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Abstract. Correlation analysis is a crucial step before undertaking any regression 
modeling for data prediction because it helps reveal the relationships between 
predictors and responses, especially in terms of linearity and nonlinearity. This 
analysis is often essential for selecting the most appropriate regression model. A 
major challenge is that linear correlation measures are suitable only for linear 
relationships, and there are limited measures for assessing nonlinearity. Moreover, a 
significant issue arises from the influence of unknown predictor data, which can lead 
to unrealistic and inaccurate outputs from both linear and nonlinear correlation 
measures. To address these challenges, this paper proposes a systematic correlation 
analysis that first assesses the impact of unknown predictors and then selects the most 
suitable regressor for modeling and forecasting. The proposed method utilizes a linear 
measure known as canonical correlation analysis and a nonlinear measure called 
maximal information criterion. Based on the correlation values obtained from these 
measures, one can suggest low, moderate, and high correlation levels. The 
effectiveness of the proposed method is demonstrated using measured data related to 
long-span bridge structures. This data includes temperature records, serving as a 
single predictor, and bridge displacement responses obtained from synthetic aperture 
radar images as products of remote sensing technology. Results confirm that the 
proposed method is highly effective and applicable for selecting the best regression 
model for prediction. 
 
Keywords: Prediction, Structural Displacement, Long-Span Bridge, Regression 
Model Selection, Correlation Analysis, Remote Sensing Technology. 

1. Introduction 

Health assessment of critical civil structures is of paramount importance to their owners and 
stakeholders [1-3]. Recent advancements in sensor technologies have enabled civil engineers 
to capture a variety of structural responses. Consequently, the increased field measurement 
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of civil structures using diverse sensing systems has received considerable attention. In 
particular, next-generation sensing technologies, such as those based on smartphones [4], 
digital cameras [5], spaceborne remote sensing [6] significantly enhance the monitoring 
complex and huge civil structures. 

Although field measurement is an important and practical component of structural 
health monitoring (SHM) in civil structures, several limitations can hinder the full utilization 
of this strategy. Firstly, it may not always be feasible to equip civil structures with all possible 
sensors due to difficult access caused by their geographic conditions. Secondly, harsh 
weather conditions can interrupt the recording of some structural responses. Thirdly, some 
next-generation sensors are sensitive to lighting conditions, which can lead to erroneous 
outputs. Fourthly, budget constraints may prevent civil engineers and researchers from 
completing field measurements, and costs can deter owners and stakeholders of civil 
structures from investing in SHM, especially for projects that require long-term monitoring. 
Some of the aforementioned limitations can be mitigated by benefiting spaceborne remote 
sensing. Notably, the use of synthetic aperture radar (SAR) images retrieved from certain 
satellites can overcome the limitations of harsh environments, lighting conditions, and 
weather fluctuations. For these reasons, SAR-aided SHM has emerged as a practical strategy 
for health assessment of various civil structures [7-13]. However, this strategy has its own 
weaknesses. Firstly, it is challenging to provide real-time data (SAR images) for urgent 
events (i.e., strong earthquakes, floods, typhoons, etc.). Secondly, the large file sizes of 
remote sensing products, often measured in gigabytes, require considerable storage space, 
which can be problematic for long-term monitoring programs. Third, the outputs of SAR-
based SHM consist of a limited set of displacement responses, which may not encompass all 
structural properties and fully reflect all external loadings [9]. 

The remedy for these limitations is to take advantage of artificial intelligence and 
machine learning algorithms and models for predicting structural responses. In this regard, 
supervised regression modeling is an effective and reliable approach to data prediction [14]. 
Generally, the regression-based prediction process involves measuring and collecting all 
potential predictors (i.e., independent data) and responses (i.e., dependent data), followed by 
training a regression model. Subsequently, the regressor uses new predictors to forecast 
unseen response samples. A successful prediction process relies upon selecting a reliable 
regression model [15]. This selection is determined by the nature of the relationship between 
the predictors and responses, specifically whether it is linear or nonlinear.  

On the other hand, it may not be possible to measure all potential predictors. In SHM, 
the main predictors (i.e., independent parameters), which affect structural responses include 
external loadings, environmental factors such as air temperature, humidity, rainfall, and 
wind. Some external loadings, despite their significant impacts on structural responses, 
cannot be measured. Additionally, sensor malfunction caused by aging and harsh weather 
may disrupt reliable measurements of some key environmental parameters leading to 
potential data missing. The other important issue is the variability in how measured response 
data are influenced across different locations of a civil structure. At some locations, the 
response data may be significantly affected by measured environmental and/or operational 
conditions, while at other locations, the data may be unaffected by these conditions or 
predominantly influenced by unmeasured factors [14]. Under such circumstances, accurate 
regression modeling may be challenging and an unsuitable regressor may result erroneous 
outputs. Therefore, an appropriate regressor selection is not only important for choosing the 
best model based on the relationship between the measured predictors and responses but also 
critical for recognizing whether the measured predictors are sufficient or other unmeasured 
factors affect responses. 

The main objective of this paper is to propose a systematic correlation analysis for 
initially determining the relationship between the measured predictors and responses and 
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subsequently declaring whether the measurements are sufficient. The basis of the proposed 
method lies in two correlation coefficient measures; that is, canonical correlation analysis 
(CCA) and maximal information criterion (MIC). Computing the correlation coefficients, the 
proposed method defines three correlation cases. To validate the application and 
effectiveness of this method, measured temperature data of some contact-based temperature 
sensors and structural displacement responses of large-scale bridge structures are 
incorporated. Within the framework of long-term SHM plans, responses were derived from 
some SAR images concerning the remote sensing system. Results demonstrate that the 
proposed correlation analysis method significantly helps to make an accurate decision on 
response prediction and implementation of further field measurements. 

2. Correlation Metrics 

2.1 Canonical Correlation Analysis 

In statistics, a correlation analysis presents a useful way for measuring the relationship 
between at least two variables and indicating their dependency. This approach is capable of 
identifying how changes in one variable influence variations in another. On this basis, a high 
correlation rate means that there is a strong relationship or dependency on the two variables. 
In contrast, a low correlation rate refers to some conditions such as a weak relationship and 
the effect of other variables that are not considered in the analysis.  

Among correlation coefficient measures, the CCA is based on computing linear 
relationships between two multidimensional variables. This method can be considered as the 
problem of finding basis vectors for two sets of variables such that the correlation between 
the projections of the variables onto these basis vectors are mutually maximized [17]. In this 
case, the canonical correlation vectors are determined by a joint covariance analysis of the 
two variables [18: Chapter 16]. An important characteristic of the CCA is the feasibility of 
computing the correlation between two univariate datasets. Given the predictor and response 
data x={x1,…,xn} and y={y1,…,yn}, the main objective of the CCA is to determine canonical 
scores of these datasets and attempt to describe the possible link between x and y. On this 
basis, these scores (i.e., u and v) can be written as follows: 

 𝐮 = 𝐚!𝐱 (1) 

 𝐯 = 𝐛!𝐲 (2) 

where a and b are the canonical coefficients of the vectors x and y. The CCA seeks for vectors 
a and b such that the relation of the two indices aTx and bTy is quantified in some 
interpretable way. In this regard, the vectors a and b are obtained by maximizing the Pearson 
correlation coefficient between u and v, which can be expressed as: 

 
𝜌(𝐮� 𝐯) =

∑ (𝑢" − 𝑢/)(𝑣" − 𝑣̅)#
"$%
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"$% )
%
&
 (3) 

The canonical variables of x and y are the linear combinations of the canonical 
coefficients in a and b, respectively. Therefore, the canonical correlation between the 
predictor (x) and response (y) data is the positive value of the Pearson correlation coefficient 
between u and v; that is, CCA(x,y) = ρ(u,v). Accordingly, the CCA varies between zero and 
one so that CCA(x,y) = 1 implies a high linear correlation between x and y, whereas 
CCA(x,y) = 0 means that no correlation is available. 
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2.2 Maximal Information Criterion 

Linear correlation measures are not able to represent nonlinear relationships between 
variables. In such cases, the best solution is to benefit nonlinear correlation measures. The 
MIC is one of the effective nonlinear correlation measures developed by Reshef et al. [19]. 
It is a statistical approach used to measure the strength in data (i.e., predictors and responses) 
and their linear or nonlinear correlation degree. 

To understand the mathematical underpinning of MIC, it is important to initially 
understand the concept of mutual information, which is the basis of this statistical approach. 
In this regard, mutual information is a measure derived from information theory, quantifying 
the amount of information obtained about one random variable through observing another 
random variable. Given two random variables x (predictor) and y (response) with n samples, 
one can express their mutual information (Ixy) in the following form: 

 
𝐼'( =3𝑝(𝑥" � 𝑦")

#

"$%

log
𝑝(𝑥" � 𝑦")
𝑝(𝑥")𝑝(𝑦")

 (4) 

where p(x,y) is the joint probability distribution function of x and y, and p(x) and p(y) are the 
marginal probability distribution functions of x and y, respectively. MIC benefits this concept 
by evaluating the mutual information across various grid partitions of the data. This process 
can be outlined as follows: 

1) Grid Construction: For each pair of variables, a series of grids of varying sizes are laid 
over the scatter plot of their joint distribution. 

2) Mutual Information Calculation: For each grid, one needs to calculate the mutual 
information of the variables (i.e., the predictor x and response y) when binned based on 
the grid. 

3) Normalization: In this step, it is necessary to normalize the mutual information value by 
the logarithm of the smaller dimension (i.e., either the number of bins or the total number 
of samples) to account for the size of the grid. This normalized value is termed as: 

 
𝑀𝐼𝐶) =

𝐼'(
log<min(𝑘� 𝑙)B

 (5) 

where k and l represent the numbers of bins along each axis of the grid. 
4) Maximization Over Grids: MIC is then defined as the maximum MICg obtained over all 

possible grids as MIC = max(MICg). 
For assessing the correlation between the predictor and response data, MIC ranges from 

0 to 1. In this regard, a MIC value equal to one suggests a robust linear or nonlinear 
correlation, while a value close to zero implies an absence of correlation between the 
predictor and response data. 

3. Proposed systematic correlation analysis 

The main framework for choosing the best supervised regression model is based on three 
correlation cases (i.e., Case I, Case II, and Case III) by analyzing the correlation coefficients 
obtained from the CCA and MIC under three correlation labels; that is, High (▲), Moderate 
(■), and Low (▼). For these labels, three correlation criteria are defined as follows: 

• If the correlation coefficient is larger than 0.8, the correlation label is High. 
• If the correlation coefficient is smaller than 0.8 and larger than 0.6, the correlation label 

is Moderate. 
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• If the correlation coefficient is smaller than 0.6, the correlation label is Low. 

Based on these labels, one can define three correlation cases. 

3.1 Case I: High Correlation Coefficients for CCA and MIC 

This is the simplest condition in regression modeling for data prediction, for which there 
exists a high linear correlation between the predictor and response data. Thus, it can be 
inferred that since the environmental and/or operational conditions affect the response data 
linearly, linear regression models are well-suited for Case I. 

3.2 Case II: Low and High Correlation Coefficients for CCA and MIC 

In some conditions, the measured environmental and/or operational factors have nonlinear 
correlations with the response data, for which linear correlation measures such as CCA fail 
in indicating the accurate relationship. Under such circumstances, one should evaluate the 
outputs of nonlinear correlation measures such as MIC. For this case, one can ensure that the 
linear regression models are not effective and one should apply nonlinear regression models. 

3.3 Case III: Different Correlation Coefficients for CCA and MIC 

For this case, one can derive three potential conditions: 
1) When both CCA and MIC yield low correlation coefficients (Case III-1): This is the 

most obvious condition for the third case, which can ensure that unmeasured factors 
certainly impact on the response data. For this case, it is essential to consider new and 
additional sensing systems for providing further predictors. Moreover, nor linear and 
nonlinear regressors are suitable for Case III-1. 

2) When CCA and MIC yield low and moderate correlation coefficients (Case III-2): In 
this scenario, we can ensure that there is no linear correlation between the measured 
environmental and/or operational factors and the measured response data but we hesitate 
about the nonlinear correlation. Conservatively, it is better to prepare further predictors 
by using new sensing systems for new measurements.’ 

3) When CCA and MIC yield moderate correlation coefficients (Case III-3): This is an 
uncertain and conservative condition of the regression-based prediction problem. For this 
issue, one can consider two scenarios: (i) benefiting rigorous and robust regressors with 
nonlinear capabilities, and (ii) conducing new measurements for further predictor 
preparation. It is worth remarking that rigorous regressors are more complicated models 
developed from advanced machine learning algorithms. In most cases, hybrid regression 
models fall in this category that residuals between the measured and predicted responses 
include information about unmeasured predictors and such residual samples serve as new 
predictor points. 

4. Case Studies 

To demonstrate the application of the proposed correlation analysis method, the measured 
data belonging to two large-scale bridges is considered. Fig. 1 shows the pictures of these 
bridges. The first case study is a steel arch bridge called the Lupu Bridge, see Fig. 1(b), where 
is located in Shanghai, China [7]. The second case study known as the Rainbow Bridge, see 
Fig. 1(c), is a steel arch bridge located in Tianjin, China [7]. For these bridge structures, 
limited SAR images captured from some satellites were used to extract displacement 
responses as different areas of these structures. For the Lupu Bridge, 38 SAR images 
belonging to TerraSAR-X were utilized to obtain the bridge displacement responses at the 
main girder and the bridge arch between April 16, 2013 to September 10, 2016. In relation 
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to the Rainbow Bridge, 53 SAR images from Sentinel-A1 were incorporated to determine 
the displacements at four piers and three main girders since 2015-2017. In both bridge 
structures, thermocouples were installed to record air temperature based on the paradigm of 
the contact-based sensing system. Fig. 2 displays the displacement responses as well as the 
recorded temperature data belonging to the Lupu Bridge. Moreover, Fig. 3 illustrates the 
same measured data regarding the Rainbow Bridge. 

(a) (b) 

  
Fig. 1. Case studies: (a) the Lupu Bridge, (b) the Rainbow Bridge 

 
Fig. 2. The Lupu Bridge: (a) SAR-extracted displacement responses at the bridge arch and girder, (b) 

recorded temperature values 

 
Fig. 3. The Rainbow Bridge: (a)-(b) SAR-extracted displacement responses at the bridge piers and spans, (c) 

recorded temperature values 

5. Results  

Using the proposed correlation analysis method, the relationship between each response and 
predictor data is examined to initially determine whether the ambient temperature is the sole 
significant environmental factor influencing the response data. Subsequently, it is evaluated 
to determine how the recorded temperature data influences displacement responses (i.e., in 
terms of linearity and nonlinearity concerning Case I and Case II) and make sure whether 
other unmeasured environmental and operational factors are dominant (Case III). At the first 
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step, the correlation coefficients via the CCA and MIC are computed as shown in Figs. 4-5 
regarding the Lupu and the Rainbow Bridges, respectively. In Fig. 4, one can discern that 
both the CCA and MIC regarding the bridge arch are smaller than 0.6, while these metrics at 
the bridge girder indicate high correlations (i.e., coefficient larger than 0.8) between the 
temperature and displacement. From Fig. 5, it is seen that no correlation coefficients are over 
0.8 so that some of them fall in 0.6-0.8 and the others are smaller than 0.6. 

 
Fig. 4. Correlation analysis for the Lupu Bridge: (a) CCA, (b) MIC 

 
Fig. 5. Correlation analysis for the Rainbow Bridge: (a) CCA, (b) MIC 

For more details, Tables 1 and 2 present the outputs of the proposed correlation analysis 
method for the Lupu and Rainbow Bridges, respectively. Based on Table 1, the correlation 
level at the arch of the Lupu Bridge is Case III-1 (i.e., the first condition of Case III), which 
means that unmeasured environmental and operational factors impact on the displacement 
data; hence, the bridge needs some additional sensors. In other words, the only temperature 
is not the most influential predictor, in which case nor linear neither nonlinear state-of-the-
art regression models can yield reliable prediction outputs. In contrast, it can be ensured that 
air temperature is the main reason for changes in the displacement response of the bridge 
girder. This means that it is feasible to apply linear regression models for predicting future 
displacement responses by inputting new temperature data.  

Table 1. The outputs of the proposed correlation analysis method in the Lupu Bridge 

Element Correlation labels Decision Suggestion CCA MIC 
Arch Low (▼) Low (▼) Case III-1 New sensors/field measurements 
Girder High (▲) High (▲) Case I Linear regressors 



8 

In relation to the Rainbow Bridge, as the outputs in Table 2 appear, the third cases are 
the final results. For Piers 3 and 4, one should add new sensing systems to measure further 
environmental and operational factors. Moreover, additional inspections are welcomed to 
make sure that the bridge did not suffer from any damage. For Piers 1 and 2 as well as Spans 
1-3, although it is possible to exploit or develop rigorous and robust regression models, it is 
better to add sensors for providing further predictor data. 

Table 2. The outputs of the proposed correlation analysis method in the Rainbow Bridge 

Element 
Correlation labels 

Decision Suggestion 
CCA MIC 

Pier 1 Moderate (■) Moderate (■) Case III-3 New sensors/field measurements or 
rigorous regressors 

Pier 2 Low (▼) Moderate (■) Case III-2 
New sensors/field measurements Pier 3 Low (▼) Low (▼) Case III-1 

Pier 4 Low (▼) Low (▼) Case III-1 
Span 1 Moderate (■) Moderate (■) Case III-3 

New sensors/field measurements or 
rigorous regressors Span 2 Moderate (■) Moderate (■) Case III-3 

Span 3 Moderate (■) Moderate (■) Case III-3 

6. Conclusions 

In this paper, a systematic correlation analysis method has been proposed to initially 
determine the relationship between predictors and responses and then suggest solutions to 
regression-based prediction. The proposed method has exploited linear and nonlinear 
correlation metrics, i.e., CCA and MIC, and has defined three cases of correlations. Measured 
temperature data and SAR-extracted displacement responses of two long-span bridges have 
been considered as the single predictor and response sets. The results of this paper have 
indicated that the use of the proposed method can significantly help to make a correct 
decision on response prediction. Moreover, it is possible to suggest the best solution based 
on the outputs. 

Funding 

This research was partially funded by the European Space Agency (ESA) under ESA 
Contract No. 4000132658/20/NL/MH/ac.  

References 

[1] Katam, R., Pasupuleti, V. D. K., and Kalapatapu, P., A review on structural health monitoring: past to 
present. Innovative Infrastructure Solutions 8(9), 248 (2023). 

[2] Entezami, A., Sarmadi, H., Behkamal, B., and Mariani, S., Health monitoring of large-scale civil 
structures: An approach based on data partitioning and classical multidimensional scaling. Sensors 21(5), 
1646 (2021). 

[3] Daneshvar, M. H. and Sarmadi, H., Unsupervised learning-based damage assessment of full-scale civil 
structures under long-term and short-term monitoring. Engineering Structures 256, 114059 (2022). 

[4] Sarmadi, H., Entezami, A., Yuen, K.-V., and Behkamal, B., Review on smartphone sensing technology 
for structural health monitoring. Measurement 223, 113716 (2023). 

[5] Spencer, B. F., Hoskere, V., and Narazaki, Y., Advances in Computer Vision-Based Civil Infrastructure 
Inspection and Monitoring. Engineering 5(2), 199-222 (2019). 

[6] Ge, P., Gokon, H., and Meguro, K., A review on synthetic aperture radar-based building damage 
assessment in disasters. Remote Sensing of Environment 240, 111693 (2020). 



9 

[7] Qin, X., Zhang, L., Yang, M., Luo, H., Liao, M., and Ding, X., Mapping surface deformation and thermal 
dilation of arch bridges by structure-driven multi-temporal DInSAR analysis. Remote Sensing of 
Environment 216, 71-90 (2018). 

[8] Behkamal, B., Entezami, A., De Michele, C., and Arslan, A. N., Elimination of thermal effects from 
limited structural displacements based on remote sensing by machine learning techniques. Remote Sensing 
15(12), 3095 (2023). 

[9] Entezami, A., De Michele, C., Arslan, A. N., and Behkamal, B., Detection of partially structural collapse 
using long-term small displacement data from satellite images. Sensors 22(13), 4964 (2022). 

[10] Milillo, P., Giardina, G., DeJong, M. J., Perissin, D., and Milillo, G., Multi-Temporal InSAR Structural 
Damage Assessment: The London Crossrail Case Study. Remote Sensing 10(2), 287 (2018). 

[11]  Entezami, A., Behkamal, B., and De Michele, C., Advanced ML Methods: Bridging SAR Images and 
Structural Health Monitoring, in Long-Term Structural Health Monitoring by Remote Sensing and 
Advanced Machine Learning: A Practical Strategy via Structural Displacements from Synthetic Aperture 
Radar Images (pp. 29-68). Cham: Springer Nature Switzerland (2024). 

[12] Di Carlo, F., Miano, A., Giannetti, I., Mele, A., Bonano, M., Lanari, R., Meda, A., and Prota, A., On the 
integration of multi-temporal synthetic aperture radar interferometry products and historical surveys data 
for buildings structural monitoring. Journal of Civil Structural Health Monitoring 11(5), 1429-1447 
(2021). 

[13] Entezami, A., Behkamal, B., and De Michele, C., Pioneering Remote Sensing in Structural Health 
Monitoring, in Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine 
Learning: A Practical Strategy via Structural Displacements from Synthetic Aperture Radar Images (pp. 
1-27). Cham: Springer Nature Switzerland (2024). 

[14] Behkamal, B., Entezami, A., De Michele, C., and Arslan, A. N., Investigation of temperature effects into 
long-span bridges via hybrid sensing and supervised regression models. Remote Sensing 15(14), 3503 
(2023). 

[15] Sarmadi, H., Behkamal, B., and Entezami, A., Prediction of long-term dynamic responses of a heritage 
masonry building under thermal effects by automated kernel-based regression modeling, in Artificial 
Intelligence Applications for Sustainable Construction, M.L. Nehdi, et al., Editors, Woodhead Publishing. 
p. 257-283. 2024. 

[16]  Entezami, A., Sarmadi, H., and Behkamal, B., Short-term damage alarming with limited vibration data in 
bridge structures: A fully non-parametric machine learning technique. Measurement (2024), in press. 

[17] Hardoon, D. R., Szedmak, S., and Shawe-Taylor, J., Canonical Correlation Analysis: An Overview with 
Application to Learning Methods. Neural Computation 16(12), 2639-2664 (2004). 

[18] Härdle, W. K. and Simar, L., Applied Multivariate Statistical Analysis. Springer International Publishing 
(2019). 

[19] Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, 
E. S., Mitzenmacher, M., and Sabeti, P. C., Detecting novel associations in large data sets. Science 
334(6062), 1518-1524 (2011). 

 
 


