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Abstract

We consider a Latent Bandit problem where the latent state keeps changing in
time according to an underlying Markov Chain and every state is represented by a
specific Bandit instance. At each step, the agent chooses an arm and observes a
random reward but is unaware of which MAB he is currently pulling. As typical
in Latent Bandits, we assume to know the reward distribution of the arms of all
the Bandit instances. Within this setting, our goal is to learn the transition matrix
determined by the Markov process, so as to minimize the cumulative regret. We
propose a technique to solve this estimation problem that exploits the properties
of Markov Chains and results in solving a system of linear equations. We present
an offline method that chooses the best subset of possible arms that can be used
for matrix estimation, and we ultimately introduce the SL-EC learning algorithm
based on an Explore Then Commit strategy that builds a belief representation of
the current state and optimizes the instantaneous regret at each step. This algorithm
achieves a regret of the order Õ(T 2/3) with T being the interaction horizon. Finally,
we illustrate the effectiveness of the approach and compare it with state-of-the-art
algorithms for non-stationary bandits.

1 Introduction

The Multi-Armed Bandit (MAB) framework is a well-known model used for sequential decision-
making with little or no information. This framework has been successfully applied in a large
number of fields, such as recommender systems, advertising, and networking. In the general MAB
formulation, a learner sequentially selects an action among a finite set of different ones. The choice
over the arm to select is made by properly balancing the exploration-exploitation trade-off with the
goal of maximizing the expected total reward over a horizon T . Standard MAB literature requires the
payoff of the available actions to be stationary (i.e., rewards come from a fixed distribution) in order
to design efficient no-regret algorithms.
However, in many real-life applications, the stationarity assumption may not necessarily hold as
data may be subjected to changes over time. In some applications, it is also possible to identify
different data distributions each one corresponding to a specific working regime. In cases of large
availability of historical data appearing in the form of past user interactions, it is possible to learn
offline the observation models associated with the different arms for each working regime. Exploiting
the knowledge on observation models leads to many advantages over the fully online exploration
setting where no prior information is available at the beginning and a massive number of interactions
is required to learn the observation models associated with each working regime. Even if the latent
regime is not directly observable, by assuming to know the observation distributions, it can be inferred
from the interaction process. Identifying the latent state accelerates the adaptation of the agent to the
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environment leading to improved performances over time.
Past works focused on this state identification problem under the assumption of knowing the condi-
tional observation models. Some works such as Maillard and Mannor [2014] and Zhou and Brunskill
[2016] provided theoretically optimal UCB while others [Hong et al., 2020a] provided more practical
algorithms based on Thompson Sampling.
The works cited above assume that the latent state does not change during the interaction process:
once the real state is identified, the agent can act optimally. Differently, in this work, we embrace
a more realistic scenario and assume that the latent state can change through time. In accordance
with the latent bandits setting, we assume that the learning agent is aware of the observation models
of the arms conditioned on each latent state. A setting similar to ours has been considered also in
Hong et al. [2020b], the key difference is that they assume to have full or partial knowledge of both
the observation and the transition models. We instead focus on the more challenging problem of
learning the transition model given the knowledge of the observation models and maximizing the
cumulative reward over T interaction steps. More specifically, our problem is modeled by assuming
the existence of a set S of different MABs all sharing the same set of finite arms I, each generating
rewards (our observations) in a finite set V . Each state s ∈ S = {s1, . . . , sS} represents a different
instance of a MAB. At each time step t, there is a transition from latent state st−1 to the new latent
state st according to the transition matrix governing the process. The action at selected in t will thus
generate a reward conditioned on the latent state st.

Our Contribution We summarize here the main aspects and contributions related to this work:

• we design a procedure for the estimation of the transition matrix that converges to the true
value under some mild assumptions. In order to obtain this result, we exploit the information
derived from the conditional reward models, and we use some properties of Markov Chains;

• we provide high-probability confidence bounds for the proposed procedure using known
results from statistical theory and novel estimation bounds of samples coming from Markov
Chains;

• we propose the Switching Latent Explore then Commit (SL-EC) algorithm that uses the
presented estimation method and then exploits the learned information achieving a Õ(T 2/3)
regret bound on a finite horizon T ;

• we illustrate the effectiveness of the approach and compare it with state-of-the-art algorithms
for the non-stationary bandits setting. Numerical simulations are reported in Appendix A.

2 Related Works

Non-stationary Bandits Non-stationary behaviors are closer to real-world scenarios, and this has
induced a vast interest in the scientific community leading to the formulation of different methods that
consider either abruptly changing environments [Garivier and Moulines, 2011], smoothly changing
environments [Trovò et al., 2020], or settings with a bounded variation of the rewards [Besbes et al.,
2014]. It is known that when rewards may arbitrarily change over time, the problem of Non-Stationary
Bandits is intractable, meaning that only trivial bounds can be derived on the dynamic pseudo-regret.
That is the main reason why in the literature there is a large focus on non-stationary settings enjoying
some specific structure in order to design algorithms with better guarantees. Non-stationary MAB
approaches typically include both passive methods in which arm selection is mainly driven by the
most recent feedback [Auer et al., 2019, Besbes et al., 2014, Trovò et al., 2020] and active methods
where a change detection layer is used to actively perceive a drift in the rewards and to discard old
information [Liu et al., 2017, Cao et al., 2018]. A particular type of non-stationary Bandit problem
related to our work includes the restless Markov setting [Ortner et al., 2014, Slivkins and Upfal,
2008] where each arm is associated with a different Markov process and the state of each arm evolves
independently of the learner’s actions. Differently, Fiez et al. [2018] investigate MAB problems with
rewards determined by an unobserved Markov Chain where the transition to the next state depends
on the action selected at each time step, while Zhou et al. [2021] focus on MAB problems where the
state transition dynamics evolves independently of the chosen action. The key distinction between
their work and ours is that they do not assume prior knowledge of the conditional reward models and
instead learn them concurrently with the transition matrix. They make use of spectral decomposition
techniques [Anandkumar et al., 2014] and use this tool in a regret minimization algorithm achieving
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a O(T 2/3) regret bound. Their setting is more complex than ours but involves stronger assumptions,
like the invertibility of the transition matrix. Furthermore, spectral methods need a vast amount of
samples in order to provide reasonable estimation errors and can hardly be used in large problems.

Latent Bandits More similar lines of work are related to bandit studies where latent variables
determine the distribution of rewards [Maillard and Mannor, 2014, Zhou and Brunskill, 2016].
In these works, the unobserved state is fixed across different rounds and the conditional rewards
depend on the latent state. Maillard and Mannor [2014] developed UCB algorithms without context
considering the two different cases in which the conditional rewards are either known or need to be
estimated. This line of work has been extended to the contextual bandit case in Zhou and Brunskill
[2016] where there is an offline procedure to learn the policies and a selection strategy to use them
online. Hong et al. [2020a] proposed a TS procedure in the contextual case that updates a prior
probability over the set of states in order to give a higher probability to the real latent state. A
non-stationary variant of this setting is proposed in Hong et al. [2020b] where the latent states are
assumed to change according to a Markov Chain. They develop TS algorithms under different cases
when both the reward and transition models are completely known and when partial information
about them is available. For the partial information case, they provide an algorithm based on particle
filter which will be used for comparison in the experimental section in Appendix A. Differently from
Hong et al. [2020b], we do not assume any prior information about the transition matrix and we learn
it through interactions with the environment using the information about the reward models.

3 Switching Latent Bandits

3.1 Preliminaries

Markov Chains A Markov Chain (or Markov Process) [Feller, 1968] over the state space S is a
stochastic process (St)

∞
t=1 satisfying the Markov property, meaning that for all si, sj ∈ S and t > 0:

P (St+1 = sj |St = si, . . . , S0 = s0) = P (St+1 = sj |St = si).

More formally, a Markov chain is identified by a tuple ⟨S,P ,ν⟩ with S = {s1, . . . , sS} being a
(finite) set of states, P is a state transition probability matrix with element Pss′ = P (St+1 = s′|St =
s) and ν ∈ ∆S−1 is the initial state distribution with νs = P (S0 = s). Given the starting distribution
ν and the transition matrix P , we can define the probability distribution over the state space after n
steps as:

ν(n) = νP n.

We can classify Markov Chains according to the different properties they satisfy. In particular, a
Markov Chain is Regular if some power n of the transition matrix P n has only positive elements
[Puterman, 1994]. If a Markov Chain is Regular, it admits a unique stationary distribution, as can be
seen in the following:
Proposition 3.1. Let P be the transition matrix of a Regular Markov Chain and v an arbitrary
probability vector. Then:

lim
n→∞

vP n = π,

where π is the unique stationary distribution of the chain, and the components of the vector π are all
strictly positive.

Having established the concept of stationary distribution, we give now another core definition, the
one of spectral gap, that will be useful for what will follow. Before that, we define the set (λi)i∈[S]

of ordered eigenvalues of P , with 1 ≥ |λ1| ≥ |λ2| ≥ · · · ≥ |λS |. Assuming to consider a Regular
Markov Chain, the system has a unique stationary distribution, and an eigenvalue λ1 = 1.
Definition 3.1. The spectral gap β of a Markov Process defined by transition matrix P is 1− |λ2|.

The spectral gap provides valuable information about the process. For Regular Markov Chains, the
spectral gap controls the rate of exponential decay to the stationary distribution [Saloff-Coste, 1997].

3.2 Problem Formulation

Consider a set S of S = |S| different MAB problems. Each MAB has a finite set of discrete arms
I := {a1, . . . , aI} with cardinality I = |I| and, by pulling an arm a, it is possible to get a reward r
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taken from the set V = {r1, . . . , rV } of possible rewards. In our setting, we assume to have a finite
set of rewards V = |V| with each reward r ∈ V bounded for simplicity in the range [0, 1]. All the
considered MABs share the same sets of arms I and rewards V . At each step, the MABs alternate
according to an underlying Markov Chain having transition probability P with size S × S.
The interaction process is as follows: at each time instant t, the agent chooses an arm It = a and
observes a reward Rt = r that is determined by the underlying state St = s of the process. More
formally, the probability associated to this event is

Q(r|s, a) := P (Rt = r|St = s, It = a). (1)

For the moment, we will stick with the assumption that the distribution Q(·|s, i) is categorical. In
Section 5.1, we will see how continuous distributions can also be handled in this setting. Given all
the MABs, the actions and possible observations, we can define the three-dimensional observation
tensor O with size S × I × V where the element Os,a,r represents the probability of observing the
reward r being in state s and pulling arm a.
In particular, by fixing a state s and an action a, the vector Os,a,: contains the parameters of the
categorical distribution associated with state s and action a. Motivated by the realistic scenario
of massive availability of past interaction data in domains such as recommender systems that
allows learning the reward models during an offline phase, we make the assumption of knowing the
observation tensor O while our objective is to learn the transition matrix P that governs the Chain.

3.3 Reference Matrix Definition

We will introduce here some elements whose utility will be clarified in Section 4.
Let’s consider the set CS := {(si, sj)|si, sj ∈ S} with |CS | = S2 of all the ordered combinations
of pairs of states. These combinations identify all the possible state transitions that can be seen
from a generic time step t to the successive one t + 1. Analogously, we can define the sets CI :=
{(ai, aj)|ai, aj ∈ I} with |CI | = I2 and CV := {(ri, rj)|ri, rj ∈ V} with |CV | = V 2 which are
respectively the ordered combinations of pairs of all consecutive arms and of consecutive rewards that
can be seen in two contiguous time intervals. From the knowledge of the observation tensor O and for
each (si, sj) ∈ CS , (ai, aj) ∈ CI , (ri, rj) ∈ CV , we are able to compute the following probabilities:

P (Rt = ri, Rt+1 = rj |St = si, St+1 = sj , It = ai, It+1 = aj) = Osi,ai,riOsj ,aj ,rj . (2)

Equation 2 basically allows us to define the probability associated to each possible couple of rewards,
actions and states that can occur in consecutive time steps. Hence, by fixing a specific combination of
arms (ah, ak) from CI and by leveraging Equation 2, we can build matrix Hah,ak ∈ RV 2×S2

where
the elements along the rows are associated to combinations in CV and the elements along the columns
are associated to combinations in CS . The element Hah,ak

d,e contains the value computed in Equation 2
associated to the d-th combination of rewards in CV and the e-th combination of states in CS assuming
to have pulled actions (ah, ak). Having established this procedure to build matrix Hah,ak for the
couple of actions (ah, ak), we can now build similar matrices associated with each of the other
combinations of arms. By stacking all these matrices together, we get the matrix A ∈ RI2V 2×S2

.
This matrix is a reformulation of the observation tensor O that expresses the relation between pairs of
different elements. The definition of matrix A will be relevant for the proposed estimation method.
In the following, we will refer to the matrix A also with the name reference matrix.

3.4 Belief Update

As previously said, at each time step t, we only observe the reward realization, but we are unaware of
the Bandit instance from which the arm has been pulled. However, it is possible to define a belief
representation over the current state by using the information derived from the observation tensor O
and the transition matrix P defining the Chain.
We introduce a belief vector bt ∈ ∆S−1 representing the probability distribution over the current
state at time t. The belief update formulation includes a correction step that adjusts the current belief
bt using the reward rt obtained by pulling arm at and a prediction step that computes the new belief
bt+1 simulating a transition step. The overall update is as follows:

bs,t+1 =

∑
s′ bs′,tQ(Rt = rt|St = s′, It = at)P (s|s′)∑

s′′ Q(Rt = rt|St = s′′, It = at)bs′′,t
. (3)
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The choice of the arm to pull is driven, at each step t, by

It = argmax
a∈I

∑
s∈S

∑
r∈V

rQ(r|s, a)bs,t. (4)

In this case, the goal is to pull the arm that provides the highest instantaneous expected reward, given
the belief representation bt of the states.

3.5 Assumptions

We need now to introduce some assumptions that should hold in our setting:

Assumption 3.1. The smallest element of the transition matrix ϵ := mini,j∈S Pi,j > 0.

Assumption 3.2. The reference matrix A ∈ RI2V 2×S2

is full column rank.

Basically, the first assumption gives a non-null probability of transitioning from any state to any other.
It is needed for two main reasons. The former is that this assumption implies the regularity of the
Chain and, consequently, the presence of a unique stationary distribution, as shown in Proposition 3.1,
the latter is mainly a theoretical reason as in our regret analysis we use a result from De Castro et al.
[2017] that builds on this condition.
The second assumption, instead, guarantees that the joint distribution of pairs of rewards and pairs of
actions given a specific state transition is not the result of a linear combination of the distributions
over other state transitions. In the following, we will show that this is a sufficient condition to recover
the matrix P since it makes all state transitions distinguishable from the joint pairs of rewards and
actions, and it also implies that I2V 2 ≥ S2.

4 Proposed Approach

4.1 Markov Chain Estimation

As previously stated, the objective is to learn the transition matrix P using the observations we get
from the different pulled arms assuming to know the tensor O ∈ RS×I×V . First of all, we start with
a consideration about the transition matrix that defines the chain. Building on Assumption 3.1 and
following Proposition 3.1, we can say that exists a unique stationary distribution. This distribution
can be easily found by solving the equation below:

πP = π.

From the stationary distribution π, we can define the diagonal matrix Π = diag(π) having the values
of the stationary distribution along its diagonal, and we can define the matrix W = ΠP satisfying∑

i,j∈S Wi,j = 1. We can see matrix W as the transition matrix P where the transition probabilities
from each state (reported along the rows of the transition matrix) are scaled by the probability of the
state, given by the stationary distribution. Having defined the matrix W , we can interpret the element
Wi,j as the probability of seeing the transition from state si to state sj when the two consecutive
pairs of states are sampled from the mixed Chain. We will also refer to W as the stationary transition
distribution matrix. Our objective will be to build an estimate Ŵ of the W matrix from which we
will derive P̂ .
Let’s now define an exploration policy θ that selects pairs of arms to be played in successive
rounds. We use this policy for T0 episodes on MABs that switch according to the underlying
Markov Chain, and we obtain a sequence D = {(a1, r1), (a2, r2), . . . , (aT0

, rT0
)}. This sequence can

also be represented by combining non-overlapping pairs of consecutive elements, thus obtaining
Pairs(D) = {(a1, a2, r1, r2), . . . , (aT0−1, aT0

, rT0−1, rT0
)}.

We introduce now the vector nT0
∈ NI2V 2

that counts the number of occurrences of elements in
Pairs(D). More formally, for each cell of the vector nT0 , we have:

nT0
(ai, aj , ri, rj) =

T0/2∑
t=0

1{I2t = ai, I2t+1 = aj , R2t = ri, R2t+1 = rj}.
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Given the previous considerations, we are now ready to state a core result that links the stationary
transition distribution matrix W and the count vector nT0 as follows:

E[nT0
(ai, aj , ri, rj)] =

=
∑
si,sj

Wsi,sj

T0/2∑
t=0

θ(I2t = ai, I2t+1 = aj)P ((R2t = ri, R2t+1 = rj)|(ai, aj), (si, sj)). (5)

This equation basically states that a specific couple of rewards will be observed after having pulled a
specific couple of arms a number of times which depends on the conditional probabilities of rewards
given the couple of arms and each couple of states, weighted by the probability Wsi,sj that each state
transition occurs. We can write the previous formulation in matrix form as follows:

E[nT0
] =

T0

2
DAw, (6)

where the matrix A is the reference matrix already defined in Section 3.3, vector w = Vec(W ) is the
vectorization of the matrix W , while D ∈ RI2V 2

is a diagonal matrix containing the probabilities
(defined by policy θ) associated to each combination of arms, each appearing with multiplicity V 2.
Having defined Equation 6, we are able to compute an estimate of the vector ŵ based on the obtained
vector count nT0

:

ŵ = A†D̂−1
T0

nT0
, (7)

where A† is the Moore–Penrose inverse of reference matrix A and matrix D̂T0
is the diagonal matrix

that counts with multiplicity V 2 the number of occurrences of each combination of arms (we assume
that each combination of arms has been pulled at least once, so D̂T0

is invertible).
In the limit of infinite samples, Equation 7 has a fixed exact solution that is ŵ = w. After the
computation of ŵ, we obtain an estimate of P̂ . The derivation implies two main steps: the first is to
write back the vector ŵ in matrix form, reversing the vectorization operation and obtaining matrix
Ŵ ; the second step consists in normalizing each obtained row so that the values on each row sum to
1, thus deriving P̂ .

4.2 SL-EC Algorithm

Having established an estimation procedure for the transition matrix P̂ , we will now provide an
algorithm that makes use of this approach in a regret minimization framework.
We consider a finite horizon T for our problem. We propose an algorithm called Switching Latent
Explore then Commit (SL-EC) that proceeds using an EC approach where the exploration phase is
devoted to finding the best estimation of the transition matrix P̂ , while during the exploitation phase,
we maximize the instantaneous expected reward using the information contained in the belief state
b with the formulation provided in Equation 4. The Exploration phase lasts for T0 episodes, where
T0 is optimized w.r.t. the total horizon T , as will be seen in Equation 10. The presented approach is
explained in the pseudocode of Algorithm 1.
Basically, a set of all the ordered combinations of pairs of arms is generated at the beginning of the
exploration phase, and the pairs of arms are sequentially pulled in a round-robin fashion until the
exploration phase is over. The choice of a round-robin approach allows the highlighting of some
interesting properties in the theoretical analysis, as will be shown later in Section 5. When the
exploration phase is over, an estimation of the transition matrix P̂ is computed using the procedure
described in Section 4.1. After that, a belief vector b is initialized, assigning a uniform probability to
all the states, and it is updated using the estimated P̂ , considering the history of samples collected
during the exploration phase up to T0. Finally, the exploitation phase starts, as described in the
pseudocode of the algorithm.

4.3 Arm selection policy

In Algorithm 1, we propose a simple approach for choosing the arms to pull. Each ordered combina-
tion of pairs of arms is indeed pulled the same number of times during the exploration phase by using
a deterministic approach. However, the estimation framework proposed in Section 4.1 allows for a
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more flexible arm selection policy. We may randomize the arm choice by assigning non-uniform
probabilities to each combination. This aspect allows exploiting the knowledge of the known reward
distribution of each arm, for example, giving a higher probability to the combinations of arms that
are more rewarding (assuming an initial uniform distribution over state transitions).

Algorithm 1: SL-EC Algorithm
Input: Reference Matrix A, Exploration horizon T0,

Total horizon T
Initialize vector of counts n ∈ N I2V 2

with zeroes
t← 0
D ← {}
while t ≤ T0 do

foreach (ai, aj) ∈ I2 do
Pull arm It = ai
Observe reward rt
Pull arm It+1 = aj
Observe reward rt+1

Update n with (It, It+1, rt, rt+1)
D.add((It, rt), (It+1, , rt+1))
t← t+ 2

ŵ ← Use Equation 7
P̂ ← Compute Transition Matrix(ŵ)
t← 0
b0 ← Uniform()
while t ≤ T do

if t ≤ T0 then
It = D.getAction(t)

else
It = argmaxa∈I

∑
s∈S

∑
r∈V rQ(r|s, a)bs,t

Observe reward rt
bt+1 ← UpdateBelief(bt, It, rt)
t← t+ 1

Offline arm selection In problems
with a large number of available arms,
a round-robin approach among all pos-
sible combinations of pairs may be
detrimental as it needs a longer ex-
ploration horizon to properly fill the
vector count n and to have better esti-
mation results.
A more convenient approach, in this
case, would be to select a subset of
different arms, thus leading to a lim-
ited number of combinations of pairs
of arms to use during the exploration
phase. Clearly, in the general case, the
removal of some arms may lead to a
loss of the total information available.
This is not the case when for example
we remove a redundant arm, that is
an arm that induces the same reward
distribution as another arm, given all
the latent states. Intuitively, the arm
selection procedure tends to promote
diversity among arms and remove re-
dundant or similar ones. It turns out
we are able to get an understanding of
the information loss we suffer by se-
lecting specific arms, given the knowl-
edge of the reference matrix A, that
we are indeed able to compute before-
hand. In particular, in Section 5 de-
voted to the theoretical analysis, we
will see that the expression 1

σmin(A) ,
with σmin(A) representing the minimum singular value of the reference matrix A, is an index of
the complexity of the problem and we can use this value to drive the choice of the best subset of
arms to use. In particular, by fixing a number J < I of arms to use among those available, the choice
over the best subset of size J can be done as follows. For each possible subset of arms of size J ,
we can derive a new reference matrix G from A, by extracting from the reference matrix the rows
associated with arms’ combinations that are feasible using the new subset of arms. At this point, a
good candidate subset of arms will be the one with the lowest 1

σmin(G) .
Understandably, this approach implies that the new reference matrix G derived from the subset of
selected arms should be full-column rank, thus satisfying Assumption 3.2.

5 Theoretical Analysis

We will now provide theoretical guarantees on the matrix estimation procedure presented in Section 4.1
and we will prove a regret bound for the SL-EC Algorithm.
We start with a concentration bound on the transition matrix P̂ estimated using samples coming from
a round-robin collection policy.

Lemma 5.1. Suppose Assumptions 3.1 and 3.2 hold. By fixing an exploration parameter T0 and
by pulling each combination of pairs of arms in a round-robin fashion, with probability 1 − δ the
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estimation error of the transition matrix P will be:

∥P − P̂ ∥F ≤
2I2V

σmin(A)πmin

√
2S log 2I2V 2

δ

(1− λ2I2)T0
, (8)

where ∥·∥F represents the Frobenius norm [Golub and Van Loan, 1996], σmin represents the minimum
singular value of the reference matrix A, πmin is the minimum component in the probability vector
representing the stationary distribution of the Chain, and λ represents the second highest eigenvalue
of matrix P . We will provide here a sketch of the proof of the presented Lemma. A more detailed
version of this proof is reported in Appendix B.

Sketch of the proof The proof of Lemma 5.1 builds on two principal results. The former comprises
a relation that links the estimation error of the matrix P with the estimation error of the stationary
transition distribution matrix W , while the latter is a concentration bound on the estimated Ŵ from
the true one W . Concerning the first result, we can say that:

∥P − P̂ ∥F ≤
2
√
S∥W − Ŵ ∥F

πmin
.

This result follows from a sequence of algebraic manipulations, also involving a derivation from [Ram-
poni et al., 2020].
We now need to define a bound on ∥W − Ŵ ∥F . In order to bound this quantity, we apply the
vectorization operator V ec(·) to the two matrices obtaining respectively w and ŵ and use the fact
that ∥W − Ŵ ∥F = ∥w − ŵ∥2. We proceed as follows:

∥w − ŵT0∥2 =

∥∥∥∥ 2

T0
A†D−1(E[nT0 ]− nT0)

∥∥∥∥
2

=
∥∥A†(z− ẑ)

∥∥
2

≤∥A†∥2∥z− ẑ∥2 =
1

σmin(A)
∥z− ẑ∥2,

where in the second equality we replaced the term (2/T0)D
−1E[nT0

] with the vector z ∈ RI2V 2

and
similarly for ẑ using in the expression the observed vector count nT0 instead of it expectation E[nT0 ].
In the inequality instead, we used the consistency property for the spectral norm of matrix A†.
Finally, we bound the remaining part as follows:

∥z− ẑ∥2 =

√√√√I2V 2∑
i=1

|zi − ẑi|2 ≤

√√√√I2V 2∑
i=1

(1 + λ2I2) log 2I2V 2

δ

2(1− λ2I2) T0

2I2

≤

√√√√I2V 2(1 + λ2I2) log 2I2V 2

δ

2(1− λ2I2) T0

2I2

≤ I2V

σmin(A)

√
2 log 2I2V 2

δ

(1− λ2I2)T0
,

where, on the first inequality, we used Hoeffding’s inequality with probability 1 − δ
I2V 2 for each

component of the vector ẑ and a union bound in the second inequality. In our case, in which
samples are generated from a Markov Process, we employed a variant of Hoeffding’s inequality that
accounts for non-independent samples. We utilized the formulation presented in Fan et al. [2021]
which incorporates an additional term 1+λ

1−λ in the bound. More details on this can be found in
Proposition C.2 in Appendix C. It is important to note that this proposition holds when the starting
distribution of the chain corresponds to the stationary distribution µ0 = π, an assumption we can
make in our problem. However, if this is not the case, we would suffer a further logarithmic term in
the regret (See Theorem 12 in Fan et al. [2021]).
We were able to improve this result by introducing an exponential term 2I2 to the second highest
eigenvalue λ. This is possible thanks to the adoption of a round-robin procedure for the choice of
combinations of arms. Notably, each combination is pulled every 2I2 steps of the Markov Process,
resulting in a faster mixing of the chain. A more formal result of this aspect can be found in
Corollary C.1 in Appendix C.

Having established the results on the estimation matrix P , we can now provide regret guarantees for
Algorithm 1. The oracle we use is aware of both the observation tensor O and the transition matrix P
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but does not observe the hidden state. As well as our algorithm, it builds a belief over the states, using
the formulation defined in Equation 3 and selects the arm maximizing the expected instantaneous
reward. The derived regret upper bound is provided in the following:
Theorem 5.1. Suppose Assumptions 3.1 and 3.2 hold. By considering a finite horizon T , there exists
a constant T0, with T > T0, such that with probability 1 − δ, the regret of the SL-EC Algorithm
satisfies:

R(T ) ≤ 2

 LI2V

πminσmin(A)

√
2S log 2I2V 2

δ

1− λ2I2 · T

2/3

, (9)

where L is a constant that depends on the ϵ value appearing in Assumption 3.1 (More details
in Appendix C). The presented regret has an order of O(T 2/3) w.r.t the horizon T , as common
when using an Explore-Then-Commit algorithm. A detailed proof of this theorem can be found
in Appendix B. The presented bound on the regret can be achieved by appropriately choosing the
exploration horizon T0. More specifically, we set it as follows:

T0 =

 LTI2V

σmin(A)πmin

√
2S log 2I2V 2

δ

(1− λ2I2)

2/3

. (10)

5.1 Continuous Reward Distributions and Dependency on the Number of Observations

By analyzing the results on the bound of the regret, we can observe that it scales with I2V , which
can be concerning for problems with many arms or a large number of observations. To address the
high number of arms, we proposed the offline arm selection procedure highlighted in Section 4.3.
It is indeed likely that when I ≫ S, some arms contain redundant information and can be easily
discarded for the estimation procedure.
Regarding the number of observations, continuous reward models pose a challenge as the number of
observations would be infinite, making the construction of the reference matrix unfeasible. However,
we can discretize the distribution into U distinct segments and obtain a matrix with dimension
I2U2 × S2. Hence, we assign to each segment a probability value that represents the likelihood of a
particular sample originating from the continuous distribution and belonging to that segment.
The discretization of a continuous distribution paves the way for important considerations because
the number of different segments U determines the size of the reference matrix A. In principle, we
can choose U such that U2 ≥ S2 and this allows us to estimate the transition matrix even by using a
unique combination of arms (as long as Assumption 3.2 is satisfied). It is an interesting problem to
determine in this setting the number of suitable splits and the location of the split points that lead to a
faster estimation of the transition matrix.
Another issue arises when the environment comprises numerous but finite observations. In such
scenarios, we can employ the inverse approach by clustering some observations, thereby reducing
the problem’s scale. By selecting a number of clusters C < V , we can divide the observations into
distinct groups. This allows us to utilize cluster-level probabilities (obtained by summing probabilities
of the single observations) to construct a new reference matrix and consider counts at the cluster-level
for the count vector n. Of course, this approach may lead to a loss of information due to the clustering
procedure but it may be beneficial in scenarios with limited availability of memory resources.

6 Numerical Simulations

In this section, we provide numerical simulations on synthetic data, demonstrating the effectiveness
of the proposed Markov Chain estimation procedure. We compare the regret suffered by our SL-EC
approach with other algorithms specifically designed for non-stationary environments. Different
types of experiments are also reported in Appendix A.
Following the recent work of Zhou et al. [2021], we consider the subsequent baseline algorithms:
the simple ϵ-greedy heuristics, a sliding-window algorithm such as SW-UCB [Garivier and Moulines,
2011] that is generally able to deal with non-stationary settings and the Exp3.S[Auer et al., 2002]
algorithm. The parameters for all the baseline algorithms have been properly tuned according to the
different considered settings. More details on this can be found in Appendix A. It is worth noting that
unlike our Algorithm, the baseline algorithms do not have knowledge of the observation tensor or

9



Figure 1: Plots of regret comparing the SL-EC Algorithm with some non-stationary bandit algorithms
with a different number of problem parameters: (a) S = 3, I = 4, V = 5 (5 runs, 95% c.i.); (b)
S = 8, I = 5, V = 10. (5 runs, 95% c.i.).

the underlying Markov Chain. In contrast, our approach utilizes the observation tensor to estimate
the transition matrix and to update the belief over the current state. Additionally, we compare our
approach with a particle filter algorithm proposed in Hong et al. [2020b] about non-stationary Latent
Bandits. We provide their algorithm with full information about the observation model (as it is
for our case) and an informative prior about the true transition model. The comparison is made in
terms of the empirical cumulative regret R̂(t), which is the empirical counterpart of the expected
cumulative regret R(t) averaged over multiple independent runs. The regret results for some problem
configurations are shown in Figure 1. Both plots exhibit similar patterns, with most of the baseline
algorithms displaying a linear time dependence. This is expected since these algorithms do not take
into account the underlying Markov Chain that governs the process. The particle filter algorithm,
despite being given a good initial prior on the transition model, is unable to achieve the performance
of SL-EC in the long run. Conversely, we can notice a quite different behavior for our algorithm
that, in line with an Explore-Then-Commit approach, initially accumulates a large regret and then
experiences a drastic slope change when the exploitation phase begins. The regret shown in each
plot is the average over all the runs. As a remark, our algorithm outperforms the others when the
spectral gap β of the chain is not close to zero. Indeed, if this is not the case, simple exploration
heuristics such as ϵ-greedy would lead to comparable performance. A clear example is when the
transition matrix P defining the chain assigns equal probability to all transitions. In this scenario, all
states can be considered independent and identically distributed, and we get no advantage from the
knowledge of the matrix P over the use of an algorithm such as ϵ-greedy.

7 Discussion and Conclusions

This paper studies a Latent Bandit problem with latent states changing in time according to an
underlying unknown Markov Process. Each state is represented by a different Bandit instance that
is unobserved by the agent. As common in the latent Bandit literature, we assumed to know the
observation tensor relating each MAB to the reward distribution of its actions, and by using some
mild assumptions, we presented a novel estimation technique using the information derived from
consecutive pulls of pairs of arms. As far as we know, we are the first to present an estimation
procedure of this type aiming at directly estimating the probabilities of the state transitions encoded
in the matrix W . We have shown that our approach is flexible as it allows choosing combinations of
pairs of arms with non-uniform probability and easy as it does not require specific hyperparameters
to be set. We also provided some offline techniques for the selection of the best subsets of arms to
speed up the estimation process. We analyzed the dependence of the parameters on the complexity of
the problem and we showed how our approach can be extended to handle models with continuous
observation distributions. We used the presented estimation approach in our SL-EC algorithm that
uses an Explore-Then-Commit approach and for which we proved a O(T 2/3) regret bound. The
experimental evaluation confirmed our theoretical findings showing advantages over some algorithms
designed for non-stationary MABs and showing good estimation performances even in scenarios
with larger problems (Appendix A). A natural future research direction consists of designing new
algorithms that are able to exploit the flexibility in the exploration policy determined by the defined
procedure, allegedly in an optimistic way.
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A Additional Numerical Simulations

In this section, we provide additional numerical simulations on synthetic data. Specifically, we
show the efficiency of the offline arm selection procedure described in Section 4.3 and conduct
a comparison between our approach and a modified technique based on Spectral Decomposition
methods in order to highlight the performance difference.

A.1 Estimation Error of Transition Matrix

The first set of experiments is devoted to showing the error incurred by the estimation procedure of
the transition matrix in relation to the number of samples considered and the set of actions used for
estimation. The left side of Figure 2 illustrates the estimation error of the transition matrix given
different instances of Switching Bandits with increasing number of states. In particular, we fix the
number of total actions I = 10 and number of observations V = 10 and consider three instances with
S = 5, S = 10 and S = 15 number of states. As it is expected, we can see that as the number of states
increases the problem becomes more complex, and more samples are needed in order to improve the
estimation. Figure 2 reports the ∥·∥1 of the error between the true and the estimated transition matrix,
scaled by the number of states. We can see that the estimation procedure is particularly efficient
leading to low error values even with a limited number of samples, as can be seen from the steep
error drop experienced in the first part of the plot.
The right plot in Figure 2, instead, shows the estimation error obtained by using a different subset of
arms. As mentioned in previous sections, it is not always beneficial to use all the available actions
during the estimation procedure, but selecting a subset of actions may be preferable. Furthermore,
we show that by selecting specific subsets of arms we can improve the estimation w.r.t using other
subsets. For this experiment, we consider J = 3 arms among the I = 8 available for a Switching
MAB instance with S = 5 states. We then identify the optimal subset of arms of size J and initiate
the estimation process using the selected subset. In order to find the best one, we generate all matrices
of type G, as described in Section 4.3 and choose the matrix with lowest 1

σmin(G) . The subset of arms
generating that matrix will be used for estimation. The estimation error of the best subset of arms is
represented in the plot with the red line, while we represent in green the estimation error of the subset
having the lowest σmin(G). The figure clearly exhibits the performance difference between the two
choices, thereby validating our claims.

Experimental Details For the experiments related in Figure 2, we generated a set of transition and
observation matrices with the following characteristics.

• for the plot on the left, we fixed the number I = 10 of possible actions and V = 10 of finite
observations. We then consider the estimation procedure for problems of different sizes with
respectively S = 5, S = 10 and S = 15 number of states;

• for the plot on the right, the considered estimated problem has S = 5 states, I = 8 possible
actions, V = 10 finite observations.

Starting from the presented parameters, the transition and observation matrices have been generated as
follows. An initial version of transition and observation matrices is generated with random elements
and, subsequently:

• regarding the transition matrix, we add a tuned diagonal matrix to the initial random version
and then normalize. In this way we give more probability on self transitions;

• regarding the observation tensor, for each pair of states and actions, we choose a specific
reward that will be drawn with higher probability, in order to avoid having too much
stochasticity in the reward distributions.

The scheme just presented is also used for the generation of matrices in the experiments showing the
regret of the different algorithms.
For the experiments in the plot on the right, the expression referring to the complexity of the used
subset of arms c = 1

σmin(G) has values respectively cg = 51.5 for the green plot and cr = 13.03

for the red plot, thus validating the intuition that a large c factor leads to a more difficult estimation
procedure.
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Figure 2: (a) Difference between the estimated and real transition matrix with an increasing number
of samples. Metric used is ∥·∥1 divided by the number of states (10 runs, 95% c.i.), (b) Difference
between real and estimated transition matrix using two different subsets of arms of size J = 3 arms
from the 8 available on a problem with 5 states. Metric used is ∥·∥1 divided by the number of states
(10 runs, 95% c.i.).

A.2 Comparisons with Modified Spectral Decomposition Techniques

The focus of this last set of experiments is to show the difference between a modified Spectral
Decomposition (SD) technique and our approach. Among the various applications, SD techniques
are typically used for learning with Hidden Markov Models (HMM) where no information about the
observation and transition model is provided. In particular, Zhou et al. [2021] makes use of these
techniques to get an estimation of both the observation and the transition model. It is important to
highlight that SD methods are hardly used in practice because of their computational and sample
complexity. Indeed, both the related works of Zhou et al. [2021] and Azizzadenesheli et al. [2016]
include only proof-of-concept experiments with 2 hidden states and 2 possible actions. Given that our
algorithm requires knowledge about the observation model, we consider a slightly different algorithm
for performing SD estimation in order to help the estimation process and make the comparison fairer.
The original SD technique to which we refer follows the procedures highlighted in Anandkumar
et al. [2014] for HMM and makes use of the Robust Tensor Power (RTP) method for orthogonal
tensor decomposition. In typical SD techniques, data is collected by sampling an action at each time
step and adding the count of the observed reward to the computed statistics. With the presented
modified technique, at each step, we do not simply provide the count of the observed reward but the
whole reward distribution associated with every arm according to the current state. In this way, it is
like pulling at each step all the arms and receiving full information about their associated reward
distributions.
We perform various experiments by fixing the number of arms (I = 20) and the number of possible
rewards ( V = 5) for each arm and by changing the number of states. Each experiment is performed
over 10 different runs, where for each run a transition matrix and observation tensor is generated. For
our algorithm, we selected for each experiment 3 arms among the 20 available using our offline arms
selection strategy. The transition and observation matrices are created in two different ways: we will
see a first set of experiments (Table 1) where the two matrices are almost deterministic, hence having
high probability on a specific observation/state and low probabilities for all the others. For transition
matrices, the highest probability is assigned to the probability of staying in the same state. From the
observation tensor point of view, this problem is easier as it makes the states more distinguishable.
In the second set of experiments, the generated matrices have less peaked distributions and higher
stochasticity, for both the transition and the observation models (Table 2). What we show in the
table is the error in the estimation of the observation matrix with SD techniques (SD O), the error
for the transition matrix (SD T), and the estimation error of our approach (Our). For SD O, we
report the error in 1-norm between the real observation model and the estimated one averaged over
all the distributions contained in the observation tensor, we provide this information just to show
that indeed our modified procedure allows performing a good estimation of the observation model.
This information is indeed separated with a dashed line from the errors in the estimation of the
transition distribution, which is our focus in this set of experiments. For SD T and Our approach, we
simply show the 1-norm error between real and estimated transition matrix. For each experiment, we
report the mean over 10 runs and one standard deviation between parenthesis and we show in bold
the experiments with lower estimation error. Commenting on the results, we can see that the error
values of the SD T technique are comparable to our approach only in the case of 2 states when the
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Table 1: Comparison with Nearly Deterministic Models

2 States 3K samples 6K samples 9K samples 15K samples
SD O 0.0052 (0.0008) 0.0040 (0.0008) 0.0035 (0.0007) 0.0027 (0.0007)
SD T 0.0583 (0.0280) 0.0313 (0.0162) 0.0263 (0.0057) 0.0183 (0.029)
OUR 0.0464 (0.0243) 0.0265 (0.0142) 0.0210 (0.0122) 0.0157 (0.0097)

3 States 150K samples 300K samples 600K samples 900K samples
SD O 0.0038 (0.0013) 0.0026 (0.0005) 0.0017 (0.0003) 0.0015 (0.0002)
SD T 0.3801 (0.1369) 0.3695 (0.1343) 0.3688 (0.1345) 0.3683 (0.1352)
OUR 0.0152 (0.0062) 0.0106 (0.0005) 0.0075 (0.0003) 0.0066 (0.0002)

5 States 150K samples 300K samples 600K samples 900K samples
SD O 0.0104 (0.0024) 0.0075 (0.0015) 0.0053 (0.0017) 0.0042 (0.0010)
SD T 0.9415 (0.2165) 0.9572 (0.2099) 0.9360 (0.2131) 0.9315 (0.2107)
OUR 0.1026 (0.0160) 0.0672 (0.0159) 0.0482 (0.0144) 0.0396 (0.0072)

Table 2: Comparison with Higher Model Stochasticity

2 States 150K samples 210K samples 270K samples
SD O 0.0405 (0.0734) 0.0341 (0.0605) 0.0319 (0.0598)
SD T 0.2900 (0.3061) 0.3273 (0.3364) 0.3077 (0.3326)
OUR 0.0319 (0.0174) 0.0228 (0.0184) 0.0198 (0.0118)

3 States 300K samples 600K samples 900K samples
SD O 0.0531 (0.0409) 0.0510 (0.0367) 0.0415 (0.0366)
SD T 0.9853 (0.7026) 1.1157 (0.6506) 1.0289 (0.6508)
OUR 0.0184 (0.0065) 0.0138 (0.0367) 0.0125 (0.0366)

transition matrix is almost deterministic. Besides the lower performances, the SD technique requires
higher computational power and experiments with higher number of states were not able to reach
convergence. In particular, experiments with more states and more stochastic models were not able to
reach convergence with the number of samples of the order 105, and by increasing their number,
there were memory space problems with the used hardware (Intel i7-11th and 16G RAM).
We would like to highlight that SD techniques are explicitly meant to work in a different setting,
intrinsically more complex, where no information about either the transition or the observation model
is provided. However, we want to show that if instead we have knowledge about the observation
model, directly using this information in the SD techniques does not lead to performances comparable
to our approach.

A.3 Details for Experiments on Algorithms Comparisons

For the set of experiments on Algorithm Comparison reported in the main body of the work, the
parameters used for the generation of the transition and observation matrices are:

• for the plot on the left, the problem has S = 3 states, I = 4 possible actions, V = 5 finite
observations;

• for the plot on the right, the problem has S = 8 states, I = 5 possible actions, V = 10 finite
observations.

The generation of the matrices is not completely random and follows the same procedure explained in
the previous paragraph for the experiment on the matrix estimation error. For the specific experiments
considered, we adopted scaled values for the exploration horizon T0 w.r.t. the result derived from
the theory. However, despite a reduced number of samples, the estimation still presents good
performances. For the plots shown in the main paper, the hyperparameters used are ϵ = 0.05 for the
ϵ-greedy approach, a value of Lw = 1000 for the sliding-window UCB algorithm, and the suggested
value 1/T for the α parameter in the Exp3.S algorithm. For the particle filter algorithm, we used 100
different particles and a resampling threshold of 25 for the Effective Sample Size.
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B Theoretical Results

In this Section, we will provide the proofs of the Theorems and Lemmas presented in the main paper.
We will start by reporting here the main assumptions used for the presented problem.

Assumption 3.1. The smallest element of the transition matrix ϵ := mini,j∈S Pi,j > 0.

Assumption 3.2. The reference matrix A ∈ RI2V 2×S2

is full column rank.

We will start by reporting Lemma 5.1 of the main paper and its proof.

Lemma 5.1. Suppose Assumptions 3.1 and 3.2 hold. By fixing an exploration parameter T0 and
by pulling each combination of pairs of arms in a round-robin fashion, with probability 1 − δ the
estimation error of the transition matrix P will be:

∥P − P̂ ∥F ≤
2I2V

σmin(A)πmin

√
2S log 2I2V 2

δ

(1− λ2I2)T0
, (8)

Proof. The proof of the presented bound can be decomposed into two main parts. On one side, we
can define the bound of the estimation error of the vector ŵ from the real value w and, secondly, the
error of the transition matrix P that derives from the estimated vector ŵ. We first will tackle this last
part:

∥P − P̂ ∥F =

√∑
i

∑
j

(Pij − P̂ij)2 =

√∑
i

∥Pi − P̂i∥22

=

√√√√∑
i

∥∥∥∥ wi

∥wi∥1
− ŵi

∥ŵi∥1

∥∥∥∥2
2

≤

√√√√∑
i

∥∥∥∥ wi

∥wi∥2
− ŵi

∥ŵi∥2

∥∥∥∥2
2

≤
√∑

i

4∥wi − ŵi∥22
max{∥wi∥2, ∥ŵi∥2}2

≤

√
4∥W − Ŵ ∥2F

mini max{∥wi∥2, ∥ŵi∥2}2

≤

√
4S∥W − Ŵ ∥2F

π2
min

=
2
√
S∥W − Ŵ ∥F

πmin
. (11)

In the presented derivation, we have rewritten each row of the matrix P and P̂ using, respectively,
the vector wi and ŵi of the rows of the stationary transition distribution matrices W and Ŵ , while
the first inequality derives from the fact that values in vector wi are smaller than 1, thus implying
∥wi∥1 ≥ ∥wi∥2 and the second inequality is obtained by using Lemma C.1.
The last line is instead derived from the following observations:

∥wi∥22 =
∑
j

w2
ij =

∑
j

P (i, j)2 ≥ 1

S

(∑
j

P (i, j)2
)
=

1

S
π(i)2 ≥ π2

min

S
,

where the first inequality in the expression above follows from the fact that ∀y ∈ RY in the unit
simplex, ∥y∥2 ≥ ∥y∥1

Y .

We will now derive the first part of the proof by defining a high probability bound on the estimated
vector of stationary transition distribution ŵ from its true value. In order to do that, we use the
relation ∥W − Ŵ ∥F = ∥w − ŵ∥2. The bound is obtained assuming that the policy used for the
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arms pulls all the combinations of pairs of arms in a round-robin fashion. The derivation is as follows:

∥w − ŵT0∥2 =

∥∥∥∥ 2

T0
A†D−1(E[nT0

]− nT0
)

∥∥∥∥
2

=
∥∥A†(z− ẑ)

∥∥
2

≤∥A†∥2∥z− ẑ∥2

=
1

σmin(A)

√√√√I2V 2∑
i=1

|zi − ẑi|2

≤ 1

σmin(A)

√√√√I2V 2∑
i=1

(1 + λ2I2) log 2I2V 2

δ

2(1− λ2I2) T0

2I2

≤ 1

σmin(A)

√√√√I2V 2(1 + λ2I2) log 2I2V 2

δ

2(1− λ2I2) T0

2I2

≤ I2V

σmin(A)

√
2 log 2I2V 2

δ

(1− λ2I2)T0
, (12)

where in the second equality we have introduced the vector z ∈ RI2V 2

which can be expressed as
z = (2/T0)D

−1E[nT0
] and can be seen as the expected vector count E[nT0

] where each component
E[ni] associated to a specific combination of pairs of arms, is normalized by the number of times that
combination of arms has been pulled. The second inequality is obtained by the consistency property
of matrices: the first norm represents the spectral norm of matrix A, while the second is a ∥·∥2 of a
vector. The second inequality derives by applying Hoeffding’s inequality on each component ẑi of
the vector ẑ with probability 1− δ

I2V 2 , while the multiplicative term (1 + λ2I2

)/(1− λ2I2

) derives
from Corollary C.1 and is the result of the dependence among samples originated from the Markov
Chain.
The third inequality results from the union bound and holds with probability 1− δ.

By combining the bounds derived in 11 and in 12, we get to the final concentration result.

We are now ready to derive the main result related to the regret of the SL-EC Algorithm. We will
report here Theorem 5.1 of the main paper.

Theorem 5.1. Suppose Assumptions 3.1 and 3.2 hold. By considering a finite horizon T , there exists
a constant T0, with T > T0, such that with probability 1 − δ, the regret of the SL-EC Algorithm
satisfies:

R(T ) ≤ 2

 LI2V

πminσmin(A)

√
2S log 2I2V 2

δ

1− λ2I2 · T

2/3

, (9)

Proof. The proof of the regret of the SL-EC Algorithm makes use of some of the results previously
derived and it can be divided into the regret from the exploration and regret from the exploitation
phase.
Considering an exploration phase of length T0, the regret initially suffered can be trivially bounded
as:

R1:T0
=

T0∑
t=1

max
a
⟨µa,bt⟩ − rt ≤

T0∑
i=1

1 = T0. (13)

For the exploitation phase, we use the estimate of the transition matrix P̂ and use this matrix to
define a belief vector that is initialized uniformly over the states and updated starting from the initial
samples. Before proceeding with the analysis, we introduce the generic vector µa of size S where
the element µa,si referred to state si ∈ S contains the expected reward of pulling arm a while being
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in state si. More formally, µa,si = ⟨Osi,a,:, r⟩, with r being the vector of size V of possible rewards.
The analysis of the regret in this part is as follows:

RT0:T =

T∑
t=T0+1

max
a
⟨µa,bt⟩ −max

a
⟨µa, b̂t⟩

≤
T∑

t=T0+1

max
a
|⟨µa,bt − b̂t⟩|

≤
T∑

t=T0+1

∥µa∥∞∥bt − b̂t∥1

≤
T∑

t=T0+1

∥bt − b̂t∥1

≤
T∑

t=T0+1

L∥P − P̂T0∥F

≤ 2LTI2V

σmin(A)πmin

√
2S log 2I2V 2

δ

(1− λ2I2)T0
, (14)

where in the second inequality we applied Hölder’s inequality with norms∞ and 1, while the third
inequality is obtained from ∥µa∥∞ ≤ 1∀a and ∀s ∈ S . The fourth inequality is obtained by applying
Proposition C.2, while the last inequality uses the concentration derived in Lemma 5.1.
Combining together the regrets of the two phases derived in Equation equation 13 and in Equa-
tion equation 14 we have:

R(T ) ≤ T0 +
2LTI2V

σmin(A)πmin

√
2S log 2I2V 2

δ

(1− λ2I2)T0
. (15)

We can now optimize this bound w.r.t. the exploration length T0 by vanishing the derivative of the
right-hand side of Equation equation 15. What we get is the following term:

T0 =

 LTI2V

σmin(A)πmin

√
2S log 2I2V 2

δ

(1− λ2I2)

2/3

.

In order to be able to compute this T0, we need to have information about the minimum value of the
stationary distribution πmin and about the second highest eigenvalue λ
By substituting this value of T0 into Equation equation 15, we get the result of the Theorem.

C Useful Lemmas and Deviation Inequalities

This section is devoted to the presentation of some results that are useful in understanding some
proofs appearing in AppendixB.
Lemma C.1. (Lemma A.1 in Ramponi et al. [2020]) Let x,y ∈ Rd any pair of vectors, then it holds
that: ∥∥∥∥ x

∥x∥2
− y

∥y∥2

∥∥∥∥
2

≤ 2∥x− y∥2
max{∥x∥2, ∥y∥2}

Proof. The presented result follows from a sequence of algebraic manipulations:∥∥∥∥ x

∥x∥2
− y

∥y∥2

∥∥∥∥
2

=

∥∥∥∥ x

∥x∥2
− y

∥y∥2
± y

∥x∥2

∥∥∥∥
2

≤∥x− y∥2
∥x∥2

+
|∥x∥2 − ∥y∥2|
∥x∥2

≤2∥x− y∥2
∥x∥2

,
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where the triangular inequality has been applied in the second line and the reverse triangular inequality
in the last one, i.e. |∥x∥2 − ∥y∥2| ≤ ∥x− y∥2. The result in the lemma can be derived by observing
that, for symmetry reasons, the same derivation can be performed getting ∥y∥2.

Proposition C.1. (Hoeffding’s inequality with Markov Chains Fan et al. [2021]) Let {Xi}i≥1 be a
Markov Chain with stationary distribution π and absolute spectral gap 1− λ > 0. For any t ∈ R,
uniformly for all bounded functions fi : X → [ai, bi],

Eπ[e
t(
∑n

i=1 fi(Xi)−
∑n

i=1 π(fi))] ≤ exp

(
1 + λ

1− λ
·

n∑
i=1

(bi − ai)
2

4
· t

2

2

)
. (16)

It follows that for any ϵ > 0:

Pπ

(
n∑

i=1

fi(Xi)−
n∑

i=1

π(fi) > ϵ

)
≤ exp

(
−1− λ

1 + λ
· ϵ2

2
∑n

i=1(bi − ai)2/4

)
. (17)

From the previous preposition, we can derive the following corollary:
Corollary C.1. Under the same considerations of Proposition C.1, if we consider n samples from the
Markov Chain, each collected after a number k of transitions, we get:

Pπ

(
n∑

i=1

fi(Xi)−
n∑

i=1

π(fi) > ϵ

)
≤ exp

(
−1− λk

1 + λk
· ϵ2

2
∑n

i=1(bi − ai)2/4

)
. (18)

Proposition C.2. (Controlling the belief error Zhou et al. [2021]) Assuming to know the smallest
value ϵ in a transition matrix P , given an estimator P̂ of the true transition matrix P , for an arbitrary
reward-action sequence {r1:t, ai:t}t≥1, let b̂t and bt be the corresponding beliefs in period t under
P̂ and P respectively. Then there exists a constant L such that:

∥b̂− b∥1 ≤ L∥P̂ − P ∥F ,

where L = 4S(1−ϵ)2

ϵ3 +
√
S, and ∥·∥F is the Frobenius norm.
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