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Abstract The aim of this paper is to study a class of superoscillatory functions in several variables, removing
some restrictions on the functions that we introduced in a previous paper. Since the tools that we used with our
approach are not common knowledge we will give detailed proof for the case of two variables. The results proved
for superoscillatory functions in several variables can be further extended to supershifts in several variables.
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418 Y. Aharonov et al.

1 Introduction

Superoscillating functions are band-limited functions that can oscillate faster than their fastest Fourier component.
Physical phenomena associated with superoscillatory functions have been known for a long time and in more recent
years there has been a wide interest both from the physical and the mathematical point of view. In 1952, Toraldo
di Francia observed the superoscillation phenomenon in antennas theory, see [43], and Y. Aharonov discovered
it in the context of weak values in quantum mechanics, see [1]. An introduction to superoscillatory functions in
one variable and some applications to Schrödinger evolution of superoscillatory initial data can be found in [9].
Superoscillatory functions in several variables have been rigorously defined and studied in [8]. The aim of this
paper is to remove the restrictions that were used in [8] and to generalize the existing theory to the more general
phenomenon of supershift.

Our results are directed to a double audience of physicists and mathematicians and since our tools, that consist
of infinite order differential operators acting on spaces of entire holomorphic functions, are not widely known we
consider first the case of two superoscillatory variables. In this case, we avoid heavy notations so that the reader
can better follow the main points of the proofs.

The literature on superoscillations is quite large, and evenwithout claiming completenesswe have tried tomention
some of the most relevant (and recent) results. Papers [3–10,15,19,27,33,40] deal with the issue of permanence
of superoscillatory behavior when evolved under a suitable Schrödinger equation; papers [22–26,34–39,41,42] are
mostly concerned with the physical nature of superoscillations, while papers [8,10,13,14,16–18,29–32] develop
in depth the mathematical theory of superoscillations. Finally, we have cited [9] as a good reference for the state
of the art in the mathematics of superoscillations until 2017, and [21], the Roadmap on Superoscillations from the
Institute of Physics, where the most recent advances in superoscillations and their applications to technology are
well explained by the leading experts in this field.

The prototypical superoscillating function is

Fn(x, a) =
(
cos

( x
n

)
+ ia sin

( x
n

))n =
n∑
j=0

C j (n, a)ei(1−2 j/n)x , x ∈ R, (1)

where a > 1 and the coefficients C j (n, a) can be calculated to be

C j (n, a) =
(
n

j

) (
1 + a

2

)n− j (1 − a

2

) j

. (2)

If we fix x ∈ R and we let n go to infinity, we obtain that

lim
n→∞ Fn(x, a) = eiax ,

and the limit is uniform on the compact sets of the real line. The term superoscillations comes from the fact that
in the Fourier representation of the function (1) the frequencies 1 − 2 j/n are bounded by 1, but the limit function
eiax has a frequency a that can be arbitrarily larger than 1.

A fundamental problem is to determine how large the class of superoscillatory functions. Many of the works in
the reference list, as we pointed out before, are devoted to the question of permanence of superoscillations when they
are taken as initial values for a given Schrödinger equation, but as a byproduct they also offered a very powerful way
to extend the class of superoscillatory functions. These extensions, nevertheless, are still very closely connected to
the archetypical function defined earlier on. To address this issue, we have recently introduced, [11], a new method
to generate superoscillatory functions for different configurations of points in the interval [−1, 1]. More precisely:
let h j (n) be a given set of points in [−1, 1], j = 0, 1, ..., n for n ∈ N, and let a ∈ R be such that |a| > 1. If
h j (n) �= hi (n) for every i �= j the function

fn(x) =
n∑
j=0

n∏
k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
eixh j (n), x ∈ R
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is such that
dp

dx p
fn(0) = (ia)p for p ∈ N0 = N∪ {0} and therefore when the sequence of holomorphic extensions

of ( fn) converges in the space A1 of functions of exponential type we have that

lim
n→∞ fn(x) = eiax , x ∈ R.

Two explicit examples are the following:

1. (I) Let n ∈ N and set h j (n) = 1 − 2
n j where j = 0, ..., n; in this case we obtain the superoscillatory function

fn(x) =
n∑
j=0

n∏
k=0, k �= j

n

2

(1 − 2
n k − a

j − k

)
ei(1−

2
n j)x , x ∈ R.

2. (II) Set h j (n) = 1 − 2
n p j where j = 0, ..., n, for a fixed p ∈ N, then we have:

fn(x) =
n∑
j=0

n∏
k=0, k �= j

n p

2

(1 − 2
n p k − a

j − k

)
ei(1−

2
n p j)x

, x ∈ R.

In both cases the sequences converge to eiax for every x ∈ R, and numerous other examples can be easily
constructed explicitly.

In the paper [8] we described and studied superoscillations in several variables. The methods we used, however,
required us to accept some constraints on the kind of superoscillations we could include. In this paper, on the other
hand, we develop a new approach that allows us to remove those constraints and study a more general class of
superoscillations, by showing how they can be constructed starting from superoscillatory functions in one variable.
The main idea is to consider a superoscillating function

fn(x) :=
n∑
j=0

Z j (n, a)eih j (n)x , n ∈ N, x ∈ R,

for some coefficients Z j (n, a) (seeDefinition 2.1) and to assume that its holomorphic extension to the entire function
fn(ξ) converges to eiaξ in A1, i.e. that there exists C ≥ 0 such that

lim
n→∞ sup

ξ∈C

∣∣ fn(ξ) − f (ξ)
∣∣e−C|ξ | = 0.

For p1, p2, . . . , pd ∈ N, d ∈ N, we then define

Fn(x1, x1, . . . , xd) =
n∑
j=0

Z j (n, a)eix1(h j (n))p1 eix2(h j (n))p2 . . . eixd (h j (n))pd

and we show that

lim
n→∞ Fn(x1, x1, . . . , xd) = eix1a

p1 eix2a
p2

. . . eixda
pd

,

so that, when |a| > 1, Fn(x1, x1, . . . , xd) is superoscillating.
In some earlier work, we have also shown that superoscillating functions are a particular case of supershifts,

and for this reason we now introduce, and study for the first time, the case of supershifts in d ≥ 2 variables. The
results that we have obtained and, even more, the techniques that we have used have convinced us of the existence
of an intimate relation between global analyticity in C

d and superoscillations and the supershift property on the
real space Rd . We have discussed this in detail this very subtle question with a colleague [44], and we plan to come
back to it with a joint paper in the near future.

The paper is organized into four sections. After this introduction, Section 2 contains the preliminary material
on superoscillations, the relevant function spaces and their topology, and we study the continuity of some infinite
order differential operators on such spaces. Section 3 is the main part of the paper and contains the definition of
superoscillating functions in several variables and some results proved in the specific case of two variables. Section
4 discusses the notion of supershift in several variables.
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420 Y. Aharonov et al.

2 Superoscillations, function spaces and operators

In this section, we summarize the preliminary definitions and results to treat superoscillatory functions in several
variables. We begin with the precise definition of superoscillatory functions in one variable.

Definition 2.1 We call generalized Fourier sequence a sequence of the form

fn(x) :=
n∑
j=0

Z j (n, a)eih j (n)x , n ∈ N, x ∈ R, (3)

where a ∈ R, Z j (n, a) and h j (n) are complex and real valued functions of the variables n, a and n, respectively.
The sequence (3) is said to be a superoscillating sequence if sup j,n |h j (n)| ≤ 1 and there exists a compact subset
of R, which will be called a superoscillation set, on which fn(x) converges uniformly to eig(a)x , where g is a
continuous real-valued function such that |g(a)| > 1.

The classical Fourier expansion is obviously not a superoscillating sequence since its frequencies are not, in general,
bounded.

A simple, but important, example is

Yn(x, a) =
n∑
j=0

C j (n, a)ei(1−2 j/n)mx , for x ∈ R and m ∈ N,

where, if C j (n, a) is defined as in (2), we have

lim
n→∞ Yn(x, a) = eia

mx .

In the recent paper [11], we enlarged the class of superoscillating functions for coefficients and frequencies more
general than C j (n, a) and 1 − 2 j/n, and we solved the following problem.

Problem 2.2 Let h j (n) be a given set of points in [−1, 1], j = 0, 1, ..., n, for n ∈ N and let a ∈ R be such that
|a| > 1. Determine the coefficients X j (n) of the sequence

fn(x) =
n∑
j=0

X j (n)eih j (n)x , x ∈ R

in such a way that

f (p)
n (0) = (ia)p, for p = 0, 1, ..., n.

Remark 2.3 The conditions f (p)
n (0) = (ia)p mean that the functions x 	→ eiax and x 	→ fn(x) have the same

derivatives at the origin, for p = 0, 1, ..., n, and therefore the same Taylor polynomial of order n.

Theorem 2.4 (Solution of Problem 2.2) Let h j (n) be a given set of points in [−1, 1], j = 0, 1, ..., n for n ∈ N

and let a ∈ R be such that |a| > 1. If h j (n) �= hi (n), for every i �= j , then the coefficients X j (n, a) are uniquely
determined and given by

X j (n, a) =
n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
. (4)

As a consequence, the sequence

fn(x) =
n∑
j=0

n∏
k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
eixh j (n), x ∈ R

solves Problem 2.2. Moreover, when the holomorphic extensions of the functions fn converge in A1, we have

lim
n→∞ fn(x) = eiax , for all x ∈ R.
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On superoscillations and supershifts in... 421

Our mathematical tools to study superoscillatory functions in one or in several variables make use of infinite
order differential operators. Such operators naturally act on holomorphic functions. This is the reason for which we
consider the holomorphic extension to entire functions of the sequence fn(x) defined in (2.1) by replacing the real
variable x by the complex variable ξ . For the sequences of entire functions we shall consider, a natural notion of
convergence is the convergence in the space A1 as in the following definition.

Definition 2.5 The space A1 is the complex algebra of entire functions such that there exists B > 0 such that

sup
ξ∈C

(| f (ξ)| exp(−B|ξ |) < +∞. (5)

The space A1 has a rather complicated topology, see e.g. [20], since it is a linear space obtained via an inductive
limit. For our purposes, it is enough to consider, for any fixed B > 0, the set A1,B of functions f satisfying (5), and
to observe that

‖ f ‖B := sup
ξ∈C

(| f (ξ)| exp(−B|ξ |)

defines a norm on A1,B , called the B-norm. One can prove that A1,B is a Banach space with respect to this norm.
Moreover, let f and a sequence ( fn)n belong to A1; fn converges to f in A1 if and only if there exists B such

that f, fn ∈ A1,B and

lim
n→∞ sup

ξ∈C

∣∣ fn(ξ) − f (ξ)
∣∣e−C|ξ | = 0

for some C ≥ 0. With these notations and definitions we can make the notion of continuity explicit (see [18]):
A linear operator U : A1 → A1 is continuous if and only if for any B > 0 there exists B ′ > 0 and C > 0 such

that

U(A1,B) ⊂ A1,B′ and ‖U( f )‖B′ ≤ C‖ f ‖B, for any f ∈ A1,B . (6)

The following result, see Lemma 2.6 in [17], gives a characterization of the functions in A1 in terms of the
coefficients appearing in their Taylor series expansion.

Lemma 2.6 The entire function

f (ξ) =
∞∑
j=0

f jξ
j

belongs to A1 if and only if there exists C f > 0 and b > 0 such that

| f j | ≤ C f
b j

�( j + 1)
.

Remark 2.7 To say that f ∈ A1 means that f ∈ A1,B for some B > 0. The computations in the proof of Lemma
2.6 in [17], show that b = 2eB, and that we can choose C f = ‖ f ‖B .
Lemma 2.6 has been proved in [17] and is a crucial fact in the proof of the following results. The reader must not
be confused by the fact that the variables x, y appearing in the statement below are real, indeed they have the role
of parameters (which can also be considered as complex numbers). We now define two infinite order differential
operators that will be used to study superoscillatory functions and supershifts in two variables. We would like to
stress, one more time, that the key ingredient in the theory that we have developed is the ability to characterize
those operators that act continuously on the space A1 or, more generally, on spaces of entire functions with growth
conditions.

Proposition 2.8 Let x, y ∈ R and p, q ∈ N. Denote by Dξ the derivation with respect to the complex variable ξ .
We define the formal operator:

U(x, y, Dξ ) :=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ

1

i pm−pμ+qμ
Dpm−pμ+qμ

ξ . (7)

Then U(x, y, Dξ ) : A1 	→ A1 is continuous for all x, y ∈ R and p, q ∈ N.

123



422 Y. Aharonov et al.

Proof Let us consider

U(x, y, Dξ ) f (ξ)

=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ

1

i pm−pμ+qμ
Dpm−pμ+qμ

ξ f (ξ)

=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ

1

i pm−pμ+qμ
Dpm−pμ+qμ

ξ

∞∑
j=0

f jξ
j

=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ

1

i pm−pμ+qμ

∞∑
j=pm−pμ+qμ

f j
j !

( j − (pm − pμ + qμ))!ξ
j−(pm−pμ+qμ)

=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ

1

i pm−pμ+qμ

∞∑
k=0

f pm−pμ+qμ+k
(pm − pμ + qμ + k)!

k! ξ k .

Taking the modulus we get

|U(x, y, Dξ ) f (ξ)| ≤
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
|x |m−μ|y|μ

∞∑
k=0

| f pm−pμ+qμ+k | (pm − pμ + qμ + k)!
k! |ξ |k,

and Lemma 2.6 gives the estimate on the coefficients f pm−pμ+qμ+k

| f pm−pμ+qμ+k | ≤ C f
bpm−pμ+qμ+k

�(pm − pμ + qμ + k + 1)
.

Using the estimate (a + b)! ≤ 2a+ba!b! we also have
(pm − pμ + qμ + k)! ≤ 2pm−pμ+qμ+k(pm − pμ + qμ)!k!,
so we get

|U(x, y, Dξ ) f (ξ)| ≤
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
|x |m−μ|y|μ

×C f

∞∑
k=0

bpm−pμ+qμ+k

�(pm − pμ + qμ + k + 1)

2pm−pμ+qμ+k(pm − pμ + qμ)!k!
k! |ξ |k .

We now use the Gamma function estimate

1

�(a + b + 2)
≤ 1

�(a + 1)

1

�(b + 1)
(8)

to separate the series, and we have

1

�(pm − pμ + qμ − 1
2 + k − 1

2 + 2)
≤ 1

�(pm − pμ + qμ + 1
2 )

1

�(k + 1
2 )

and so

|U(x, y, Dξ ) f (ξ)| ≤ C f

∞∑
m=0

1

m!
m∑

μ=0

(
m

μ

)
|x |m−μ|y|μ (2b)pm−pμ+qμ ×

× (pm − pμ + qμ)!
�(pm − pμ + qμ + 1

2 )

∞∑
k=0

1

�(k + 1
2 )

(2b|ξ |)k,

123
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and

|U(x, y, Dξ ) f (ξ)| ≤ C f

∞∑
m=0

1

m!
m∑

μ=0

(
m

μ

)
[(2b)p|x |]m−μ[(2b)q |y|]μ (pm − pμ + qμ)!

�(pm − pμ + qμ + 1
2 )

×
∞∑
k=0

1

�(k + 1
2 )

(2b|ξ |)k .

Now observe that the series in k satisfies the estimate
∞∑
k=0

1

�(k + 1
2 )

(2b|ξ |)k ≤ Ce2b|ξ |

where C is a positive constant, because of the properties of the Mittag-Leffler function, and the series
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
[(2b)p|x |]m−μ[(2b)q |y|]μ (pm − pμ + qμ)!

�(pm − pμ + qμ + 1
2 )

(9)

is convergent to a number denoted by Cx,y,p,q > 0. In fact, using the Stirling’s formula for the Gamma function,
we have

m! ∼ √
2πm e−mmm, for m → ∞

and then we deduce

�(m + 1)

�(m + 1/2)
∼

√
2π m e−mmm

√
2π(m − 1/2) e−(m−1/2) (m − 1/2)(m−1/2)

∼ √
m − 1/2, for m → ∞ (10)

and so
(pm − pμ + qμ)!

�(pm − pμ + qμ + 1
2 )

∼ √
pm − pμ + qμ − 1/2, for pm − pμ + qμ → ∞.

Now observe that the series (9) has positive coefficients and so it converges if and only if the series
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
[(2b)p|x |]m−μ[(2b)q |y|]μ√

pm − pμ + qμ − 1/2

converges. From the estimate
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
[(2b)p|x |]m−μ[(2b)q |y|]μ√

pm − pμ + qμ − 1/2

≤ √
p + q

∞∑
m=0

√
m

m!
m∑

μ=0

(
m

μ

)
[(2b)p|x |]m−μ[(2b)q |y|]μ

= √
p + q

∞∑
m=0

√
m

m! [(2b)p|x | + (2b)q |y|]m

we have that the series (9) converges for all x, y ∈ R and p, q ∈ N. So we finally have

|U(x, y, Dξ ) f (ξ)| ≤ C f Cx,y,p,q C e2b|ξ |, x, y ∈ R, ξ ∈ C. (11)

The estimate (11) shows that U(x, y, Dξ ) f ∈ A1, in fact

|U(x, y, Dξ ) f (ξ)| e−2b|ξ |,≤ C f Cx,y,p,q C x, y ∈ R, ξ ∈ C,

moreover, it also shows that its 2b-norm satisfies

‖U(x, y, Dξ ) f ‖2b ≤ C f Cx,y,p,q C = Cx,y,p,q C‖ f ‖B
where b = 2eB. Thus the conditions in (6) hold and the continuity of the operator U(x, y, Dξ ) follows. ��
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Remark 2.9 Proposition 2.8 can be stated and proved also for d > 2 variables.

Proposition 2.10 Let (g1,m) and (g2,m) be two sequences of complex numbers such that

lim
m→∞ |g�,m |1/m = 0, f or � = 1, 2. (12)

We define the formal operator

V(x, y, Dξ ) :=
∞∑

m1=0

g1,m1

∞∑
m2=0

g2,m2x
m1 ym2

1

im1+m2
Dm1+m2

ξ , x, y ∈ R, ξ ∈ C. (13)

Then V(x, y, Dξ ) : A1 	→ A1 is continuous.

Proof We apply the operator V(x, y, Dξ ) to a function f in A1 and we have

V(x, y, Dξ ) f (ξ) =
∞∑

m1=0

g1,m1

∞∑
m2=0

g2,m2x
m1 ym2

1

im1+m2
Dm1+m2

ξ f (ξ)

=
∞∑

m1=0

g1,m1

∞∑
m2=0

g2,m2x
m1 ym2

1

im1+m2
Dm1+m2

ξ

∞∑
j=0

f jξ
j

=
∞∑

m1=0

g1,m1

∞∑
m2=0

g2,m2x
m1 ym2

1

im1+m2

∞∑
j=m1+m2

f j
j !

( j − (m1 + m2))!ξ
j−(m1+m2)

=
∞∑

m1=0

g1,m1

∞∑
m2=0

g2,m2x
m1 ym2

1

im1+m2

∞∑
k=0

fm1+m2+k
(m1 + m2 + k)!

k! ξ k .

We take the modulus

|V(x, y, Dξ ) f (ξ)| ≤
∞∑

m1=0

|g1,m1 |
∞∑

m2=0

|g2,m2 ||x |m1 |y|m2

∞∑
k=0

| fm1+m2+k | (m1 + m2 + k)!
k! |ξ |k

and we use the estimate in Lemma 2.6:

| fm1+m2+k | ≤ C f
bm1+m2+k

�(m1 + m2 + k + 1)

to get

|V(x, y, Dξ ) f (ξ)| ≤
∞∑

m1=0

|g1,m1 |
∞∑

m2=0

|g2,m2 ||x |m1 |y|m2

×C f

∞∑
k=0

bm1+m2+k

�(m1 + m2 + k + 1)

(m1 + m2 + k)!
k! |ξ |k .

With the estimates

(m1 + m2 + k)! ≤ 2m1+m2+k(m1 + m2)!k!
and

1

�(m1 + m2 − 1
2 + k − 1

2 + 2)
≤ 1

�(m1 + m2 + 1
2 )

1

�(k + 1
2 )

123
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we separate the series

|V(x, y, Dξ ) f (ξ)| ≤
∞∑

m1=0

|g1,m1 |
∞∑

m2=0

|g2,m2 ||x |m1 |y|m2 ×

×
∞∑
k=0

C f b
m1+m2+k 1

�(m1 + m2 + 1
2 )

1

�(k + 1
2 )

2m1+m2+k(m1 + m2)!k!
k! |ξ |k .

Finally, we get

|V(x, y, Dξ ) f (ξ)| ≤ C f

∞∑
m1=0

|g1,m1 |
∞∑

m2=0

|g2,m2 |(2b|x |)m1(2b|y|)m2
(m1 + m2)!

�(m1 + m2 + 1
2 )

×
∞∑
k=0

1

�(k + 1
2 )

(2b|ξ |)k .

Using (10) we have

(m1 + m2)!
�(m1 + m2 + 1

2 )
∼ √

m1 + m2 − 1/2, for m1 + m2 → ∞,

and
√
m1 + m2 − 1/2 ≤ m1m2, since m1 ≥ 2 and m2 ≥ 2. Thus the series

∞∑
m1≥2

m1|g1,m1 |(2b|x |)m1

∞∑
m2≥2

m2|g2,m2 |(2b|y|)m2

converge to Cx , Cy respectively, for x, y ∈ R. So we have

|V(x, y, Dξ ) f (ξ)| ≤ C f CxCy(2b|ξ |)e2b|ξ | ≤ Cx,ye
4b|ξ |,

from which, recalling that C f = ‖ f ‖B and b = 2eB, we deduce

‖V(x, y, Dξ ) f ‖4b ≤ Cx,y‖ f ‖B .

Thus we have that the conditions in (6) are satisfied and the statement follows. ��

3 Superoscillating functions in several variables

We recall some preliminary definitions related to superoscillatory functions in several variables, then, for the sake
of simplicity, we limit our study to the case of two variables and then we discuss how our results can be extended
to the general case of d > 2 variables, see [28].

Definition 3.1 (Generalized Fourier sequence in several variables) For d ∈ N such that d ≥ 2, we assume that
(x1, ..., xd) ∈ R

d . Let (h j,�(n)), j = 0, ..., n for n ∈ N0, be real-valued sequences for � = 1, ..., d. We call
generalized Fourier sequence in several variables a sequence of the form

Fn(x1, . . . , xd) =
n∑
j=0

c j (n)eix1h j,1(n)eix2h j,2(n) . . . eixdh j,d (n), (14)

where (c j (n)) j,n , j = 0, . . . , n, for n ∈ N0 is a complex-valued sequence.
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Definition 3.2 (Superoscillating sequence) A generalized Fourier sequence in several variables Fn(x1, . . . , xd),
with d ∈ N such that d ≥ 2, is said to be a superoscillating sequence if

sup
j=0,...,n, n∈N0

|h j,�(n)| ≤ 1, for � = 1, ..., d,

and there exists a compact subset of Rd , which will be called a superoscillation set, on which Fn(x1, . . . , xd)
converges uniformly to eix1g1eix2g2 . . . eixd gd , where |g�| > 1 for � = 1, . . . , d.

Remark 3.3 An important example of a generalized Fourier sequence in several variables is the sequence

Yn(x1, ..., xd) =
n∑
j=0

C j (n, a)eix1(1−2 j/n)q1 . . . eixm (1−2 j/n)qd .

where C j (n, a) are given by (2) and q� ∈ N, for � = 1, . . . , d.

Remark 3.4 In the paper [8], we studied the function theory of superoscillatory functions in several variables under
the additional hypothesis that there exist r� ∈ N, such that

p = r1q1 + . . . + rdqd . (15)

In that case, we proved that for p, q� ∈ N, � = 1, . . . , d the function

Fn(x, y1, . . . , yd) =
n∑
j=0

C j (n, a)eix(1−2 j/n)p eiy1(1−2 j/n)q1 . . . eiyd (1−2 j/n)qd

is superoscillating when |a| > 1.

In this paper, we work in a more general framework and we are able to remove the restriction (15) on the
coefficients p, q� for � = 1, ..., d and to show that general superoscillating functions as in (3) can be used to define
superoscillatory functions in several variables.

We start by proving the following:

Theorem 3.5 (The case of two variables) Let

fn(x) :=
n∑
j=0

Z j (n, a)eih j (n)x , n ∈ N, x ∈ R, (16)

be a superoscillating function as (3) and assume that its holomorphic extension to the entire function fn(ξ) converges
to eiaξ in the space A1. For p and q ∈ N we define

Fn(x, y) =
n∑
j=0

Z j (n, a)eix(h j (n))p eiy(h j (n))q .

Then, we have

lim
n→∞ Fn(x, y) = eixa

p
eiya

q
,

and, in particular, Fn(x, y) is superoscillating when |a| > 1.

123



On superoscillations and supershifts in... 427

Proof We write the chain of equalities

Fn(x, y) =
n∑
j=0

Z j (n, a)eix(h j (n))p eiy(h j (n))q

=
n∑
j=0

Z j (n, a)

∞∑
m=0

1

m!
[
i x(h j (n))p + iy(h j (n))q

]m

=
n∑
j=0

Z j (n, a)

∞∑
m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ(h j (n))pm−pμ(h j (n))qμ

=
n∑
j=0

Z j (n, a)

∞∑
m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ(h j (n))pm−pμ+qμ.

Now observe that using the auxiliary complex variable ξ we have

λ� = 1

i�
D�

ξ e
iξλ

∣∣∣
ξ=0

for λ ∈ C, � ∈ N, (17)

where Dξ is the derivative with respect to ξ and |ξ=0 denotes the restriction to ξ = 0. So we can write

(h j (n))pm−pμ+qμ = 1

i pm−pμ+qμ
Dpm−pμ+qμ

ξ eiξh j (n)
∣∣∣
ξ=0

(18)

and defining the infinite order differential operator

U(x, y, Dξ ) :=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ

1

i pm−pμ+qμ
Dpm−pμ+qμ

ξ (19)

we get

Fn(x, y) = U(x, y, Dξ )

n∑
k=0

Zk(n, a)eiξh j (n)
∣∣∣
ξ=0

.

In Proposition 2.8 we have proved that the operator

U(x, y, Dξ ) : A1 	→ A1

is continuous; therefore, we can take the limit inside U(x, y, Dξ ) and we have:

lim
n→∞U(x, y, Dξ )

n∑
j=0

Z j (n, a)eiξh j (n) = U(x, y, Dξ ) lim
n→∞

n∑
j=0

Z j (n, a)eiξh j (n)

= U(x, y, Dξ )e
iξa .

Since the limit function is continuous (it is in A1), we can take the restriction to ξ = 0

lim
n→∞ Fn(x, y) = U(x, y, Dξ )e

iξa
∣∣∣
ξ=0

.

The explicit computation of the term U(x, y, Dξ )eiξa gives

U(x, y, Dξ )e
iξa =

∞∑
m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ

1

i pm−pμ+qμ
Dpm−pμ+qμ

ξ eiξa

=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μa pm−pμ+qμeiξa,
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so we finally get

lim
n→∞ Fn(x, y) =

∞∑
m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μa pm−pμ+qμeiξa

∣∣∣
ξ=0

=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i x)m−μ(iy)μ(a)pm−pμ+qμ

=
∞∑

m=0

1

m!
m∑

μ=0

(
m

μ

)
(i xa p)m−μ(iyaq)μ

=
∞∑

m=0

1

m! (i xa
p + iyaq)m

from which we get the statement. ��
Remark 3.6 From the inspection of the proof we observe a few facts.

1. (I) The space of the entire functions on which the infinite order differential operator U(x, y, Dξ ) acts is the
space A1 in one complex variable.

2. (II) In our strategy, the two variables (x, y) of the superoscillating function Fn(x, y) appear as parameters of
the operator U(x, y, Dξ ).

3. (III) In the case of d ≥ 2 variables (x1, x1, . . . , xd) the variables become the coefficients of the infinite order
differential operator U(x1, x2, . . . , xd , Dξ ), defined in (21), that still acts on the space A1.

We now state the case of d ≥ 2 variables, without giving all the details of the proof.

Theorem 3.7 (The general case of d ≥ 2 variables) Let

fn(x) :=
n∑
j=0

Z j (n, a)eih j (n)x , n ∈ N, x ∈ R, (20)

be superoscillating functions as in (6) and assume that their entire extensions to the functions fn(ξ) converge to
eiaξ in A1. Let p1, p2, . . . , pd with p� ∈ N, � = 1, 2, . . . , d and d ∈ N, for d ≥ 2. Define

Fn(x1, x1, . . . , xd) =
n∑
j=0

Z j (n, a)eix1(h j (n))p1 eix2(h j (n))p2 . . . eixd (h j (n))pd .

Then

lim
n→∞ Fn(x1, x1, . . . , xd) = eix1a

p1 eix2a
p2

. . . eixda
pd

,

and in particular Fn(x1, x1, . . . , xd) is superoscillating when |a| > 1.

Proof To generalize the case of two variables we recall the multidimensional version of the Newton binomial
expansion. Given variables y1, y2, . . . , yd we have

(y1 + y2 + . . . + yd)
m =

∑
μ1+μ2+...+μd=m

(
m

μ1, μ2, . . . , μd

)
yμ1
1 yμ2

2 . . . yμd
d

where(
m

μ1, μ2, . . . , μd

)
:= m!

μ1!μ2! . . . μd ! .
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We write the chain of equalities

Fn(x1, x1, . . . , xd) =
n∑
j=0

Z j (n, a)eix1(h j (n))p1+i x2(h j (n))p2+...+i xd (h j (n))pd

=
n∑
j=0

Z j (n, a)

∞∑
m=0

1

m!
[
i x1(h j (n))p1 + i x2(h j (n))p2 + . . . + i xd(h j (n))pd

]m

=
n∑
j=0

Z j (n, a)

∞∑
m=0

1

m!
∑

μ1+μ2+...+μd=m

(
m

μ1, μ2, . . . , μd

)
yμ1
1 yμ2

2 . . . yμd
d .

where we have set

y� := i x�(h j (n))p� , for � = 1, . . . d with d ∈ N.

We define the infinite order differential operator

U(x1, x2, . . . , xd , Dξ ) :=
∞∑

m=0

1

m!
∑

μ1+μ2+...+μd=m

Hm,μ1,μ2,...,μd (x1, x2, . . . , xd , Dξ ), (21)

where

Hm,μ1,μ2,...,μd (x1, x2, . . . , xd , Dξ ) :=
(

m

μ1, μ2, . . . , μd

)
(i x1)μ1(i x1)μ1 . . . (i xd)μd

i p1μ1+p2μ2+...+pdμd
Dp1μ1+p2μ2+...+pdμd

ξ

and with similar computations as in Proposition 2.8 we can prove that the operator

U(x1, x2, . . . , xd , Dξ ) : A1 	→ A1

is continuous. Observing that

fn(x1, x1, . . . , xd) = U(x1, x2, . . . , xd , Dξ )

n∑
j=0

Z j (n, a)eiξh j (n)
∣∣∣
ξ=0

and proceeding as in the case of two variables we get the statement. ��

4 Supershifts in several variables

The procedure to define superoscillatory functions can be extended to the case of supershifts. Recall that the
supershift property of a function extends the notion of superoscillations and that this concept turned out to be a
crucial ingredient for the study of the evolution of superoscillatory functions as initial conditions of the Schrödinger
equation (or of other field equations).

Definition 4.1 (Supershift) Let I ⊆ R be an interval with [−1, 1] ⊂ I and let ϕ : I × R → R, be a continuous
function on I. We set

ϕh(x) := ϕ(h, x), h ∈ I, x ∈ R

and we consider a sequence of points (h j (n)) such that

h j (n) ∈ [−1, 1] for j = 0, ..., n and n ∈ N0.

We define the functions

ψn(x) =
n∑
j=0

c j (n)ϕh j (n)(x), (22)
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where (c j (n)) is a sequence of complex numbers for j = 0, ..., n and n ∈ N0. If

lim
n→∞ ψn(x) = ϕa(x)

for some a ∈ I with |a| > 1, we say that the function ψn(x), for x ∈ R, admits a supershift.

Remark 4.2 The term supershift comes from the fact that the interval I can be arbitrarily large (it can also beR) and
that the constant a can be arbitrarily far away from the interval [−1, 1] where the functions ϕh j,n (·) are computed,
see (22).

Remark 4.3 Superoscillations are a particular case of supershift. In fact, for the sequence (Fn) in (1), we have
h j (n) = 1 − 2 j/n, ϕh j (n)(x) = ei(1−2 j/n)x and c j (n) are the coefficients C j (n, a) defined in (2).

Problem 2.2, for the supershift case, is formulated as follows.

Problem 4.4 Let h j (n) be a given set of points in [−1, 1], j = 0, 1, ..., n, for n ∈ N and let a ∈ R be such that
|a| > 1. Suppose that for every x ∈ R the function h 	→ G(hx) extends to a holomorphic and entire function in h.
Consider the functions

fn(x) =
n∑
j=0

Y j (n, a)G(h j (n)x), x ∈ R

where h 	→ G(hx) depends on the parameter x ∈ R. Determine the coefficients Y j (n) in such a way that

f (p)
n (0) = (a)pG(p)(0) f or p = 0, 1, ..., n. (23)

The solution of Problem 4.4, obtained in [11], is summarized in the following theorem.

Theorem 4.5 Let h j (n) be a given set of points in [−1, 1], j = 0, 1, ..., n for n ∈ N and let a ∈ R be such that
|a| > 1. If h j (n) �= hi (n) for every i �= j and G(p)(0) �= 0 for all p = 0, 1, ..., n, then there exists a unique
solution Y j (n, a) of the linear system (23) and it is given by

Y j (n, a) =
n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
,

so that

fn(x) =
n∑
j=0

n∏
k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
G(h j (n)x), x ∈ R.

Remark 4.6 In the following we will consider those functions G and sequences h j (n) for which the holomorphic
extension fn(z) of fn(x) converges in A1 to G(az).

We can now extend the notion of supershift of a function in several variables.

Definition 4.7 (Supershifts in several variables) Let |a| > 1. For d ∈ N with d ≥ 2, we assume that (x1, ..., xd) ∈
R
d . Let (h j,�(n)), j = 0, ..., n for n ∈ N0, be real-valued sequences for � = 1, ..., d such that for

sup
j=0,...,n, n∈N0

|h j,�(n)| ≤ 1, for � = 1, ..., d

and let G�(λ), for � = 1, ..., d, be entire holomorphic functions. We say that the sequence

Fn(x1, . . . , xd) =
n∑
j=0

c j (n)G1(x1h j,1(n))G2(x2h j,2(n)) . . .Gd(xdh j,d(n)), (24)

where (c j (n)) j,n , j = 0, . . . , n, for n ∈ N0 is a complex-valued sequence, admits the supershift property if

lim
n→∞ Fn(x1, . . . , xd) = G1(x1a)G2(x2a) . . .Gd(xda).
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Theorem 4.8 (The case of two variables) Let |a| > 1 and let

fn(x) :=
n∑
j=0

Z j (n, a)eih j (n)x , n ∈ N, x ∈ R, (25)

be a superoscillating function as in Definition 2.1 and assume that its holomorphic extension to the entire functions
fn(z) converges to eiaz in the space A1. Get G1 and G2 be holomorphic entire functions whose series expansion is
given by

G1(λ) =
∞∑

m=0

g1,mλm, G2(λ) =
∞∑

m=0

g2,mλm (26)

and define

Fn(x, y) =
n∑

k=0

Zk(n, a)G1(xh j (n))G2(yh j (n)),

where Zk(n, a) are given as in (25). Then Fn(x, y) admits the supershift property that is

lim
n→∞ Fn(x, y) = G1(xa)G2(ya).

Proof We consider

Fn(x, y) =
n∑
j=0

Z j (n, a)G1(xh j (n))G2(yh j (n))

=
n∑
j=0

Z j (n, a)

∞∑
m1=0

gm1

∞∑
m2=0

gm2x
m1 ym2(h j (n))m1+m2 .

We now consider the auxiliary complex variable ξ and we note that

λ� = 1

i�
D�

ξ e
iξλ

∣∣∣
ξ=0

for λ ∈ C, � ∈ N, (27)

where Dξ is the derivative with respect to ξ and |ξ=0 denotes the restriction to ξ = 0, we have

Fn(x, y) =
n∑
j=0

Z j (n, a)

∞∑
m1=0

gm1

∞∑
m2=0

gm2x
m1 ym2 [h j (n)]m1+m2

=
n∑
j=0

Z j (n, a)

∞∑
m1=0

gm1

∞∑
m2=0

gm2x
m1 ym2

1

im1+m2
Dm1+m2

ξ eiξh j (n)
∣∣∣
ξ=0

=
∞∑

m1=0

gm1

∞∑
m2=0

gm2x
m1 ym2

1

im1+m2
Dm1+m2

ξ

n∑
j=0

Z j (n, a)eiξh j (n)
∣∣∣
ξ=0

.

We now use the operator V(x, y, Dξ ) defined in (13) so that we can write

Fn(x, y) = V(x, y, Dξ )

n∑
j=0

Z j (n, a)eiξh j (n)
∣∣∣
ξ=0

.

Here we use Proposition 2.10 in order to compute the limit and this concludes the proof. ��
Remark 4.9 The notion of supershift and the previous results can be extended to the case of several variables.
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