle in the rotating
frame. The quantity ri represents the scaled distance of
the spacecraft from the ith celestial body. In this frame,
the Earth is fixed at [−µ, 0], whereas the Moon rests
at [1−µ, 0]. Table 1 reports the non-dimensional values
adopted to generate the original prototype trajectories.

2.1.2 Earth–Moon, Sun-perturbed elliptic restricted
problem

In the hierarchical ladder of astrodynamic models,
an higher level of fidelity is achieved by adopting the
Earth–Moon, Sun-perturbed elliptic restricted problem
(ERP). This framework differs from the BCR4BP due
to the introduction of the real Earth–Moon pulsation,
thereby accounting for their relative orbital eccentricity
e. The non-dimensional equations of motions, defined in
a roto-pulsating frame (RPF), are [19]

x′′ = 2y′ + ∂ω4

∂x

y′′ = −2x′ + ∂ω4

∂y
,

(4)

where
ω4 = (1 + e cosf)−1Ω4 (5)

is the new effective potential. The true anomaly f of
the relative elliptic orbit of the primaries is the new
independent variable, hence the adoption of primes to
denote derivatives. The pulsation makes the system ro-
tating in a non-uniform fashion, even though unitary
mean motion and Earth–Moon distance are obtained af-
ter normalization. The orbital period of the primaries
equals 2π, and

∂f

∂τ
= (1 + e cosf)2

(1 − e2)3/2 (6)
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relates the true anomaly to the non-dimensional time
[7]. Furthermore, the non-dimensional time past initial
pericenter, τperi, can be retrieved from standard equations
for elliptic orbits,

E = 2 tan−1

(√
1 − e

1 + e
tanf

2

)
τperi = E − e sinE + 2kπ,

(7)

where E is the eccentric anomaly and k tracks the num-
ber of pericenter crossings.

The Sun is still assumed to revolve circularly about
the Earth–Moon barycenter at a distance scaled by the
instantaneous Earth–Moon separation. To compute the
solar phase angle in the RPF, it is necessary to transi-
tion through the quasi-inertial frame whose X axis aligns
with the eccentricity vector. The transfer elapsed time
past departure can be computed using Eq. (7)

∆τ = τperi
∣∣
f

− τperi
∣∣
f0

. (8)

Consequently, the Sun angle θS with respect to the quasi-
inertial frame is derived similarly to Eq. (3) as

θS
∣∣
f

= f0 + αS
∣∣
f0

+ ω∗
S ∆τ, (9)

where the Sun inertial angular velocity is ω∗
S = ωS + 1

due to the unitary mean motion. Finally, the Sun phase
angle in the RPF is retrieved as

αS
∣∣
f

= θS
∣∣
f

− f. (10)

2.1.3 Roto-pulsating, restricted n-body problem

The ephemeris model most accurately describes the
real dynamics experienced by a spacecraft. Under the
hypothesis of restricted motion, the acceleration of a
body with respect to an inertial reference frame at the
solar system barycenter (SSB) is, in dimensional units,

R̈ =
∑
j=B

−µj
R − Rj

∥R − Rj∥3 + apert, (11)

where the first term represents the gravitational attrac-
tion of all celestial bodies of interest, that is, the Sun,
the Moon, and the planets. Ephemeris data are retrieved
from the JPL DE440 [20] file through the SPICE toolkit
[21, 22]. The second contribution in Eq. (11) models
additional perturbative phenomena, which in this study
reduce to the only solar radiation pressure (SRP) com-
puted as [23]

aSRP = SP0
R − RSun

∥R − RSun∥3 , SP0 = (1 + cr)
Asc

msc

Ψ0d2
0

c
.

(12)

Tab. 2: Values for SRP computation.

Sym. Value Description Units
cr 0.08 reflectivity coeff. -
Asc
msc

0.01 S/C area to mass ratio m2/kg
Ψ0 1371 ref. solar flux W/m2

d0 1 ref. E–S distance AU
c 2.998 × 108 light speed m/s
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Fig. 2: RPF in black (not to scale). SSB frame in orange.

Refer to Table 2 for the numerical values adopted to
estimate the SRP effect along the transfers.

To derive equations of motion resembling the formu-
lation of the CR3BP, a high-fidelity RPF is introduced.
In this system, the Earth and the Moon are at rest along
the x axis, and are one non-dimensional unit apart. At
any time instant, the RPF is constructed by retrieving
the ephemeris states of the Earth and the Moon, thus
computing the quantities [24]

b = MERE + MMRM

ME + MM

k = ∥RE − RM∥
C = [e1, e2, e3] ,

(13)

where
e1 = RM − RE

k
e2 = e3 × e1

e3 = (VM − VE) × (RM − RE)
∥(VM − VE) × (RM − RE)∥ .

(14)

Consequently, as per Fig. 2, the relations

R = b + kCρ

V = ḃ + k̇Cρ + kĊρ + kCρ′τ̇

τ = n (ET − ET0)
(15)

permit to transform the state of a generic body from the
SSB, i.e., {t,R,V }, to the RPF {τ,ρ,ρ′}. In the RPF,
the scaling factor k(t) makes the Earth and the Moon
occupy the same fixed positions they do in the CR3BP,
thus accounting for their pulsation. A constant mean
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Fig. 3: Pulsation of primaries. Orange line indicates
mean Earth–Moon distance (384 400 km). Green line
relates to analysis in Sect. 3.2.

motion equal to

n = 2π

T
=
√

G(ME + MM)
d

3 (16)

averages the primaries revolution period to 2π, with d

representing their mean distance taken over a long time
interval [7].

Finally, the spatial equations of motions for the roto-
pulsating, restricted n-body problem (RPRnBP) are de-
rived by substituting Eq. (15) and its time derivative
into Eq. (11), leading to

ρ′′ = − 1
n2

(
k̈

k
I + 2k̇

k
C⊤Ċ + C⊤C̈

)
ρ+

− 2
n

(
k̇

k
I + C⊤Ċ

)
ρ′ − C⊤b̈

kn2 +

+ 1
k3n2

(∑
j=B

−µj
δj

∥δj∥3 + SP0
δSun

∥δSun∥3

)
,

(17)

where δj = ρ − ρj and δSun = ρ − ρSun.

2.2 The cislunar environment

As mentioned in [18], the BCR4BP is deemed appro-
priate for capturing the basic behaviors characterizing
the Sun–Earth–Moon system. However, the pulsation of
the primaries, the non-coplanar motion of the Sun, and
the presence of all other celestial bodies would cause a
spacecraft to deviate from its original trajectory. There-
fore, the transition into the real environment is a neces-
sary step to evaluate the feasibility of a mission. Here,
the principal sources of divergence are briefly described.

500-40

-500

-20

0

0
0

20

40

-500500

Fig. 4: Sun yearly revolution in Earth–Moon RPF. Not
to scale for better visualization.

Figure 3 depicts the Earth–Moon pulsation over the
course of one year. The real distance of the primaries
equals its mean value (384 400 km) twice every lunar
orbital revolution about the Earth. Since the scaling
factor adopted in the BCR4BP for the generation of the
prototype trajectories is equal to the Earth–Moon mean
distance, the pulsation of the system strongly affects the
selection of ET0, as will be explained later in the paper.

The orbital plane of the Moon is inclined by
5.145◦with respect to the ecliptic. Equivalently, from
the perspective of the Earth–Moon RPF plane, the Sun
departs vertically. Figure 4 shows the solar motion over
one year, approximately corresponding to the cyclic pe-
riod of the pattern. This non-coplanarity introduces out-
of-plane forces, and a spacecraft would deviate from its
intended motion if the refinement process did not com-
pensate for them.

3 The refinement process

This section formulates the problem of refining
Earth–Moon transfers within the real dynamics. After a
description of the process adopted to generate prototype
trajectories in previous works, the procedure for setting
optimal ET0s is investigated. Finally, the transition to
the high-fidelity model, potentially passing through the
intermediate elliptic framework, is addressed.

3.1 Problem statement
3.1.1 Dataset generation

In [18] and [25], the authors generated more than
400 000 low-energy Earth–Moon trajectories in the
BCR4BP, with times of flight (TOF) up to 200 days.
Each bi-impulsive solution is supposed to leave the Earth
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tangentially from a 167 km altitude circular Low Earth
Orbit (LEO). All trajectories then insert impulsively
into a 100 km altitude circular Low Lunar Orbit (LLO).

3.1.2 Clustering analysis

As a continuation of the works previously mentioned,
[26] implemented an automatic dataset processing based
on clustering algorithms to derive families of Earth–
Moon transfers. The solutions in the dataset were ini-
tially labeled as interior, interior-exterior, and exterior
based on their permanence times within the Earth–
Moon region of prevalence [27]. Subsequently, clustering
techniques were adopted to assess relative similarities
among all solutions, thereby identifying emerging clus-
ter families of Earth–Moon transfers. This process re-
sulted in 23, 44, and 30 families for the interior, interior-
exterior, and exterior groups, respectively. Refer to [26]
for a description of the clustering procedure and results.

3.1.3 Purpose of the research

This work aims to investigate the feasibility of pro-
totype Earth–Moon transfers in the real environment.
In [26], the authors highlighted one trajectory per fam-
ily based on both clustering properties and propulsive
characteristics. The remainder of the paper attempts to
transcribe those solutions into the real ephemeris model.

3.2 Setting the departure epoch

The choice of ET0 is important to enable a smooth
transition from prototype trajectories in the BCR4BP to
the ephemeris model. The refinement process is based
on the discretization of the input Earth–Moon transfer
into N −1 evenly-spaced segments. Each discretization
node ni introduces six state variables to the refinement
optimization problem, this one formulated in subsequent
sections. As the initial problem is planar whereas the
real system is three-dimensional, the z and z′ guesses
at each node are initialized to zero. To account for the
transfer duration of the input trajectory in the BCR4BP,
N is set equal to floor

(
(τf − τ0)/0.4

)
.

As introduced in Sect. 2.2, the scaling factor between
the dynamic models matches only at specific calendar
epochs. This has a strong impact when the state cor-
responding to the first node of a transfer, that is, the
initial conditions of the prototype trajectory, is propa-
gated in the RPRnBP. Due to the vicinity to the Earth,
the dynamics is very sensitive at the departure point.
Therefore, selecting ET0 that leads to the matching of
the scaling factors of the systems favors a smoother tran-
sition. Figure 5 reproduces the propagation of nodal

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

Fig. 5: RPRnBP propagation of nodal states. Green
solution departs on July 6th 2026, corresponding to the
green epoch highlighted in Fig. 3.

states along a reference BCR4BP Earth–Moon trans-
fer in the real ephemeris model at varying ET0s (±20
days about July 6th 2026, 1 day separation). It can
be appreciated that continuity of the solution is mostly
achieved when aligning the scaling factors at the instant
of impulsive LEO departure, as represented by the green
solution. Indeed, respecting this condition, the acceler-
ation fields of the two dynamics are comparable. Fur-
thermore, a similar overall scaling of the quantities is
achieved, thereby obtaining transfer sections in the real
environment that resemble the input counterparts. From
the second node on, this effect is less pronounced and all
the solutions track the same path.

The relative angle of the Sun in the RPF is also fun-
damental in setting a suitable ET0. This concept is espe-
cially important for interior-exterior and exterior trans-
fers, where a spacecraft spends most of its TOF outside
of the Earth–Moon realm and, therefore, the solar effect
overcomes that of the Moon. This principle is at the
base of constructing efficient exterior low-energy trans-
fers to the Moon [12]. Since the solar attraction prevails
as the spacecraft moves farther from the barycenter of
the primaries, the Sun–Earth–Moon alignment should
be preserved at the time of maximum distance from the
RPF origin. A routine is implemented to first retrieve
the Sun angle αS

∣∣
τ∗ , where τ∗ represents the time the

spacecraft is the farthest during its original BCR4BP
motion. Successively, a calendar year is swept to find
all epochs when the same Sun–Earth–Moon alignment
is achieved in the RPF, assuming planar solar motion.
The dimensional TOF up to the maximum distance is
subsequently subtracted from all extracted epochs, thus
deriving suitable ET0 candidates. This analysis assumes
that the TOF of the refined transfer would remain equal
to that of the input prototype trajectory.
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The choice of a transfer ET0 should accommodate
both conditions. Approximately 27 and 12 candidate
epochs over the course of one year are obtained after the
pulsation and alignment analyses, respectively. The ab-
solute differences between all epochs of the first set and
those of the second set are computed. Eventually, the
pair generating the minimum difference is considered,
and ET0 is set to the epoch that satisfies the pulsation
condition. The process ensures a consistent representa-
tion of the trajectory at the beginning of the transfer
and a proper alignment of all principal attractors at the
epoch of maximum distance of the spacecraft from the
Earth–Moon barycenter. In the remaining of the paper,
all ET0s belong to the 2026 calendar year and are set
through the described procedure.

3.3 Ephemeris refinement process
The refinement process implemented in this work

consists in formulating an optimization problem that is
then solved through direct transcription and multiple
shooting [28]. A first paragraph introduces the prob-
lem of discretizing input solutions, that is, the transcrip-
tion part of the method. The other one formalizes the
optimization problem for the direct transition into the
ephemeris model.

3.3.1 Discretization of the prototype trajectory

Before proceeding with its refinement, a prototype
trajectory must be sampled at some discretization nodes,
as delineated at the beginning of Sect. 3.2. Non-
dimensional epochs when nodal BCR4BP states are ex-
tracted respect the relation

τi = τ0 + i−1
N −1(τf − τ0) for i = 1, . . . , N. (18)

To directly transition from a BCR4BP solution to its
counterpart in the real ephemeris, states are provided
to the optimization algorithm, this one described in the
next paragraph, without further manipulations. Con-
versely, Sect. 3.4 exposes the procedure to be adopted
when passing through the intermediate elliptic model.

3.3.2 Multiple shooting optimization

Earth–Moon transfers analyzed in this study are bi-
impulsive. Therefore, besides injection points, the tra-
jectories are ballistic and evolve only because of natural
forces introduced by the environment. This formalizes
the objective function of the optimization problem, that
stands on minimizing the sum of departure and arrival
impulsive maneuvers costs,

J = ∆Vdep + ∆Varr. (19)

To calculate one contribution, for example the cost of in-
serting into the lunar transfer orbit, the passage through
inertial dimensional quantities is necessary. Equa-
tion (15) is used to compute RE-sc and VE-sc, vector
distance of the spacecraft from the Earth and its rel-
ative velocity. Assuming the spacecraft leaves a circular
Earth orbit at a certain altitude, the departure impulse
expense is calculated following

1) h = RE-sc1 × VE-sc1

2) s = h × RE-sc1

3) ∆Vdep =
∥∥∥∥VE-sc1 −

√
GME

∥RE-sc1 ∥
s

∥s∥

∥∥∥∥.

(20)

Equivalent procedure is implemented to compute ∆Varr

at the Moon.
The optimization problem is subject to constraints

to achieve transfers that comply with boundary and con-
tinuity conditions. As mentioned, the spacecraft is sup-
posed to leave tangentially a 167 km altitude LEO, and
insert into a 100 km altitude LLO. Therefore, equality
constraints

∥RE-sc1 ∥ − Rdep

∥RM-scN ∥ − Rarr

RE-sc1 · VE-sc1

RM-scN · VM-scN

(21)

are imposed (with R representing the target dimensional
distance from the body center of interest). Equations
are scaled to avoid numerical issues. Ballistic continuity
of the trajectory between nodal points is guaranteed by
introducing additional N −1 equality constraints

ξi = φ([ρ;ρ′]i, τi; τi+1) − [ρ;ρ′]i+1 for i = 1, . . . , N −1,

(22)
where φ([ρ;ρ′]i, τi; τi+1) represents the flow of the ith
section of the trajectory propagated in the target
RPRnBP dynamics. To conclude the formulation of the
problem, inequality constraints prevent the spacecraft
from impacting with either primary at the discretization
points and ensure that the final time is greater than the
departure epoch. Indeed, epochs τ0 = τ1 and τf = τN

are also optimization variables, initialized to 0 and to
the TOF of the input BCR4BP solution, respectively.

All transfers are refined using the MATLAB func-
tion fmincon with constraints tolerances set to 1 × 10−8.
The gradient of the objective function and the Jacobians
of the constraint equations are provided analytically to
the optimizer. Converging solutions are independently
propagated to assess boundary conditions satisfaction
and tested against impacts with either primary between
nodal points. Overall, the refinement process is designed
to deliver real Earth–Moon transfers that still resemble
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their prototype counterparts and preserve relevant dy-
namical and geometrical features.

3.4 Intermediate elliptic smoothing

Direct transition to the ephemeris model may result
in convergence issues due to the extreme difference in dy-
namic content between the BCR4BP and the RPRnBP
models. An intermediate passage through the ERP fa-
vors a smoother refinement into the real dynamics. The
solutions, originated in the BCR4BP, would indeed be
stretched to a higher-fidelity configuration that accounts
for the primaries pulsation, thereby reducing the gap be-
tween the initial and destination dynamics.

3.4.1 Elliptic model continuation

Given a departure epoch ET0, set as per Sect. 3.2,
instantaneous semi-major axis aM, eccentricity e∗, and
true anomaly f0 of the lunar orbit about the Earth–
Moon barycenter are retrieved from ephemeris data.
Then, the semi-major axis of the ellipse described by the
relative motion is derived as a∗ = aM/(1−µ) [19]. The
relative Sun angle at departure, αS

∣∣
f0

, is corrected to
reflect real ephemeris data. A continuation algorithm is
implemented to gradually raise the value of the eccentric-
ity from 0 to e∗ over the course of 100 iterations. Conse-
quently, each jth step assumes a relative semi-major axis
computed as aj = d(1 + ej cosf0)/(1 − e2

j ), thus eventu-
ally converging to the target a∗.

The problem is formulated similarly to the approach
in Sect. 3.3 for the ephemeris case. However, a few im-
portant differences are worth mentioning. The input
prototype trajectory is sampled at intermediate non-
dimensional epochs to generate the optimization vari-
ables. As the eccentricity of the first iteration, e1, is
very small, the nodal instants represent the evolution of
the true anomaly of the system, which is the indepen-
dent variable of the elliptic problem. The purpose of the
elliptic continuation is to achieve solutions satisfying the
dynamics of the ERP. Therefore, the objective function
is set to one, as the minimization of the cost is to be
achieved with the subsequent RPRnBP refinement. The
true anomaly at departure is not an optimization vari-
able and is fixed to f0. Instead, fN is still considered
a degree of freedom of the problem to facilitate conver-
gence. Each jth iteration provides the nodal inputs for
the subsequent (j +1)th processing, until continuation
achieves the target ERP.

Mixed non-dimensional/dimensional equality con-

straints are derived analogously to Eq. (21) as

(x1 + µ)2 + y2
1 − (Rdep/ℓ1)2

(xN + µ − 1)2 + y2
N − (Rarr/ℓN )2

RE-sc1 · VE-sc1

RM-scN · VM-scN ,

(23)

where ℓi is the variable Earth–Moon distance computed
at the ith node. Tangentiality constraints require trans-
forming synodic states into primaries-centered quanti-
ties through rotation matrices. Scaling is introduced
to prevent numerical issues. Finally, continuity and in-
equality constraints are implemented similarly to the full
ephemeris direct refinement and analytical Jacobians are
derived. This concludes the formulation of the elliptic
continuation problem.

3.4.2 Elliptic-to-ephemeris refinement

Solutions converging to the target ERP dynamics must
be manipulated before being provided to the ephemeris
refinement optimizer for the final transition. An ERP so-
lution is propagated numerically. Successively, each kth
integration node is processed to change the independent
variable and adjust its velocity components following

ρ′
k = x′

k
∂f

∂τell

∣∣∣∣
fk

∂τell

∂τeph

τephk
= τellk

(
∂τell

∂τeph

)−1

,

(24)

where τellk is retrieved from Eq. (7) and
∂τell/∂τeph =

√
(d/a∗)3 relates the two non-dimensional

time scales. Since ephemeris refinement assumes ET0

as guess departure epoch, τeph1 is subtracted from the
temporal sequence and states are interpolated using
splines. Procedure outlined in Sect. 3.3 is eventually
practiced to generate nodal guesses and optimize the
transfer in the real environment.

4 Earth–Moon transfers in full
dynamics

Geometrically complex Earth–Moon transfers have
been clustered into families in [26], thus obtaining a
global portrait of possible trajectory alternatives in the
planar BCR4BP. A representative solution from each
family has been extracted and is refined in this work
into the full ephemeris model, following the procedure
described in Sect. 3.
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Fig. 6: Direct transition of interior BCR4BP Earth–Moon transfers (black) to their refined counterparts in the
RPRnBP dynamics (green). In average, RPRnBP solutions require 10.85 m/s more than their lower-fidelity
versions. Mean transfer cost is 3958.97 m/s, 32.06 days duration.
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Fig. 7: Direct transition of interior-exterior BCR4BP Earth–Moon transfers (black) to their refined counterparts
in the RPRnBP dynamics (green). In average, RPRnBP solutions require 6.54 m/s more than their lower-fidelity
versions. Mean transfer cost is 3868.53 m/s, 121.19 days duration.

4.1 Direct ephemeris transition

4.1.1 Interior transfers

The group of interior prototype transfers comprises
23 solutions, which can be visualized in [26] for refer-
ence. Direct transition into the RPRnBP converges in
only 9 cases. Variability in the number of converging
solutions has been observed if changing the number of
discretization points N , i.e., changing the denominator

factor (default value is 0.4). Raising the number of nodes
generates shorter transfer segments that generally devi-
ate less when propagated in the full dynamics, thereby
forming a larger set of input states that may facilitate
the transition. However, too many sampling points may
also lead to overconstraining the solution, thus prevent-
ing refinement. Solutions that could be refined by con-
sidering a certain denominator factor may not converge
if a different value was assumed, and vice versa. The re-
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Fig. 8: Direct transition of exterior BCR4BP Earth–Moon transfers (black) to their refined counterparts in the
RPRnBP dynamics (green). In average, RPRnBP solutions require 6.71 m/s more than their lower-fidelity versions.
Mean transfer cost is 3837.92 m/s, 118.86 days duration.
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Fig. 9: Intermediate elliptic continuation, from black
(BCR4BP) to orange (target ERP). Directly converging
solution to the full ephemeris is represented in green. It
closely follows its elliptic counterpart.

sults presented in this paper all refer to a denominator
factor equal to its default value.

Figure 6 summarizes Earth–Moon transfers directly
transitioning into the real environment. Solutions are
represented in configuration space projected onto the
planar synodic frame, as deviations in the normal di-
rection are relatively small, and, therefore, would not
be appreciable. Very complex geometries are difficult
to refine because of the presence of multiple lunar fly-
bys and/or highly-eccentric revolutions about the Earth
prior to LLO insertion. That is, bi-impulsive transfers
do not include mid-course maneuvers that would allow
for more favorable encounters with the primary bodies
during intermediate passages near them.

4.1.2 Interior-exterior transfers

Reference interior-exterior transfers are extracted
from 44 cluster families and directly refined. Converg-
ing solutions are depicted in Fig. 7. The optimization
algorithm converges for less than half of all the original
prototype transfers, highlighting the difficulty of transi-
tioning trajectories that exhibit very complex geometries
when represented in the RPF. The challenges are simi-
lar to those of the interior case. However, completing an
interior-exterior transfer requires a spacecraft to fly for
a much longer TOF compared to a simple interior case.
Whereas the maximum duration of an interior solution
is generally less than 50 days, an exterior passage sub-
stantially increases the TOF, making convergence to the
real dynamics more difficult.

4.1.3 Exterior transfers

Out of 30 reference exterior transfers, 12 solutions
directly refine into the ephemeris model. Same consid-
erations of the interior-exterior case apply in this occur-
rence. Figure 8 plots all exterior Earth–Moon transfers
directly transitioning into the real environment. As the
spacecraft leaves the Earth–Moon realm and the number
of revolutions about the system in the RPF increases, the
solar effect becomes increasingly predominant in guid-
ing the motion of the spacecraft. Procedure outlined
in Sect. 3.2 penalizes a correct alignment of the attrac-
tors at ET0 to favor the correct scaling between models.
This, along with the complexity of the solutions and the
long transfer durations, hinders the convergence of the
optimization problem.
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(a) Ephemeris propagation of BCR4BP (black) and ERP
(orange) nodal points. Dots indicate sampling points.
Elliptic solution provides a smoother and more continu-
ous starting guess prior ephemeris optimization.
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(b) Convergence to the full ephemeris solution (green)
passing through the intermediate elliptic continuation
(from black to orange). RPRnBP trajectory closely fol-
lows its lower-fidelity counterpart in the ERP.

Fig. 10: Example of Earth–Moon transfer requiring an intermediate elliptic continuation.

4.2 Elliptic intermediate passage
Trajectories not directly converging to the represen-

tation in the full ephemeris are subject to the inter-
mediate elliptic smoothing described in Sect. 3.4. To
prove the effectiveness of this important step, the last
trajectory reported in Fig. 6 is continued into the ERP.
Figure 9 depicts the continuation process, gradually ad-
justing the BCR4BP solution in black to match the dy-
namics of the target ERP, resulting in the orange trajec-
tory. The directly refined counterpart is superimposed in
green in the same figure for reference. It is evident that
the optimization process, which generates the flyable
trajectory, converges to a solution that shares most of
its geometrical features with its lower-fidelity correspon-
dent in the elliptic system. This confirms that the ec-
centricity of the Moon orbit about the Earth introduces
a significant dynamic contribution that substantially al-
ters the original motion of the spacecraft. Consequently,
this intermediate step would promote a smoother con-
vergence toward the full dynamics.

Figure 10 depicts the continuation and subsequent
ephemeris refinement of a trajectory that does not per-
mit direct transition between the extreme dynamic mod-
els. Therefore, it requires the intermediate elliptic
smoothing. In particular, Fig.10a illustrates the propa-
gation of nodal points for both the original BCR4BP (in
black) and the ERP solutions (in orange) within the full
dynamics. Deviations are much more prominent when
propagating points belonging to the prototype trajec-
tory, making direct refinement into the full ephemeris
impossible. Conversely, in the elliptic case, an almost
continuous trajectory is achieved even in proximity of
sensible points such as close Earth and Moon passages,

thereby providing a more accurate initial guess to the
full ephemeris optimization algorithm. The green trans-
fer in Fig. 10b represents the converged solution after
optimization. The closeness to the evolution of its ERP
analogue is evident.

A second refinement campaign is performed to tran-
sition the remaining Earth–Moon transfers into the
ephemeris model by exploiting the intermediate passage
through the ERP. Additional 4, 7, and 3 solutions for
the interior, interior-exterior, and exterior groups, re-
spectively, achieve convergence to their flyable versions
and are presented in Fig. 11. Most of the refined trajec-
tories closely follow their reference ERP solutions. How-
ever, in a few cases, the basins of attraction of the opti-
mization algorithm result in transfers whose geometries
deviate from the original shapes, as depicted in the last
tile of Fig. 11. The transition into the elliptic model is
deemed ineffective for exterior transfers, where the pul-
sation of the primaries is relevant only for very short
flight periods. In all other cases, passage through the
ERP is beneficial, although extremely complex geome-
tries may still be unachievable in the real system.

5 Concluding remarks

This paper proposes a method for transitioning bi-
impulse Earth–Moon transfers into the ephemeris model,
which accounts for the attractive forces of principal
celestial bodies and the solar radiation pressure. A
dataset of thousands of solutions was processed in pre-
vious works to derive transfer families sharing common
geometrical properties. In this work, one reference tra-
jectory per family is refined into the real dynamics. Pre-

IAC-24,C1,IP,14,x84302 Page 10 of 13



75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024.
Copyright ©2024 by C. T. Campana. Published by the IAF, with permission and released to the IAF to publish in all forms.

-2 0 2
-2

0

2

-2 0 2
-2

0

2

-2 0 2
-2

0

2

-2 0 2
-2

0

2

-4 0 4
-4

0

4

-4 0 4
-4

0

4

-4 0 4
-4

0

4

-4 0 4
-4

0

4

-4 0 4
-4

0

4

-4 0 4
-4

0

4

-4 0 4
-4

0

4

-5 0 5
-5

0

5

-5 0 5
-5

0

5

-5 0 5
-5

0

5

Fig. 11: Solutions converging to full dynamics (green) after elliptic intermediate transition (a few continuation
steps are displayed from black to orange).

liminary design of cislunar trajectories is commonly per-
formed in simplified models that retain only the princi-
pal dynamic contributions. However, assessing the flya-
bility of a space trajectory in the real-world dynamics is
paramount to guarantee the feasibility of the mission.

A routine to set proper calendar departure epochs
is proposed. Since the full dynamics is represented in a
non-dimensional roto-pulsating frame synchronized with
the Earth–Moon rotation about their common barycen-
ter, departure epochs must enable the correct matching
to the reference bi-circular restricted four-body problem,
which is the framework where original solutions were de-
signed. A second constraint ensures suitable Sun–Earth–
Moon relative alignments, facilitating the refinement of
long-duration trajectories where the solar attraction is
prominent. The beneficial effect of transitioning through
the elliptic model is investigated. The pulsation of the

primaries is particularly relevant for trajectories that re-
main within the Earth–Moon region of prevalence for
long. Results demonstrate that smoother refinements
toward the full ephemeris are achieved by continuing the
reference trajectories into intermediate dynamic models
with progressively increasing Earth–Moon eccentricity.
Both elliptic and ephemeris optimization routines are
formulated as nonlinear programming problems.

Convergence to the full dynamics is achieved for
most of the reference trajectories. However, too com-
plex transfer geometries are difficult to refine. Beneficial
effects are obtained if transitioning through the elliptic
formulation. The method is suitable for assessing the
flyability of Earth–Moon transfers, thereby contributing
to laying the groundwork for the next space era, where
the exploitation of the cislunar environment will play a
strategical role.
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