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Abstract
We study the evolution Navier–Stokes equations in a cube under Navier boundary condi-
tions. For the related stationary Stokes problem, we determine explicitly all the eigenvectors,
eigenvalues and the corresponding Weyl asymptotic. We introduce the notion of rarefaction,
namely families of eigenvectors that weakly interact with each other through the nonlinear-
ity. By combining the spectral analysis with rarefaction, we expand the solutions in Fourier
series, making explicit some of their properties. We then suggest several new points of view
in order to explain the striking difference in uniqueness results between 2D and 3D. First,
we construct examples of solutions for which the nonlinearity plays a minor role, both in 2D
and 3D. Second, we show that, if a solution is rarefied, then its energy is decreasing: hence,
rarefaction may be seen as an almost two dimensional assumption. Finally, by exploiting
the explicit form of the eigenvectors we provide a numerical explanation of the difficulty in
using energy methods for general solutions of the 3D equations.
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1 Introduction

The Navier–Stokes equations

ut − μ�u + (u · ∇)u + ∇ p = f ∇ · u = 0 (1.1)

model the motion of an incompressible viscous fluid: u ∈ R
d (d = 2, 3) is its velocity, p ∈ R

its pressure, μ > 0 is the kinematic viscosity, f ∈ R
d is an external force. The equations

(1.1) are complemented with an initial condition at t = 0 and, in bounded domains � ⊂ R
d ,

with some boundary conditions on ∂�, the most common being the homogeneous Dirichlet
conditions u = 0. These no-slip conditions are physically reasonable if the flow is somehow
“regular”. But, in some situations, they are no longer suitable to describe the behaviour of
the fluid at the boundary and slip boundary conditions appear more realistic. In 1827, Navier
[31] proposed boundary conditions with friction, in which there is a stagnant layer of fluid
close to the boundary allowing the flow to slip tangentially. Denoting by

Du = ∇u + ∇�u
2

the strain tensor, Navier claims that, instead of being zero, the tangential component of the
fluid velocity at the boundary is proportional to the rate of strain at the surface, that is,

(Du, ν) · τ + αu · τ = 0 on ∂�,

where α ≥ 0 is a friction coefficient depending on the fluid viscosity and the roughness of
the boundary. Both the Dirichlet (β = 1, infinite friction) and Navier (0 ≤ β < 1, finite
friction) boundary conditions may be written in the general form

u · ν = [
βu + (1 − β)(Du, ν)

] · τ = 0 on ∂� (β ∈ [0, 1]) , (1.2)

where ν is the outward normal vector to ∂� while τ is tangential. The boundary conditions
(1.2) with β < 1 are appropriate in several physically relevant situations [5, 15, 32, 36]
and have been studied by many authors. The first contribution is due to Solonnikov-Scadilov
[37]. Concerning regularity results, see the works by Beirão da Veiga [6], Amrouche–Rejaiba
[2], Acevedo–Amrouche–Conca–Ghosh [1], Berselli [8].Moreover,Mulone–Salemi [29, 30]
studied periodicmotions while Clopeau–Mikelic–Robert [10] and Iftimie–Sueur [21] studied
the inviscid limit of (1.1) under conditions (1.2). Let us also mention the survey paper by
Berselli [7] where one can find further references and more physical applications.

In the present paper, we consider the zero-friction case β = 0 so that (1.2) becomes

u · ν = (Du, ν) · τ = 0 on ∂� (1.3)

and we restrict our attention to the cubic 3D domain

� := (0, π)3,

in which some regularity results for (1.1) can be found in [11]. It is known [8] that for flat
boundaries, (1.3) become mixed Dirichlet–Neumann boundary conditions. Let T > 0 and
QT := � × (0, T ); if we consider (1.1) in the cube � and we complement them with (1.3),
we obtain the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut − μ�u + (u · ∇)u + ∇ p = f in QT ,

∇ · u = 0 in QT ,

u1 = ∂xu2 = ∂xu3 = 0 on {0, π} × (0, π) × (0, π) × (0, T ),

u2 = ∂yu1 = ∂yu3 = 0 on (0, π) × {0, π} × (0, π) × (0, T ),

u3 = ∂zu1 = ∂zu2 = 0 on (0, π) × (0, π) × {0, π} × (0, T ),

(1.4)
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where the pressure p is defined up to an additive constant so that one can fix its mean value,
for instance

∫

�

p(t) = 0 ∀t ≥ 0. (1.5)

To (1.4) we associate an initial condition such as

u(x, y, z, 0) = u0(x, y, z) in �. (1.6)

Besides the above mentioned physical explanation, the initial-boundary value problem
(1.4)–(1.6) has a deep mathematical interest since its solutions can be seen as the restrictions
to the cube � of some particular space-periodic solutions of (1.1) over the entire space R3.
The matching between two adjacent cubes is smooth and the extended solution satisfies

u(x + hπ, y + kπ, z + lπ, t) = u(x, y, z, t) ∀(x, y, z) ∈ R
3 , ∀(h, k, l) ∈ Z

3 , ∀t ≥ 0 ,

see [3, 11] for the details.
The first step for a rigorous analysis of (1.4) is the study of the associated (stationary)

Stokes eigenvalue problem which, so far, has been considered in full detail only in special
domains [9, 33–35] and the growth of the eigenvalues has been estimated throughWeyl-type
bounds [4, 19, 27, 43]. None of these works considers conditions (1.3) and, only recently,
the problem under Navier boundary conditions was tackled in [3, 12]. In Sect. 2.2 we take
advantage of the cubic shape of the domain and of the Navier boundary conditions (1.3) in
order to determine explicitly all the Stokes eigenvectors. Since the eigenvalues may have
large multiplicity, we introduce a criterion for choosing the associated eigenvectors in such
a way that, not only they are L2(�)-orthonormal, but they also have nice forms when trans-
formed through the nonlinearity in (1.1). We also show that the set of eigenvectors generates
the solenoidal subspace of the Helmholtz–Weyl decomposition [16, 42] and we derive an
asymptotic Weyl-type formula [40, 41] for the spectrum, see Sect. 2.3. We then take advan-
tage of the specific form of (1.4) and, in Sect. 2.4, we determine the role of the nonlinearity
(u · ∇)u in the pattern of energy transfer. It turns out that for some eigenvectors the energy
increases/decreases/vanishes and moves upward/downward in the spectrum. By exploiting
this behaviourwe introduce the notion of rarefaction, namely families of eigenvectorsweakly
interacting with each other through the nonlinearity.

The pioneering works by Leray [24, 25] emphasized that, while for planar flows a solution
of (1.1) which is smooth on some interval of time remains smooth for all subsequent times, in
the 3D space it is not clear whether a locally smooth solution of (1.1) can develop a singularity
at later time. The possible loss of regularity of the solutions is considered the main cause for
the lack of global uniqueness results in 3D. Our purpose is to give new points of view on the
differences between the 2D and 3D cases.

In Sect. 3.1we recall themain differences between the 2Dand 3DNavier–Stokes equations
(1.1), adapted to (1.4)–(1.6), see Propositions 3.2 and 3.3. With the spectral analysis at hand
we improve 2Duniqueness results in situationswhere the nonlinearity is ruled out and explicit
solutions can be determined, see Proposition 3.4.

In Sect. 3.2 we introduce the Fourier decomposition of the solutions of (1.4) and we
highlight additional differences between 2D and 3D.We show that some 3D rarefied solutions
of (1.4)–(1.6) may also be explicitly determined for a suitable class of forces, in particular
yielding global smooth (and unique) solutions, see Theorem 3.6 and Corollary 3.7. The class
of forces is not “topologically” characterized as (e.g.) for the density result by Fursikov [13],
because our purpose is different: we aim to emphasize the relationship between the regularity
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of the initial datum and the asymptotic growth of the sequence of eigenvalues appearing in
the Fourier series.

It is well-known that in 3D one obtains local uniqueness of the solution of (1.1) by using
the energy (the squared Dirichlet norm of the solution): the solution is uniquely extended
until the energy remains bounded. Global uniqueness is guaranteed in any 2D bounded
domain and, in Theorem 3.5, we prove that this also occurs in � if the solution is rarefied
or “almost” rarefied. Thanks to the knowledge of the spectrum some energy bounds become
simpler and we show that, if a solution is rarefied, then its energy is decreasing. This result
is complemented in Sect. 3.3, with a numerical explanation of the difficulty in bounding the
energy for general solutions of the 3D equations.

This paper is organized as follows. In Sect. 2 we determine the spectrum of the Stokes
eigenvalue problem and we define rarefaction. In Sect. 3 we explain the connection between
rarefaction, the asymptotic growth of the eigenvalues involved in the Fourier expansion and
uniqueness of global solutions. Section4 is devoted to the proofs of the main results, with a
distinction between propositions and theorems.

2 Spectral analysis

2.1 The Helmholtz–Weyl decomposition

We recall here the spaces appearing in the Helmholtz–Weyl [16, 42] orthogonal decomposi-
tion of L2(�):

H := {v ∈ L2(�); ∇ · v = 0 in �, v · ν = 0 on ∂�} ,

G := {v ∈ L2(�); ∃g ∈ H1(�), v = ∇g} ,

in which, with an abuse of notation, we denote by v · ν the normal trace of v, which belongs
to H−1/2(∂�) because ∇ · v ∈ L2(�). It is known that

L2(�) = H ⊕ G H ⊥ G (2.1)

where orthogonality is intended with respect to the scalar product in L2(�). The space G is
made of weakly irrotational (conservative) vector fields, namely

G = {w ∈ L2(�) : curlw = 0 in distributional sense} .

In the sequel, we use the notation

∀v,w ∈ L2(�) v = w + G
notation

⇐⇒ v − w ∈ G ,

which means that v and w have the same projection onto H . In order to determine the
components of a vector field 
 ∈ L2(�) following (2.1), one proceeds as follows. Let
ϕ ∈ H1(�) be a (scalar) weak solution of the Neumann problem

�ϕ = ∇ · 
 in �, ∂νϕ = 
 · ν on ∂� . (2.2)

Since the compatibility condition is satisfied, such ϕ exists and is unique, up to the addition
of constants. Then notice that ∇ · (
−∇ϕ) = 0 in� and (
−∇ϕ) ·ν = 0 on ∂�. Therefore
(
 − ∇ϕ) ∈ H and we can write


 = (
 − ∇ϕ) + ∇ϕ = (
 − ∇ϕ) + G . (2.3)
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In all the cases that wewill consider, we obtain this decomposition directly from the following
statement.

Proposition 2.1 Assume that 
 ∈ C1(�) satisfies 
 · ν = 0 on ∂�. Then,
∫
�

∇ · 
 = 0 and

 can be written as in (2.3), with ϕ being a solution of the Neumann problem for the scalar
Poisson equation (2.2).

The important part of the dynamics of (1.1) is described by its projection onto H , where
we need more regularity. This is why we also introduce the space

U := H ∩ H1(�) .

From [23] we know that H is a closed subspace of L2(�); therefore,U is a closed subspace of
H1(�) which, however, does not coincidewith the closure of {u ∈ C∞

c (�); ∇ ·u = 0 in �}
with respect to the Dirichlet norm, see the space V in (4.6), the difference being the possible
non-annihilation of the tangential components of the vector fields on ∂�. We endow H and
U , respectively, with the scalar products and norms

(v,w)� : =
∫

�

v · w , ‖v‖2L2(�)
:=

∫

�

|v|2 ,

(∇v, ∇w)� : =
∫

�

∇v : ∇w , ‖∇v‖2L2(�)
:=

∫

�

|∇v|2 , (2.4)

where ∇v : ∇w is the Euclidean scalar product between Jacobian matrices. It is straightfor-
ward that

∫

�

(u · ∇)v · w = −
∫

�

(u · ∇)w · v ∀u, v, w ∈ U ,

∫

�

(u · ∇)v · v = 0 ∀u, v ∈ U . (2.5)

We conclude this section by emphasizing a first important advantage of dealing with the
cubic domain �, whose boundary consists of six (flat) faces. In Sect. 4.1 we prove

Proposition 2.2 If � = (0, π)3 then
∫

�

∇v : ∇w = 2
∫

�

Dv : Dw ∀v,w ∈ U .

In the next subsection we study the spectrum of the Stokes operator. Combined with
Proposition 2.2 this analysis will justify the choice of the second norm in (2.4).

2.2 Explicit eigenvectors of the Stokes operator in the cube

In order to obtain the Fourier decomposition of the solutions of (1.4) we analyze here the
associated Stokes eigenvalue problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�v = λv in �,

∇ · v = 0 in �,

v1 = ∂xv2 = ∂xv3 = 0 on {0, π} × (0, π) × (0, π),

v2 = ∂yv1 = ∂yv3 = 0 on (0, π) × {0, π} × (0, π),

v3 = ∂zv1 = ∂zv2 = 0 on (0, π) × (0, π) × {0, π}.

(2.6)

In general domains � the eigenvectors v of (2.6) are defined up to the addition of a gradient
but, in a cube there is no such indeterminacy. Here and in the sequel, we denote by � both
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the Laplacian and the Stokes operator (its projection onto H ), without distinguishing the
notations. Thanks to Proposition 2.2, the problem (2.6) in weak form reads

(∇v, ∇w)� = λ(v,w)� ∀w ∈ U . (2.7)

We introduce five families of linearly independent eigenvectors of (2.6). Form, n, p ∈ N+
we define

X0,n,p(y, z) := 2
√

π3(n2 + p2)

⎛

⎝
0

p sin(ny) cos(pz)
−n cos(ny) sin(pz)

⎞

⎠ , (2.8)

Ym,0,p(x, z) := 2
√

π3(m2 + p2)

⎛

⎝
−p sin(mx) cos(pz)

0
m cos(mx) sin(pz)

⎞

⎠ , (2.9)

Zm,n,0(x, y) := 2
√

π3(m2 + n2)

⎛

⎝
n sin(mx) cos(ny)

−m cos(mx) sin(ny)
0

⎞

⎠ , (2.10)

Vm,n,p(x, y, z) := 2
√
2 cos(mx)

√
π3(n2 + p2)

⎛

⎝
0

p sin(ny) cos(pz)
−n cos(ny) sin(pz)

⎞

⎠ , (2.11)

Wm,n,p(x, y, z) := 2
√
2

√
π3(m2 + n2 + p2)(n2 + p2)

×
⎛

⎝
(n2 + p2) sin(mx) cos(ny) cos(pz)

−mn cos(mx) sin(ny) cos(pz)
−mp cos(mx) cos(ny) sin(pz)

⎞

⎠ . (2.12)

The vectors (2.8)–(2.9)–(2.10) are not deductible from (2.11)–(2.12) when mnp = 0
since there is an additional normalization factor

√
2 (reminiscent of the coefficient a0/2 in

the Fourier series a0/2 + ∑
n an cos(ns) + bn sin(ns)). With a slight abuse of language, in

the sequel we call m, n, p the frequencies of the eigenvectors.
In Sect. 4.1 we prove the following statement.

Proposition 2.3 All the eigenvalues of (2.6) have finite multiplicity and can be ordered in a
non-decreasing divergent sequence, in which the eigenvalues are repeated according to their
multiplicity. For m, n, p ∈ N+ the eigenvectors in (2.8)–(2.9)–(2.10)–(2.11)–(2.12) are a
basis, orthogonal in U and orthonormal in H.

This result deserves several comments. The eigenvectors

Hm,n,p(x, y, z) = 2
√
2 cos(ny)

√
π3(m2 + p2)

⎛

⎝
−p sin(mx) cos(pz)

0
m cos(mx) sin(pz)

⎞

⎠,

Km,n,p(x, y, z) = 2
√
2 cos(pz)

√
π3(m2 + n2)

⎛

⎝
n sin(mx) cos(ny)

−m cos(mx) sin(ny)
0

⎞

⎠
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seem to be missing in the above families but, in fact, they are linear combinations of Vm,n,p

and Wm,n,p:

Hm,n,p = − p
√

(m2 + n2 + p2)(n2 + p2)Wm,n,p + nm
√
n2 + p2Vm,n,p

(n2 + p2)
√
m2 + p2

Km,n,p = n
√

(m2 + n2 + p2)(n2 + p2)Wm,n,p − mp
√
n2 + p2Vm,n,p

(n2 + p2)
√
m2 + n2

.

We consider Wm,n,p (instead of Hm,n,p or Km,n,p), because it is L2(�)-orthogonal to all
the eigenvectors in (2.8)–(2.9)–(2.10)–(2.11). On the contrary, the eigenvectors Hm,n,p and
Km,n,p are not orthogonal since

∫

�

Vm,n,p · Hm,n,p = −m n
√

(m2 + p2)(n2 + p2)
.

A further reason to focus on the eigenvectors Vm,n,p andWm,n,p is the validity of a surprising
formula such as (2.18) below, which allows to simplify several computations.

For any m ∈ N+, the eigenvalue λ = 3m2 has at least multiplicity 2 and is associated
to the vectors (2.11) and (2.12) with p = n = m. If only two of the indexes are equal, say
p = m �= n, then the eigenvalue is λ = 2m2+n2 and the possible permutations of the indexes
(m,m, n) (with a repetition) are 3, giving multiplicity 6 after permutation of variables. If the
indexes are all different, the possible orderings of (m, n, p) are 6 which, combined with the
permutations of variables, gives multiplicity 12. We summarize all these properties within
the following statement.

Proposition 2.4 For m, n, p ∈ N+ all the eigenvalues of (2.6) have multiplicity given by one
or a combination of the next five cases:

(i) λ = m2+n2 withm �= n hasmultiplicity 6 and the corresponding linearly independent
eigenvectors may be X0,m,n, Yn,0,m, Zm,n,0, X0,n,m, Ym,0,n, Zn,m,0;

(ii) λ = 2m2 has multiplicity 3 and the corresponding linearly independent eigenvectors
may be X0,m,m, Ym,0,m, Zm,m,0;

(iii) λ = m2 + n2 + p2 with m �= n, p and n �= p, has multiplicity 12 and the correspond-
ing linearly independent eigenvectors may be Vm,n,p, Wm,n,p with all the possible 6
orderings of the indexes m, n, p;

(iv) λ = 2m2 + n2 with m �= n has multiplicity 6 and the corresponding linearly indepen-
dent eigenvectors may be Vm,m,n, Wm,m,n, Vm,n,m, Wm,n,m, Vn,m,m, Wn,m,m;

(v) λ = 3m2 has multiplicity 2 and the corresponding linearly independent eigenvectors
may be Vm,m,m, Wm,m,m;

(vi) if λ satisfies at the same time two or more of the above conditions, its multiplicity is
obtained by adding the corresponding multiplicities.

The large multiplicities in Proposition 2.4 suggest to introduce a notation clarifying the
difference between the eigenvalues λk and the values of the eigenvalues λ0j . The eigenvalues
λk are ordered along a non-decreasing sequence containing the same eigenvalue repeated fol-
lowing itsmultiplicity. The values of the eigenvalues λ0j are ordered along a strictly increasing
sequence that contains no information on the multiplicity.

Remark 2.5 From Proposition 2.4 (i i), we infer that the least eigenvalue of (2.6) is λ1 = 2,
with multiplicity 3. This shows the validity of the Poincaré inequality

2‖v‖2L2(�)
≤ ‖∇v‖2L2(�)

∀v ∈ U .

123



  215 Page 8 of 35 A. Falocchi, F. Gazzola

Table 1 The least 23 values λ0j of the eigenvalues of (2.6), with their multiplicity and counting number

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

λ0
j 2 3 5 6 8 9 10 11 12 13 14 17 18 19 20 21 22 24 25 26 27 29 30

M(λ0
j ) 3 2 6 6 3 6 6 6 2 6 12 12 9 6 6 12 6 6 6 18 8 18 12

N(λ0
j ) 3 5 11 17 20 26 32 38 40 46 58 70 79 85 91 103 109 115 121 139 147 165 177

On the other hand, in the (2D) square (0, π)2 the least eigenvalue λ1 of the Stokes operator
under Navier boundary conditions (S-Nbc) is simple and λ1 = 2, see [3]. In smooth planar
domains, Kelliher [22] shows that the k-th eigenvalue λk of (S-Nbc) is strictly smaller than
the k-th eigenvalue τk of the Stokes problem under Dirichlet boundary conditions (S-Dbc):

λk < τk ∀k ∈ N+. (2.13)

Although � = (0, π)3 is not smooth, it is natural to conjecture that (2.13) remains true also
in 3D domains.

In general domains, Proposition 2.2 and Remark 2.5 may not hold, modifying the weak
formulation (2.7) of the Stokes eigenvalue problem (2.6). Indeed, [12, Corollary 1] states the
following.

Proposition 2.6 Let� ⊂ R
3 be a bounded piecewise C1,1 domain with connected boundary.

Then, one of the following facts holds:

• if � is not axisymmetric, then the least eigenvalue of (2.6) is strictly positive: λ1 > 0;
• if � is monoaxially symmetric, then the least eigenvalue of (2.6) is λ1 = 0 and is simple;
• if � is a ball, then the least eigenvalue of (2.6) is λ1 = 0 and has multiplicity 3.

In fact, the assumption of connectedness of � was forgotten in [12]; without this assump-
tion, also a spherical annulus is a domain in which λ1 = 0 has multiplicity 3. Moreover, a
globalC1,1-regularity of the boundarywas required but the proof therein alsoworks under the
slightly weaker assumption of piecewise C1,1-regularity. Since � = (0, π)3 is not axisym-
metric, we have that λ1 > 0 and the Poincaré inequality holds. Therefore, Propositions 2.2
and 2.6 justify the choice of ‖∇ · ‖L2(�) as a norm over the space U .

2.3 TheWeyl asymptotic formula

From Proposition 2.4, we see that all the eigenvalues of (2.6) have at least multiplicity 2,
with cases of large multiplicities. In Table 1 we report the first 23 (distinct) values λ0j of the

eigenvalues of (2.6), with the corresponding multiplicity M(λ0j ) and the counting number

N (λ0j ), representing the number of eigenvalues, repeated according to their multiplicity, less

than or equal to λ0j .
Let us now order the eigenvectors of (2.6). Themost natural way is to follow the increasing

eigenvalues so that we just need to introduce a criterion for multiple eigenvalues.

Criterion 2.7 For equal eigenvalues, we follow the order (2.8)–(2.9)–(2.10)–(2.11)–(2.12).
Within the same family, for instance (2.8), the order follows the increasing triples of indexes
and X0,n,p comes before X0,p,n if n < p.
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Table 2 The first 15 eigenvalues λk and eigenfunctions of (2.6)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

λk 2 2 2 3 3 5 5 5 5 5 5 6 6 6 6

Ψk X0,1,1 Y1,0,1 Z1,1,0 V1,1,1 W1,1,1 X0,1,2 X0,2,1 Y1,0,2 Y2,0,1 Z1,2,0 Z2,1,0 V1,1,2 V1,2,1 V2,1,1 W1,1,2

Table 3 The least 72 eigenvalues λk and τk repeated with their multiplicity

λk 2; 2; 2; 3; 3; 5; 5; 5; 5; 5; 5; 6; 6; 6; 6; 6; 6; 8; 8; 8; 9; 9; 9; 9; 9; 9; 10; 10; 10; 10; 10; 10; 11; 11; 11; 11; 11; 11; 12; 12;
13; 13; 13; 13; 13; 13; 14; 14; 14; 14; 14; 14; 14; 14; 14; 14; 14; 14; 17; 17; 17; 17; 17; 17; 17; 17; 17; 17; 17; 17; 18; 18
6.30; 6.30; 6.30; 9.29; 9.29; 9.76; 9.76; 9.76; 10.97; 10.97; 10.97; 13.09; 13.09; 13.09; 13.61; 13.61; 14.25; 14.25; 14.25;

τk 14.87; 16.82; 16.82; 16.82; 17.02; 17.02; 17.02; 17.92; 17.92; 17.92; 18.39; 18.81; 18.81; 18.81; 19.97; 19.97; 19.97; 20.70;
20.70; 20.71; 20.71; 20.71; 21.15; 21.25; 21.25; 22.18; 22.18; 22.53; 22.53; 22.53; 23.92; 23.92; 23.92; 25.52; 25.52;25.52;
25.74; 25.74; 25.74; 25.90; 25.90; 25.90; 26.27; 26.27; 26.27; 26.54; 26.54; 26.54; 27.86; 27.86; 27.86; 27.94; 28.42

As an example, consider the eigenvalue λ = 26 for which Criterion 2.7 gives the order

X0,1,5, X0,5,1, Y1,0,5, Y5,0,1, Z1,5,0, Z5,1,0,

V1,3,4, V1,4,3, V3,1,4, V3,4,1, V4,1,3, V4,3,1, W1,3,4, W1,4,3, W3,1,4, W3,4,1, W4,1,3, W4,3,1.

In Table 2 we report the first 15 eigenvalues λk of (2.6), writing the corresponding eigen-
functions k ordered following Criterion 2.7.

Inspired by the Weyl formula for the Dirichlet–Laplacian [40, 41], Métivier [27] found
an asymptotic law for the eigenvalues of (S-Dbc). If ωd denotes the volume of the unit ball
in R

d , in the hypercube � = (0, π)d the Métivier formula reads

τk ∼ 4
(
ωd(d − 1)

)2/d k
2/d as k → ∞.

For (S-Nbc) in� = (0, π)3, see (2.6), Proposition 2.4 shows that the asymptotic behaviour
of the eigenvalues is strictly related to the so-called Gauss circle problem. In the next
statement, proved in Sect. 4.2, we compare λk and τk , providing an asymptotic law for the
eigenvalues of (2.6).

Theorem 2.8 Let {λk}k∈N+ and {τk}k∈N+ be the non-decreasing sequences of eigenvalues of,
respectively, (S-Nbc) and (S-Dbc) in � = (0, π)d with d ∈ {2, 3}. Then

λk ≤ τk ∀k ∈ N+ and λk ∼ τk ∼ 4

(ωd(d − 1))2/d
k2/d as k → ∞. (2.14)

In spite of the inequality in (2.14), the asymptotic in (2.14) coincide. In Table 3 we report
the least 72 values, repeated according to their multiplicity, of λk and τk in the cube (0, π)3.
The eigenvalues λk are computed by using Proposition 2.4, while we refer to [26] for the
numerical computation of the eigenvalues τk . In Fig. 1 we plot graph of the eigenvalues of
Table 3 in dependence of k, illustrating the validity of the inequality in (2.14) and suggesting
a strict inequality as (2.13) which, however, is beyond the scopes of the present paper and
requires delicate tools, see [22].

2.4 Transformations of eigenvectors and rarefaction

For u, v ∈ U , we define the two operators

u �→ N (u) = (u · ∇)u and (u, v) �→ B(u, v) = (u · ∇)v + (v · ∇)u .
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Fig. 1 The eigenvalues from Table 3: λk (black dots) and τk (gray dots), in dependence of k

Clearly, N is nonlinear (somehow quadratic) while B is bilinear: they satisfy

B(u, u) = 2N (u) B(u, v) = B(v, u) ∀u, v ∈ U .

We analyze here how these operators transform the eigenvectors of (2.6). We introduce
the notations

ξ := (x, y, z) , k := mk ,nk ,pk (ξ) , λk := m2
k + n2k + p2k mk, nk, pk ∈ N (2.15)

in which ξ represents the group of space variables and k a generic eigenvector of (2.6)
(chosen among those in (2.8)–(2.9)–(2.10)–(2.11)–(2.12)) corresponding to the eigenvalue
λk = m2

k + n2k + p2k . It can be mknk pk = 0, e.g. for 0,nk ,pk = X0,nk ,pk . A family of
eigenvectors {k} as in (2.15) will always be ordered following Criterion 2.7 so that

k �→ λk = m2
k + n2k + p2k is non-decreasing but

k �→ mk, k �→ nk, k �→ pk may not be monotone.

For any integer � ≥ 2, any A1, ..., A� ∈ R (possibly depending on t), any eigenvectors
1, ..., � of (2.6), we have

N
( �∑

k=1

Akk

)
= N

( �−1∑

k=1

Akk

)
+ A2

�N (�) + A�

�−1∑

k=1

AkB(k, �) ,

N
( �∑

k=1

Akk

)
=

�∑

k=1

A2
kN (k) +

�∑

1≤k< j

Ak A jB(k,  j ) .

(2.16)

The second formula in (2.16) shows that, in order to compute N (·) for a linear combination
of � eigenvectors, one needs to compute N (·) for � eigenvectors and B(·, ·) for (�2 − �)/2
couples of eigenvectors. Therefore, the number of computations increases quadratically with
respect to the number of eigenvectors.

We now compute explicitly the solenoidal part of the transformation through N (·) of
the eigenvectors of (2.6); as expected, this strongly depends on the particular eigenvector
considered. The following statement is proved in Sect. 4.1.
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Proposition 2.9 For m, n, p ∈ N+ we have

N (X0,n,p) = G , N (Ym,0,p) = G , N (Zm,n,0) = G , (2.17)

and these are the only eigenvectors of (2.6) satisfyingN () = G.Moreover, for m, n, p ∈
N+, one has

N (Vm,n,p) = −N (Wm,n,p) + G

= mn2 p

(n2+p2)
√

π3(m2+p2)
Y2m,0,2p − mnp2

(n2+p2)
√

π3(m2+n2)
Z2m,2n,0 + G. (2.18)

The formulas (2.17) express the fact that, up to neglecting the G-part, the nonlinear
transformation of the eigenvectors X0,n,p, Ym,0,p, Zm,n,0 annihilates the norms. On the
contrary, formulas (2.18) show that, after neglecting the G-part, the L2(�)-squared-norm of
the nonlinear transformation of the eigenvectors Vm,n,p and Wm,n,p is given by

m2n2 p2

π3(n2 + p2)2

(
n2

m2 + p2
+ p2

m2 + n2

)

and, hence, up to neglecting the G-part, the nonlinear transformation of the eigenvectors
Vm,n,p and Wm,n,p can either increment or decrement the norms, but it never annihilates
them. The simplicity and elegance of (2.18) are the main reasons for the choice of the
eigenvectors (2.11) and (2.12), as a completion of (2.8)–(2.9)–(2.10) within the orthonormal
basis in H .

Then we consider the nonlinearity B and we define the trilinear forms

B�(i ,  j , k) :=
∫

�

B(i ,  j )k ,

N�(i , k) :=
∫

�

N (i )k = B�(i , i , k)

2
(2.19)

that enable us to introduce the notion of rarefied sequences of eigenvectors.

Definition 2.10 Following (2.15), a sequence S = {k}k∈N+ of eigenvectors of (2.6) is called
rarefied if

B�(i ,  j , k) = 0 ∀i ,  j , k ∈ S; (2.20)

Similarly, for T > 0, we say that g ∈ L2(QT ) is rarefied if there exist a rarefied sequence of
eigenvectors {k}k∈N+ and a sequence {αk}k∈N+ ⊂ L2(0, T ) such that

g(ξ, t) =
∞∑

k=1

αk(t)k(ξ) .

The family S = {k} may also be finite, in which case the series reduces to a finite sum
and most of what follows becomes trivial. The second part of Definition 2.10 states that
rarefied functions in L2(QT ) are associated with a Fourier series which runs on a rarefied
sequence of eigenvectors.

Our next result, proved in Sect. 4.3, fully characterizes rarefied sequences of eigenvectors.

Theorem 2.11 A sequence of eigenvectors S = {k}k∈N+ of (2.6) is rarefied if and only if,
for any choice of the indexes i, j, k ∈ N+, at least one of the three following couples of
conditions holds

mi + m j �= mk �= |mi − m j |or ni + n j �= nk �= |ni − n j |or pi + p j �= pk �= |pi − p j |. (2.21)
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Two remarks are in order.

Remark 2.12 The condition (2.21) includes the possibility that some integers are zero. For
the triad {X0,ni ,pi , Ym j ,0,p j , Zmk ,nk ,0}, (2.21) reduces to

mk �= m j or nk �= ni or pi �= p j .

For the triad {X0,ni ,pi , X0,n j ,p j , X0,nk ,pk } (with mk = m j = mi = 0) and similar ones, the
first couple of conditions is false (because 0 = 0), hence (2.21) reduces to

ni + n j �= nk �= |ni − n j | or pi + p j �= pk �= |pi − p j |.
Moreover, (2.21) is fulfilled by triads such as {X0,ni ,pi , X0,n j ,p j , Ymk ,0,pk } or
{X0,ni ,pi , X0,n j ,p j ,Wmk ,nk ,pk }, and similar triads, since mk �= 0 ensures the first condition
in (2.21).

Remark 2.13 The word “rarefied” seems to express the fact that only “few” eigenvectors are
involved, but this is not the case, there are also “weakly rarefied sequences”. The simplest
example is obtained through the odd integers (but not the even!): consider all the eigenvectors
(2.12) with oddm-frequency (whose differences and sums are even) so that the first condition
in (2.21) is satisfied. For this sequence, following the proof of Theorem 2.8, we still find a
counting number of the order π

6 λ
3/2
k as k → ∞, implying that λk ∼ ( 6

π
k)2/3 which is the

same order as (2.14) but with a different coefficient.

3 Rarefied global smooth solutions

3.1 A comparison between 2D and 3D

The eigenvectors in Proposition 2.3 have different dimensions both in the domain and in the
range. We classify them according to the next definition.

Definition 3.1 Let A, B ∈ {2, 3}. We say that a vector field 
(·), possibly depending on t ,
is AD-BD if 
 : [0, π]A → R

B and there exists a vector 
0 ∈ R
B such that 
 = 
0 + G.

ByDefinition 3.1, the eigenvectors X0,n,p in (2.8) are 2D-2D and the associated eigenvalue
is λ = n2 + p2 (and, similarly, for Ym,0,p in (2.9) and Zm,n,0 in (2.10)). By counting the
number of indexes and variables permutations, we see that it has multiplicity 6 if n �= p and
multiplicity 3 if n = p. The eigenvectors Vm,n,p in (2.11) are 3D-2D and are associated with
the eigenvalue λ = m2 + n2 + p2. The eigenvectors Wm,n,p in (2.12) are 3D-3D and are
associated with the eigenvalue λ = m2 + n2 + p2.

For T > 0, we put QT := (0, T ) × �. In the sequel, for simplicity, we assume that

f ∈ L2(QT ) for some T > 0. (3.1)

In a smooth planar bounded domain ω ⊂ R
2, the initial value problem for (1.1) under Navier

boundary conditions admits a unique global weak solution u: this is a consequence of the fact
that u ∈ L4

(
(0, T ) × ω

)
, see e.g. [14, 23, 38] for similar results under Dirichlet boundary

conditions. Assuming f ∈ L2
(
(0, T ) × ω

)
and u0 ∈ U , the regularity of u is ensured under

no further restrictions on f and u0. If we embed the square (0, π)2 into the cube (0, π)3 and
we combine these results with [11, Theorem 1], we deduce
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Proposition 3.2 Let T > 0. Let f ∈ L2(QT ) and u0 ∈ H be 2D-2D vector fields of the
same kind, e.g. f = ( f1(x, y, t), f2(x, y, t), 0) and u0 = (u01(x, y), u02(x, y), 0). Then
there exists a unique weak global solution (u, p) of (1.4)–(1.6); such solution is 2D-2D and
satisfies u ∈ C0([0, T ]; H). Moreover, if u0 ∈ U, then u ∈ C0([0, T ];U ).

Proposition 3.2 is well-known under Dirichlet boundary conditions in general domains,
see e.g. [23]. In view of Proposition 2.2, the very same proof works under Navier boundary
conditions.

In the 3D case much less is known. In the next proposition we state a classical result of
global existence of a weak solution and local uniqueness of smooth solutions, adapted to
(1.4)–(1.6) in [11].

Proposition 3.3 Let T > 0. Assume (3.1) and let u0 ∈ H, then:

• (1.4)–(1.6) admits a (global) weak solution u ∈ L∞(0, T ; H) ∩ L2(0, T ;U );
• if u0 ∈ U, then there exist K , T ∗ > 0 satisfying

0 <
Kμ5

(
μ‖∇u0‖2

L2(�)
+ ‖ f ‖2

L2(QT )

)2 ≤ T ∗ ≤ T

such that the weak solution u of (1.4) is unique in [0, T ∗) and

u ∈ L∞(0, T ∗;U ) ut ,�u, ∇ p ∈ L2(QT ∗). (3.2)

In fact, (3.2) may be slightly improved by stating that u ∈ C0([0, T ∗);U ). Hence, if
f ∈ L2(QT ) and u0 ∈ U , Proposition 3.3 merely ensures that u ∈ C0([0, T ∗);U ) for some
T ∗ ≤ T . If T ∗ < T , then the U -norm of the solution u(t) may blow up before time t = T
and global uniqueness of the solution may then fail. We point out that other assumptions on f
yield similar results, see [23, 38]. In [11] (and in Proposition 3.3) we assumed f ∈ L2(QT )

following [17, Theorem 2’], where an analogous regularity result is obtained under Dirichlet
boundary conditions.

The proof of the uniqueness result in Proposition 3.2 fails in 3D because there is no L4-
integrability (in time and space) of the solution and one canmerely derive local regularity (and
uniqueness) results, see [14, 17, 18]. We now show that, by combining the spectral analysis
with rarefaction, see Sect. 2, this lack of regularity is not the only possible explanation of the
failure of the proof.

A first combination is the possibility to improve Proposition 3.2 in some particular situa-
tions. There are examples for which the nonlinearity plays no role, as in the next statement,
where explicit solutions can be determined.

Proposition 3.4 Let m, n ≥ 1 and Zm,n,0 be as in (2.10). Let u0(ξ) = γ Zm,n,0(ξ) for some
γ ∈ R and let f (ξ, t) = α(t)Zm,n,0(ξ) for some α ∈ L2(R+). Then the unique solution
(u, p) of (1.4)–(1.5)–(1.6) is globally defined in R+ and is explicitly given by

u(ξ, t) =
(

γ +
∫ t

0
α(s)eμ(m2+n2)s ds

)
e−μ(m2+n2)t Zm,n,0(ξ) ,

p(ξ, t) =
(

γ +
∫ t

0
α(s)eμ(m2+n2)s ds

)2

e−2μ(m2+n2)t

(
1

π3 − 2n2 sin2(mx) + 2m2 sin2(ny)

π3(m2 + n2)

)
. (3.3)
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Proposition 3.4 describes the behaviour of a linear Stokes equation and it has a simple
physical interpretation. Imagine that a fluid is initially moving in the cube � with a planar
velocity u0 proportional to Zm,n,0. Also imagine that an external force f (such as the wind)
acts in the very same direction Zm,n,0. Then, according to (3.3), the resulting variable-in-time
velocity u(t) will also be proportional to Zm,n,0, with exponential decay as t → ∞ when
f ≡ 0. With an artificial construction, in Sect. 3.2 we will show that some 3D-3D rarefied
solutions of (1.4) also solve some simplified problems.

The second combination concerns the energy method. If u0 ∈ U , Proposition 3.3 allows
us to define the energy function

E(t) = ‖u(t)‖2U
2

=
‖∇u(t)‖2

L2(�)

2
, E ∈ C0[0, T ∗) (3.4)

and, if T ∗ = T , then the solution is global. In order to prove Proposition 3.3, it is crucial to
use both the energy (3.4) and the map

Iu(t) :=
∫

�

(
u(t) · ∇)u(t) · �u(t) for a.e. t ∈ (0, T ∗), (3.5)

when u satisfies (3.2). It is known that the solution can be extended until Iu(t) remains
“small” in a suitable sense. In the 2D square (0, π)2, it is a simple exercise to show that
Iu(t) ≡ 0 for any (possibly constant) u ∈ U satisfying (1.3), see e.g. [39, Lemma 3.1], and
not only for solutions of (1.1). In the 3D cube, (3.5) does not vanish even if u solves (1.4).
However, if u is rarefied then Iu(t) ≡ 0, see Theorem 3.5 (a) below, so that rarefaction may
be seen as an almost two dimensional assumption. In completely different contexts, Iftimie
[20] and Miller [28] show the importance of almost two dimensional solutions of (1.1) for
uniqueness statements.

Finally, a further combination of the spectral analysis with rarefaction enables us to
introduce the Fourier decomposition of the solutions of (1.4), making more explicit some
differences between the 2D and 3D cases, see next section.

3.2 Rarefaction and uniqueness

We order all the (L2(�)-normalized) eigenvectors of (2.6), as given in Proposition 2.3, along
a sequence {k}k∈N+ in such a way that the corresponding sequence of eigenvalues {λk}k∈N+
is non-decreasing and follows Criterion 2.7, see also Table 2. If (3.1) holds, then there exists
a sequence of time-dependent Fourier coefficients αk = αk(t) such that

f (ξ, t) =
∞∑

k=1

αk(t)k(ξ) , ‖ f (t)‖2L2(�)
=

∞∑

k=1

αk(t)
2 ,

‖ f ‖2L2(QT )
=

∞∑

k=1

‖αk‖2L2(0,T )
< ∞ ;

since we consider all the eigenvectors {k}, it may be αk(t) ≡ 0 for some k. Similarly, the
u-part of the solution of (1.4)–(1.6) may be written as

u(ξ, t) =
∞∑

k=1

Ak(t)k(ξ) with ‖∇u‖2L∞(0,T ;L2(�))
= sup

(0,T )

∞∑

k=1

λk Ak(t)
2 ,

u(ξ, 0) = u0(ξ) =
∞∑

k=1

γkk(ξ) with {γk} ∈ �2 ,

(3.6)
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and, again, it may be Ak(t) ≡ 0 for some k. Then, the Fourier coefficients Ak of u satisfy
the infinite-dimensional nonlinear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ȧk(t) + μλk Ak(t)

+
∞∑
i=1
i �=k

N�(i , k)Ai (t)2 +
∞∑

1=i< j
B�(i ,  j , k)Ai (t)A j (t) = αk(t)

Ak(0) = γk ,

(3.7)

for a.e. t ∈ [0, T ] and for all integers i, j, k ≥ 1, where B� and N� are defined in (2.19).
The system (3.7) is obtained by multiplying the equation in (1.4) by k(ξ), by using (2.16)
and by integrating over �.

The annihilation of (3.5) is a sufficient condition for the smooth extension of solutions to
the whole interval [0, T ] and, hence, uniqueness. But the annihilation of (3.5) is not necessary
for a solution u ∈ C0([0, T ∗);U ) to become a function in L∞(0, T ;U ). A slightly weaker
sufficient condition for the extension is the existence of ε ∈ (0, μ] and Cε,Cε > 0 such that

Ju(t) :=
∫ t

0
Iu(s)ds ≤ ε

∫ t

0
‖�u(s)‖2L2(�)

ds + Cε

∫ t

0
‖∇u(s)‖2L2(�)

ds + Cε ∀t ≤T ∗.

(3.8)

Although (3.8) is still a very restrictive sufficient condition for solutions u to be global (and
unique), in the next result we show that it is satisfied if the solution is “almost” rarefied, see
Sect. 4.4 for the proof.

Theorem 3.5 Let T > 0, assume (3.1) and u0 ∈ U. Let T ∗ ≤ T be as in Proposition 3.3. If
the corresponding solution u of (1.4)–(1.6) is rarefied in (0, T ∗) then:
(a) Iu(t) ≡ 0 and T ∗ = T so that u is global and u ∈ L∞(0, T ;U ) is the unique solution;
(b) for any eigenvector X0,nℵ,pℵ of the kind (2.8) there exists Aℵ ∈ L∞(0, T ∗) such that the

vector w(ξ, t) = u(ξ, t) + Aℵ(t)X0,nℵ,pℵ(ξ) satisfies Jw(t) ≤ 0 for all t ≤ T ∗, thereby
also satisfying (3.8);

(c) for any finite linear combination of eigenvectors ℵ
h (h = 1, . . . , n) of (2.6), with coef-

ficients Aℵ
h ∈ L∞(0, T ∗), the vector

w(ξ, t) = u(ξ, t) +
n∑

h=1

Aℵ
h (t)ℵ

h (ξ)

satisfies (3.8).

Statements (b) and (c) show that “almost”rarefied functions satisfying (3.2), not necessarily
solving a given equation, maintain (3.8) in [0, T ∗]. In statement (b), instead of X0,nℵ,pℵ
one may add a different eigenvector among (2.9)–(2.10)–(2.11)–(2.12), at the price of more
computations, see Remark 4.4 below.

A necessary condition for a solution u of (1.4)–(1.6) to be rarefied is that u0 is rarefied.
Theorem 3.5 raises the natural “converse” question whether rarefied initial data are also
sufficient to have rarefied solution. We do not have a full answer to this query, but we now
show that if rarefaction is “strengthened” with some further conditions, then many external
forces f yield a rarefied (smooth, global, unique) solution of (1.4)–(1.6). In what follows,
we denote by

Lr (Wmk ,nk ,pk ) a linear combination (possibly in f ini te)

of a f amily {Wmk ,nk ,pk } of rare f ied eigenvectors
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and the notation u = Lr (Wmk ,nk ,pk ) means that there exists a sequence of rarefied eigen-
vectors {Wmk ,nk ,pk } (ordered following Criterion 2.7) and a sequence of coefficients {Ak}
(possibly depending on time) such that u = ∑

k AkWmk ,nk ,pk . The possibility to transform
the PDEs (1.4)–(1.6) into the explicit system of ODEs (3.7) enables us to find a connec-
tion between the initial regularity and the asymptotic growth of the eigenvalues involved in
rarefied solution, as in the next statement proved in Sect. 4.5.

Theorem 3.6 Let T > 0 and fix any ε > 0. In any of the three cases:

(i) u0 ∈ U ∩ H
3
2 +ε(�) with u0 = Lr (Wmk ,nk ,pk ),

(ii) u0 ∈ U ∩ H1+ε(�) with u0 = Lr (Wmk ,nk ,nk ), namely pk = nk,
(iii) u0 ∈ U with u0 = Lr (Wmk ,nk ,pk )andλk := m2

k+n2k+p2k be such that lim inf
k→∞

λk
k1+ε > 0,

there exists an uncountable family of 3D-3D forces f ∈ L2(QT ) such that the resulting
solution (u, p) of (1.4)–(1.6) is global with the u-component 3D-3D, u ∈ L∞(0, T ;U ) and
u = Lr (Wmk ,nk ,pk ), for the same family of {Wmk ,nk ,pk } as u0.

The reason why in Theorem 3.6 we consider three items with a different regularity of
u0 is related to the asymptotics associated with the involved eigenvalues. The faster is the
asymptotics, the lower is the regularity needed for u0, see Lemma 4.6 below. In item (i) we
have λk = m2

k + n2k + p2k , which does not ensure an asymptotic behaviour faster than k2/3,

see Remark 2.13: in this case we need u0 ∈ H
3
2 +ε(�). In item (i i) we have λk = m2

k + 2n2k ,
which does not ensure an asymptotic behaviour faster than k: in this case we only need
u0 ∈ H1+ε(�). In item (i i i) we assume a priori the asymptotic behaviour of the involved
eigenvalues in order to get rid of the additional regularity of u0. Therefore, the main interest
of Theorem 3.6 is not its statement, but the connection between rarefaction and three different
combinations of initial regularity with the asymptotic growth of k �→ λk .

The proof of Theorem 3.6 is obtained by constructing explicit rarefied solutions of (1.4)–
(1.6), expanded in Fourier series, starting from a rarefied initial datum. With u at hand, we
find the corresponding forcing term by setting f = ut − μ�u + (u · ∇)u + G: hence, the
Fourier series of f “compensates the gaps” left open by the rarefied solution in the equation
(1.4). The proofs work precisely because u is rarefied and f is chosen “compatible” with u0.
It is fairly simple to find some u ∈ L∞(0, T ;U ) such that ut −μ�u+(u ·∇)u /∈ L2(QT ). In
this case, one has that f /∈ L2(QT ). The main difficulty in proving Theorem 3.6 is precisely
to ensure that the resulting force satisfies f ∈ L2(QT ). In the same spirit, further global
uniqueness results with different choices of rarefied eigenvectors may be obtained.

As an example and a direct consequence of Theorem 3.6 (i i i)wemay combine rarefaction
with isofrequency, namelywe require that the flow is governed by the same spatial frequencies
in any direction. In this case λk = 3m2

k ≥ 3k2, thereby satisfying the required lower bound
for the liminf.

Corollary 3.7 Let T > 0 and u0 ∈ U with u0 = Lr (Wmk ,mk ,mk ). There exists an uncountable
family of 3D-3D forces f ∈ L2(QT ) such that the resulting solution (u, p) of (1.4)–(1.6)
is global with the u-component 3D-3D, u ∈ L∞(0, T ;U ) and u = Lr (Wmk ,mk ,mk ), for the
same family {Wmk ,mk ,mk } as u0.
The difference in (2.14) between d = 2 and d = 3, and the large multiplicity of eigenvalues
(see [3] for the planar case) may suggest that the asymptotic growth of the eigenvalues has
a role in the differences for (1.1) in 2D and 3D. The above results show that the rarefaction
and a precise spectral analysis may partially explain these differences.
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3.3 Numerical hints to explain the failure of energymethods in 3D

Weanalyse here the variation of the energy E defined in (3.4).With some additional regularity,
E is differentiable and in Sect. 4.1 we prove

Proposition 3.8 Assume that f ≡ 0 and u0 ∈ U ∩ H2(�)\{0}. Let u = u(t) be the local
solution of (1.4)–(1.6), see Proposition 3.3. Let Iu0 = Iu(0) be as in (3.5).

If Iu0 = 0, then Ė(0) < 0; in particular, this happens if u0 is rarefied.
If Iu0 > 0, then there exists γ = γ (u0) > 0 such that the energy Eγ associated to the

initial datum v0 := γ u0 satisfies

Ėγ (0) < 0 if γ < γ , Ėγ (0) = 0, Ėγ (0) > 0 if γ > γ .

If Iu0 < 0, a similar result holds with γ = γ (u0) < 0 and reversed signs for Ėγ (0).

Whence, contrary to the 2D square (0, π)2, the energy may be initially increasing. In
this section we use Proposition 3.8 in order to attempt an explanation why the proofs of
Propositions 3.2 and 3.4 cannot be extended to a full 3D situation. For simplicity we take

μ = 1, f ≡ 0, u(ξ, 0) = u0(ξ) = γ Vm,n,p(ξ) in � (γ ∈ R \ {0}). (3.9)

A straightforward consequence of Proposition 3.3 and [14, Theorem 6.1] reads

Proposition 3.9 Assume (3.9) for some m, n, p ∈ N+ and γ ∈ R \ {0}. Then:
• (1.4)–(1.6) admits a global weak solution u ∈ L∞(R+; H) ∩ L2(R+;U );
• there exist K , T = T (γ ) > 0 satisfying

0 <
K

(m2 + n2 + p2)2 γ 4 ≤ T ≤ +∞

such that the weak solution u of (1.4) is unique in [0, T ) and u ∈ L∞(0, T ;U ) with
ut ,�u, ∇ p ∈ L2(QT );

• there exists γ > 0 such that if |γ | < γ , then T (γ ) = +∞.

We now complement Proposition 3.9 with some numerics. We assume (3.9) and we per-
form the first steps of a Galerkin scheme, by projecting (1.4)–(1.6) on finite dimensional
subspaces, thereby obtaining systems of ODEs. The solution of (1.4)–(1.6) can be written
as a Fourier series in the form (3.6). For the first order Galerkin approximation, we consider
u(ξ, t) = A1(t)Vm,n,p(ξ); by projecting onto the one-dimensional space spanned by Vm,n,p

we obtain the single ODE:

Ȧ1(t) = −(m2 + n2 + p2)A1(t), A1(0) = γ.

As for the 2D-2D case, see Proposition 3.4, the nonlinearity plays no role and A1(t) =
γ e−(m2+n2+p2)t .

Then we project over a suitable three-dimensional space. Proposition 2.9 suggests to
consider the Galerkin approximation given by

u(ξ, t) = A1(t)Vm,n,p(ξ) + A2(t)Y2m,0,2p(ξ) + A3(t)Z2m,2n,0(ξ),

where the three components are, respectively, associated with the eigenvalues

λ1 := m2 + n2 + p2, λ2 := 4(m2 + p2), λ3 := 4(m2 + n2);
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note that u is not rarefied. Thanks to (2.16) and (2.17) we compute

N (u) =A2
1(t)N (Vm,n,p) + A1(t)A2(t)B(Vm,n,p, Y2m,0,2p)

+ A1(t)A3(t)B(Vm,n,p, Z2m,2n,0) + A2(t)A3(t)B(Y2m,0,2p, Z2m,2n,0) + G.

With some computations we find

(2.5) ⇒ N�(Vm,n,p, Vm,n,p) = 0,

(2.5) + (2.18) ⇒ N�(Vm,n,p, Y2m,0,2p)

= −B�(Vm,n,p, Y2m,0,2p, Vm,n,p) = mn2 p

(n2+p2)
√

π3(m2+p2)
=: K1,

(2.5) + (2.18) ⇒ B�(Vm,n,p, Z2m,2n,0, Vm,n,p)

= −N�(Vm,n,p, Z2m,2n,0) = mnp2

(n2+p2)
√

π3(m2+n2)
=: K2.

Moreover,

B�(Vm,n,p, Y2m,0,2p, Y2m,0,2p) = B�(Vm,n,p, Y2m,0,2p, Z2m,2n,0) = 0,

B�(Vm,n,p, Z2m,2n,0, Y2m,0,2p) = B�(Vm,n,p, Z2m,2n,0, Z2m,2n,0) = 0,

B�(Y2m,0,2p, Z2m,0,2p, Vm,n,p) = B�(Y2m,0,2p, Z2m,0,2p, Y2m,0,2p)

= B�(Y2m,0,2p, Z2m,0,2p, Z2m,2n,0) = 0,

since all these triads satisfy (2.21). Then, according to (3.9), we obtain the 3 × 3 system of
ODEs

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ȧ1(t) = −λ1A1(t) + K1A1(t)A2(t) − K2A1(t)A3(t) t ∈ (
0, T

)

Ȧ2(t) = −λ2A2(t) − K1A1(t)2 t ∈ (
0, T

)

Ȧ3(t) = −λ3A3(t) + K2A1(t)2 t ∈ (
0, T

)

A1(0) = γ A2(0) = A3(0) = 0,

(3.10)

where T = T (γ ) may be infinite. The energy (3.4) of the solution of (3.10) is given by

Eγ
3 (t) = 1

2

3∑

i=1

λi Ai (t)
2 �⇒ Ėγ

3 (t) =
3∑

i=1

λi Ai (t) Ȧi (t) �⇒ Ėγ
3 (0) = −λ21γ

2; (3.11)

hence, except for the case γ = 0 which yields a zero solution of (3.10), the energy is initially
decreasing. Note also that Eγ

3 (t) ≡ E−γ
3 (t).

In some cases, we have that Eγ
3 (t) is bounded and decays exponentially as t → +∞,

which ensures that the local solution of (3.10) can be extended for all t > 0. In Sect. 4.1 we
prove

Proposition 3.10 Let λ = min{λ2, λ3} and let γ �= 0. Assume that one of the following
couples of inequalities holds:

n2 > 3(m2 + p2) and
n2(n2 − 3m2 − 3p2)

m2 + p2
≥ p2(3m2 + 3n2 − p2)

m2 + n2
, (3.12)

p2 > 3(m2 + n2) and
p2(p2 − 3m2 − 3n2)

m2 + n2
≥ n2(3m2 + 3p2 − n2)

m2 + p2
. (3.13)

Then Eγ
3 (t) ≤ Eγ

3 (0)e−2λt for all t ≥ 0.
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Fig. 2 For m = n = p = 1, graphs of t �→ Eγ
3 (t). From left to right: γ = 10, 100, 150, 300

Table 4 Form=n= p=1and someγ >0: values of Eγ
3 (0), maximum energy, tM achieving the maximum

γ 10 100 150 300 400 500

Eγ
3 (0) 1.50 · 102 1.50 · 104 3.38 · 104 1.35 · 105 2.40 · 105 3.75 · 105
max
t∈[0,1] E

γ
3 (t) 1.50 · 102 1.50 · 104 3.38 · 104 1.82 · 105 3.63 · 105 6.13 · 105

tM 0 0 4.53 · 10−2 4.09 · 10−2 3.53 · 10−2 3.09 · 10−2

In particular, Proposition 3.10 implies that t �→ Eγ
3 (t) attains its maximum at t = 0 for

any γ �= 0. But, as we now show numerically, this may be no longer true if both (3.12) and
(3.13) fail. Fixm = n = p = 1; although this is an isofrequency case, we numerically obtain
that t �→ Eγ

3 (t) is not globally decreasing for all γ �= 0. In Fig. 2 we display the obtained
graphs of t �→ Eγ

3 (t) for some values of γ .
Above a critical γ > 0, themaximum energy is no longer attained at t = 0. As γ grows the

maximum energy increases, while the corresponding maximum point tM decreases towards
zero, see Table 4, as expected from Proposition 3.9. This gives the flavour of the difficulty to
obtain global solutions under large initial data.

We performed numerical experiments also for other triads (m, n, p) violating both (3.12)
and (3.13), finding the same qualitative behaviour as in Fig. 2 and Table 4. Whether (3.12)
and (3.13) are also necessary conditions for Proposition 3.10 to hold for any γ �= 0 is an
open question that will be addressed in a future work.

4 Proofs of the results

4.1 Proofs of the propositions

Proof of Proposition 2.2. Using the definition of the strain tensor, we write

4
∫

�

Dv : Dw =
∫

�

∇v : ∇w +
∫

�

∇�v : ∇�w +
∫

�

∇�v : ∇w +
∫

�

∇v : ∇�w

= 2
∫

�

∇v : ∇w +
∫

�

∇�v : ∇w +
∫

�

∇v : ∇�w ∀v,w ∈ U .

We observe that

∫

�

∇�v : ∇w = −
∫

�

∇ · (∇�v) · w +
∫

∂�

∇�v · w · ν

= −
∫

�

∇(∇ · v) · w = 0 ∀v,w ∈ U ;
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indeed, v is solenoidal and, focusing on the boundary face ∂�x
π := {π} × (0, π)2 with

ν = (1, 0, 0) (similarly the other faces), we have
∫

∂�x
π

∇�v · w · ν =
∫

∂�x
π

∂xv1w1 + ∂yv1w2 + ∂zv1w3 = 0 ∀v,w ∈ U ,

being v1 = 0 on ∂�x
π . The same arguments can be repeated for the term

∫
�

∇v : ∇�w. ��
Proof of Proposition 2.3. SinceU is a Hilbert space and the Stokes operator is linear, compact,
self-adjoint and positive (by Proposition 2.2 and Remark 2.5), the first statement follows.

It is straightforward to show that the eigenvectors in (2.8)–(2.9)–(2.10)–(2.11)–(2.12) are
normal in L2(�) (in H ) and are linearly independent. In order to show that they generate
U , we observe that any linear combination of the eigenvectors in (2.8)–(2.9)–(2.10)–(2.11)–
(2.12) can be written as

v(x, y, z) =
⎛

⎝
a sin(mx) cos(ny) cos(pz)
b cos(mx) sin(ny) cos(pz)
c cos(mx) cos(ny) sin(pz)

⎞

⎠ , (4.1)

for some a, b, c ∈ R and m, n, p ∈ N, with the possibility that at most one among m, n, p
is zero. Then

∇ · v = 0 ⇐⇒ am + bn + cp = 0 (4.2)

and we need to show that the set of eigenvectors

S :=
{
v in (4.1) : am + bn + cp = 0

}

generates U . In view of the boundary conditions in (2.6), each scalar component vi (i =
1, 2, 3) of an eigenvector v satisfies homogeneous Dirichlet boundary conditions on two
opposite faces of � and homogeneous Neumann boundary conditions on the remaining four
faces. By separating variables, we then find that (e.g.) v1(x, y, z) = sin(mx) cos(ny) cos(pz)
are all the possible eigenfunctions of this scalar eigenvalue problem for −�. By adding the
solenoidal constraint (4.2), we find the set S. ��
Proof of Proposition 2.9. The equality (2.17) follows from the identity

N (Zm,n,0) = 2mn

π3(m2 + n2)

⎛

⎝
n sin(2mx)
m sin(2ny)

0

⎞

⎠ = ∇
(
2n2 sin2(mx) + 2m2 sin2(ny)

π3(m2 + n2)

)
(4.3)

and, similarly with obvious changes, for N (Ym,0,p) and N (X0,n,p).
Conversely, let  be an eigenvector of (2.6) satisfying N () = G. By (4.1) we know

that  has the form

(ξ) =
⎛

⎝

1(ξ)


2(ξ)


3(ξ)

⎞

⎠ =
⎛

⎝
a sin(mx) cos(ny) cos(pz)
b cos(mx) sin(ny) cos(pz)
c cos(mx) cos(ny) sin(pz)

⎞

⎠

for some m, n, p ∈ N and some a, b, c ∈ R satisfying (4.2). By the just proved (2.17), we
may restrict our attention to the casem, n, p ∈ N+. Recalling the definition ofN in Sect. 2.4,
we have

N () =
⎛

⎝

1∂x
1 + 
2∂y
1 + 
3∂z
1


1∂x
2 + 
2∂y
2 + 
3∂z
2


1∂x
3 + 
2∂y
3 + 
3∂z
3

⎞

⎠ .
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By imposing the irrotational properties

∂yN ()1 = ∂xN ()2 , ∂zN ()1 = ∂xN ()3 , ∂yN ()3 = ∂zN ()2 ,

and after some tedious computations we reach, among others, the conditions acn = bcm =
abp (we use that mnp �= 0). But this is impossible in view of (4.2). Hence, if mnp ∈ N+, it
cannot be N () ∈ G, proving the statement following (2.17).

The proofs of identities such as (2.17) can also be obtained by showing that the curl of
the considered vector is null. In particular, by computing the curl of the differences, one can
check that (2.18) holds. ��
Proof of Proposition 3.4. The proof is obtained by combining two facts. First notice that u in
(3.3) satisfies

ut (ξ, t) − μ�u(ξ, t) = ut (ξ, t) + μ(m2 + n2)u(ξ, t) = α(t)Zm,n,0(ξ) = f (ξ, t) ,

since Zm,n,0 is an eigenfunction of (2.6) with eigenvalue λ = m2 + n2. Then notice that,
for u and p as in (3.3), we have N (

u(t)
) = −∇ p(t), see (4.3). Moreover, u and p satisfy

(1.4)–(1.5). ��
Proof of Proposition 3.8. We differentiate E in (3.4) and obtain

Ė(t) =
∫

�

∇u(t) : ∇ut (t) = −
∫

�

�u(t) ut (t) =
∫

�

(
u(t) · ∇)u(t) · �u(t)

−μ‖�u(t)‖2L2(�)
for a.e. t ∈ [0, T ∗),

where we used (1.4). In particular, we infer that

Ė(0) = Iu0 − μ‖�u0‖2L2(�)
.

Hence, if Iu0 = 0 then Ė(0) < 0. Moreover,

Ėγ (0) = γ 3 Ju0 − γ 2μ‖�u0‖2L2(�)

and the remaining results follow by taking γ = μ‖�u0‖2
L2(�)

Iu0
. ��

Proof of Proposition 3.10. We rewrite (3.10)2 and (3.10)3 as

d

dt

(
eλ2t A2(t)

) = −K1e
λ2t A1(t)

2 �⇒ A2(t) = −K1

∫ t

0
eλ2(τ−t)A1(τ )2dτ , (4.4)

d

dt

(
eλ3t A3(t)

) = K2e
λ3t A1(t)

2 �⇒ A3(t) = K2

∫ t

0
eλ3(τ−t)A1(τ )2dτ , (4.5)

where we used the null initial conditions in (3.10)4.
By multiplying (3.10)i by λi Ai (t) (i = 1, 2, 3) and adding the equations we obtain

3∑

i=1

[
λi Ȧi (t)Ai (t) + λ2i Ai (t)

2] = [
K1(λ1 − λ2)A2(t) + K2(λ3 − λ1)A3(t)

]
A1(t)

2

which, by recalling (3.11), implies (replacing t by z)

Ėγ
3 (z) + 2λEγ

3 (z) ≤ [
K1(λ1 − λ2)A2(z) + K2(λ3 − λ1)A3(z)

]
A1(z)

2 .
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Indeed, in both cases (3.12) and (3.13) we have min{λ1, λ2, λ3} = min{λ2, λ3} = λ. Recall-
ing (4.4)–(4.5), multiplying this inequality by e2λz , and integrating over (0, t), yields

e2λt Eγ
3 (t) − Eγ

3 (0) ≤
∫ t

0
e2λz A1(z)

2
[ ∫ z

0

[
K 2
1 (λ2 − λ1)e

λ2(τ−z) + K 2
2 (λ3 − λ1)e

λ3(τ−z)
]
A1(τ )2dτ

]
dz .

By replacing the values of the λi ’s (i = 1, 2, 3) and of the Ki ’s (i = 1, 2), the function G
inside the inner squared bracket reads

G(τ ) = m2n2 p2

π3(n2 + p2)2

[
n2(3m2 + 3p2 − n2)

m2 + p2
eλ2(τ−z) + p2(3m2 + 3n2 − p2)

m2 + n2
eλ3(τ−z)

]
.

If (3.12)1 holds, then n > p and, hence,

eλ2(τ−z) = e4(m
2+p2)(τ−z) > e4(m

2+n2)(τ−z) = eλ3(τ−z) ∀τ ∈ [0, z) .

Using also (3.12)2, we infer that G(τ ) < 0 for all τ ∈ [0, z).
If (3.13) holds, we argue similarly by reversing the inequalities and we find again that

G(τ ) < 0 for all τ ∈ [0, z). Hence, for both (3.12)–(3.13) we obtain e2λt Eγ
3 (t)−Eγ

3 (0) ≤ 0,
proving the statement. ��

4.2 Proof of Theorem 2.8

Consider the usual functional space for the Stokes problem under Dirichlet boundary condi-
tions, i.e.

V := {v ∈ H1
0 (�); ∇ · v = 0 in �}. (4.6)

By Proposition 2.2, in � = (0, π)d for d ∈ {2, 3}, the norms ‖D · ‖L2(�) and ‖∇ · ‖L2(�) are
equivalent; hence, we may characterize variationally the eigenvalues of the Stokes problems
under Navier and Dirichlet boundary conditions as

λk = inf
Wk⊂U

dimWk=k

sup
u∈Wk\{0}

‖∇u‖2
L2(�)

‖u‖2
L2(�)

and τk = inf
Wk⊂V

dimWk=k

sup
u∈Wk\{0}

‖∇u‖2
L2(�)

‖u‖2
L2(�)

.

Since V ⊂ U , we obtain the inequality in (2.14).
For the asymptotic law in (2.14), we first consider the case d = 2. From [3, (13)] we know

that the L2−normalized eigenfunctions of (2.6) in the square (0, π)2 are given by

2

π
√
m2 + n2

(−n sin(mx) cos(ny)
m cos(mx) sin(ny)

)
(m, n ∈ N+).

The associated eigenvalues are λ = m2 +n2 and the counting function N (λk) coincides with
the number of lattice points (m, n) ∈ N

2+ belonging to the set

Cλk := {(x, y) ∈ R
2 : x2 + y2 ≤ λk, x > 0, y > 0}.

This number is approximated by the area of Cλk , at least for large k; not only we have to take
one fourth of the lattice points inside the circle of radius

√
λk , but we also need to subtract

the number of points on the axis that, however, has a lower order growth with respect to k.
Hence, we have

N (λk) ∼ |Cλk | = π

4
λk as k → ∞ . (4.7)
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We then notice that N (λk) ≥ k, with equality only if λk is such that λk < λk+1 (that is,
when the k-th eigenvalue is simple or the last of a family of multiple eigenvalues). Similarly,
N (λk) ≤ k−1+M(λk),with equality only ifλk is simple. SinceM(λk) ∼ |∂Cλk | = o(|Cλk |),
by combining these two inequalities, we obtain that N (λk) ∼ k as k → ∞. In turn, combined
with (4.7), this proves the asymptotic in (2.14) for d = 2 and ω2 = π .

If d = 3, then the counting function N (λk) equals 3 times the number of lattice points in
Cλk plus 2 times the number of lattice points (m, n, p) ∈ N

3+ inside the set

Sλk := {(x, y, z) ∈ R
3 : x2 + y2 + z2 ≤ λk, x > 0, y > 0, z > 0};

indeed for each lattice point (m, n, p) ∈ N
3+ we have the two linear independent eigenvectors

Vm,n,p and Wm,n,p , see Proposition 2.4. Similarly to (4.7), we then get

N (λk) ∼ 2|Sλk | + 3|Cλk | = 2
π

6
λ
3/2
k + 3π

4
λk ∼ π

3
λ
3/2
k as k → ∞ .

We have again that k ≤ N (λk) ≤ k − 1 + M(λk) and M(λk) ∼ 2|∂Sλk | = o(|Sλk |) so that
N (λk) ∼ k as k → ∞. We then conclude as for d = 2, thereby proving the asymptotic in
(2.14) with d = 3 and ω3 = 4π/3.

4.3 Proof of Theorem 2.11

In the sequel, we apply the following conventions.

Criterion 4.1 When some of the indexes of the eigenvectors in (2.8)–(2.9)–(2.10)–(2.11)–
(2.12) are zeros or negative integers

V0,a,b = √
2X0,a,b , Wa,0,b = −√

2Ya,0,b , Wa,b,0 = √
2Za,b,0 ∀a, b ∈ Z \ {0}

X0,0,a = X0,a,0 = Ya,0,0 = Y0,0,a = Za,0,0 = Z0,a,0 = Va,b,0 = Va,0,b =
Va,0,0 = V0,0,a = V0,a,0 = W0,a,b = Wa,0,0 = W0,0,a = W0,a,0 ≡ (0, 0, 0) ∀a, b ∈ Z

X0,−n,−p = X0,n,p X0,−n,p = X0,n,−p = −X0,n,p ∀m, n, p ∈ N+
Y−m,0,−p = Ym,0,p Y−m,0,p = Ym,0,−p = −Ym,0,p ∀m, n, p ∈ N+
Z−m,−n,0 = Zm,n,0 Z−m,n,0 = Zm,−n,0 = −Zm,n,0 ∀m, n, p ∈ N+
V±m,−n,−p = V±m,n,p = Vm,n,p V±m,−n,p = V±m,n,−p = −Vm,n,p ∀m, n, p ∈ N+
W±m,−n,−p = W±m,n,p = ∓Wm,n,p W±m,−n,p = W±m,n,−p = ±Wm,n,p ∀m, n, p ∈ N+.

For the proof of Theorem 2.11, we need the following technical result which explains how
the bilinear operator B acts on the frequencies of couples of eigenvectors.

Lemma 4.2 Following notation (2.15), let i and  j be two eigenvectors chosen among
(2.8)–(2.9)–(2.10)–(2.11)–(2.12), possibly belonging to the same family. Then B(i ,  j ) is
a linear combination of eigenvectors in (2.8)–(2.9)–(2.10)–(2.11)–(2.12), having frequencies
given either by the sum or the difference between the frequencies of i and  j , adopting
Criterion 4.1.

Proof We point out that, adopting the convention of Criterion 4.1, there is the possibility that
the linear combination of eigenvectors includes some trivial eigenvector, but not all. Since
the computations are quite unpleasant we prove the lemma only for two particular couples
of i and  j .
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We consider first the case i = Ymi ,0,pi ,  j = Zm j ,n j ,0. We have

B(Ymi ,0,pi , Zm j ,n j ,0
) = −4

π3
√

(m2
i + p2i )(m

2
j + n2j )

×
⎛

⎝
n j pi cos(n j y) cos(pi z)(mi cos(mi x) sin(m j x) + m j cos(m j x) sin(mi x))

m2
j pi cos(pi z) sin(m j y) sin(mi x) sin(n j y)

m2
i n j cos(n j x) sin(m j x) sin(mi x) sin(pi z)

⎞

⎠

and, hence, that B(Ymi ,0,pi , Zm j ,n j ,0
) · ν = 0 on ∂�. We then compute

∇ · B(Ymi ,0,pi , Zm j ,n j ,0
) = −8m jmin j pi

π3
√

(m2
i + p2i )(m

2
j + n2j )

cos(mi x) cos(m j x) cos(n j y) cos(pi z)

and, following Proposition 2.1,

ϕ = 4m jmin j pi

π3
√

(m2
i + p2i )(m

2
j + n2j )

×

×
[

cos[(mi + m j )x]
(mi + m j )2 + n2j + p2i

+ cos[(mi − m j )x]
(mi − m j )2 + n2j + p2i

]
cos(n j y) cos(pi z).

Computing B(Ymi ,0,pi , Zm j ,n j ,0
)− ∇ϕ, by (2.3) we obtain

B(Ymi ,0,pi , Zm j ,n j ,0
) = G + 1√

2π3(m2
i +p2i )(m

2
j+n2j )(n

2
j+p2i )

×

×
{
(m2

j p
2
i − m2

i n
2
j )Vmi+m j ,n j ,pi − n j pi (mi + m j )(m2

i + m2
j + n2j + p2i )√

(mi + m j )2 + n2j + p2i

Wmi+m j ,n j ,pi

−(m2
j p

2
i − m2

i n
2
j )Vmi−m j ,n j ,pi + n j pi (mi − m j )(m2

i + m2
j + n2j + p2i )√

(mi − m j )2 + n2j + p2i

Wmi−m j ,n j ,pi

}
.

Similarly, we compute the bilinear form when two eigenvectors belong to the same family.
If i = Vmi ,ni ,pi and  j = Vm j ,n j ,p j , we obtain

B(Vmi ,ni ,pi , Vm j ,n j ,p j )

= ni p j−pi n j

2
√
2π3(n2i +p2i )(n

2
j+p2j )

[
(n2i −n2j+p2i −p2j )Vmi+m j ,ni+n j ,pi +p j√

(ni+n j )
2+(pi+p j )

2
+ 2(mi+m j )(ni p j−n j pi )Wmi +m j ,ni+n j ,pi +p j√[(mi+m j )

2+(ni+n j )
2+(pi+p j )

2][(ni+n j )
2+(pi+p j )

2]

− (n2i −n2j+p2i −p2j )Vmi +m j ,ni−n j ,pi −p j√
(ni−n j )

2+(pi−p j )
2

+ 2(mi+m j )(ni p j−n j pi )Wmi +m j ,ni−n j ,pi −p j√[(mi+m j )
2+(ni−n j )

2+(pi−p j )
2][(ni−n j )

2+(pi−p j )
2]

− (n2i −n2j+p2i −p2j )Vmi −m j ,ni−n j ,pi −p j√
(ni−n j )

2+(pi−p j )
2

+ 2(mi−m j )(ni p j−n j pi )Wmi −m j ,ni−n j ,pi −p j√[(mi−m j )
2+(ni−n j )

2+(pi−p j )
2][(ni−n j )

2+(pi−p j )
2]

+ (n2i −n2j+p2i −p2j )Vmi −m j ,ni+n j ,pi +p j√
(ni+n j )

2+(pi+p j )
2

+ 2(mi−m j )(ni p j−n j pi )Wmi −m j ,ni+n j ,pi +p j√[(mi−m j )
2+(ni+n j )

2+(pi+p j )
2][(ni+n j )

2+(pi+p j )
2]

]

− ni p j+pi n j

2
√
2π3(n2i +p2i )(n

2
j+p2j )

[
(n2i −n2j+p2i −p2j )Vmi+m j ,ni−n j ,pi +p j√

(ni−n j )
2+(pi+p j )

2
+ 2(mi+m j )(ni p j+n j pi )Wmi +m j ,ni−n j ,pi +p j√[(mi+m j )

2+(ni−n j )
2+(pi+p j )

2][(ni−n j )
2+(pi+p j )

2]
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− (n2i −n2j+p2i −p2j )Vmi +m j ,ni+n j ,pi −p j√
(ni+n j )

2+(pi−p j )
2

+ 2(mi+m j )(ni p j+n j pi )Wmi +m j ,ni+n j ,pi −p j√[(mi+m j )
2+(ni+n j )

2+(pi−p j )
2][(ni+n j )

2+(pi−p j )
2]

− (n2i −n2j+p2i −p2j )Vmi −m j ,ni+n j ,pi −p j√
(ni+n j )

2+(pi−p j )
2

+ 2(mi−m j )(ni p j+n j pi )Wmi −m j ,ni+n j ,pi −p j√[(mi−m j )
2+(ni+n j )

2+(pi−p j )
2][(ni+n j )

2+(pi−p j )
2]

+ (n2i −n2j+p2i −p2j )Vmi −m j ,ni−n j ,pi +p j√
(ni−n j )

2+(pi+p j )
2

+ 2(mi−m j )(ni p j+n j pi )Wmi −m j ,ni−n j ,pi +p j√[(mi−m j )
2+(ni−n j )

2+(pi+p j )
2][(ni−n j )

2+(pi+p j )
2]

]
+ G.

All the other couples of eigenvectors give analogous results by proceeding in a similar
way. ��

Recalling (2.19), by Lemma 4.2 and condition (2.21) we see that k = mk ,nk ,pk and
B(i ,  j ) have different frequencies, so that they are L2(�)-orthogonal. This proves the
implication (2.21) ⇒ (2.20).

On the other hand, from Lemma 4.2 we also know that B(i ,  j ) is a linear combination
of eigenvectors, not all trivial. The only cases in which B�(i ,  j , k) �= 0 occurs (denial
of (2.20)) is when k is one of the eigenvectors generated by B(i ,  j ), i.e. mk ,nk ,pk must
satisfy

mk = |mi − m j | or mk = mi + m j and

nk = |ni − n j | or nk = ni + n j and

pk = |pi − p j | or pk = pi + p j ,

that is the denial of (2.21).

4.4 Proof of Theorem 3.5

For some f ∈ L2(QT ) and u0 ∈ U , let T ∗ ≤ T be as in Proposition 3.3 and let u = u(t)
be the unique local solution of (1.4)–(1.6) in (0, T ∗), which then satisfies (3.2). Using the
simplified notation (2.15), we write it in the form

u(ξ, t) =
∞∑

k=1

Ak(t)k(ξ) , u(ξ, 0) = u0(ξ) =
∞∑

k=1

Ak(0)k(ξ) ∈ U .

If u is rarefied then

B�(i ,  j ,�k) = −λkB�(i ,  j , k) = 0 ∀i, j, k,

where λk is the eigenvalue associated with k . Therefore,

∫

�

(
u(t) · ∇)u(t) · �u(t) = −

∞∑

k=1

λk Ak(t)
∫

�

(
u(t) · ∇)u(t) · k ≡ 0 , (4.8)

implying that Iu(t) ≡ 0. Thanks to (3.2), we may test (1.4) by −�u and, through the Young
inequality, we infer
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1

2

d

dt
‖∇u(t)‖2L2(�)

+ μ‖�u(t)‖2L2(�)
=
∫

�

(u(t) · ∇)u(t) · �u(t) −
∫

�

f (t) · �u(t)

by(4.8) = −
∫

�

f (t) · �u(t)

≤ μ‖�u(t)‖2L2(�)
+ 1

4μ
‖ f (t)‖2L2(�)

for a.e. t ∈ (0, T ∗) .

(4.9)

After integration over (0, t), we obtain for almost every t ∈ (0, T ∗)

‖∇u(t)‖2L2(�)
≤ ‖∇u0‖2L2(�)

+ 1

2μ

∫ T

0
‖ f (s)‖2L2(�)

ds =: �(T , f , u0) < ∞. (4.10)

Since the upper bound (4.10) is uniform (� is independent of T ∗), if it was T ∗ < T we could
extend the solution beyond T ∗; hence, T ∗ = T . Statement (a) is so proved.

To prove (b) we need a preliminary technical lemma on the formsN�(·, ·) and B�(·, ·, ·).

Lemma 4.3 The following results hold:

N�(Vmℵ,nℵ,pℵ , Ymk ,0,pk ) = −N�(Wmℵ,nℵ,pℵ , Ymk ,0,pk ) �= 0 if mk = 2mℵ, pk = 2pℵ,

N�(Vmℵ,nℵ,pℵ , Zmk ,nk ,0) = −N�(Wmℵ,nℵ,pℵ , Zmk ,nk ,0) �= 0 if mk = 2mℵ, nk = 2nℵ,

N�(Vmk ,nk ,pk , Ymℵ,0,pℵ) = −N�(Wmk ,nk ,pk , Ymℵ,0,pℵ) �= 0 if mk = mℵ/2, pk = pℵ/2,

N�(Vmk ,nk ,pk , Zmℵ,nℵ,0) = −N�(Wmk ,nk ,pk , Zmℵ,nℵ,0) �= 0 if mk = mℵ/2, nk = nℵ/2,

N�(ℵ, k) = N�(k, ℵ) = 0 for any other ℵ, k as in(2.15).

Moreover, B�(k, ℵ, ℵ) = −N�(ℵ, k) for any ℵ, k as in (2.15).

Proof Recalling (2.19) and Proposition 2.9 we find:

N�(ℵ, k) = mℵnℵ pℵ
(n2ℵ + p2ℵ)

√
π3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nℵ√
m2ℵ+p2ℵ

if ℵ = Vmℵ,nℵ,pℵ and k = Y2mℵ,0,2pℵ

− pℵ√
m2ℵ+n2ℵ

if ℵ = Vmℵ,nℵ,pℵ and k = Z2mℵ,2nℵ,0

− nℵ√
m2ℵ+p2ℵ

if ℵ = Wmℵ,nℵ,pℵ and k = Y2mℵ,0,2pℵ

pℵ√
m2ℵ+n2ℵ

if ℵ = Wmℵ,nℵ,pℵ and k = Z2mℵ,2nℵ,0

0 otherwise,

N�(k , ℵ) = 2mℵ√
π3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2k pℵ
(4n2k+p2ℵ)

√
m2ℵ+p2ℵ

if k = Vmℵ
2 ,nk ,

pℵ
2

and ℵ = Ymℵ,0,pℵ

− n2k pℵ
(4n2k+p2ℵ)

√
m2ℵ+p2ℵ

if k = Wmℵ
2 ,nk ,

pℵ
2

and ℵ = Ymℵ,0,pℵ

− p2k nℵ
(n2ℵ+4p2k )

√
m2ℵ+n2ℵ

ifk = Vmℵ
2 ,

nℵ
2 ,pk

and ℵ = Zmℵ,nℵ,0

p2k nℵ
(n2ℵ+4p2k )

√
m2ℵ+n2ℵ

if k = Wmℵ
2 ,

nℵ
2 ,pk

and ℵ = Zmℵ,nℵ,0

0 otherwise.

123



The evolution Navier–Stokes equations... Page 27 of 35   215 

Moreover, by (2.5) and (2.19),

B�(k, ℵ, ℵ) =
∫

�

(ℵ · ∇)k · ℵ = −
∫

�

(ℵ · ∇)ℵ · k = −N�(ℵ, k)

and the proof is complete. ��
We now prove statement (b) in a slightly more general form that allows to extend the

result to different choices of the additional eigenvector, not necessarily ℵ = X0,nℵ,pℵ , see
Remark 4.4 below. We consider

w(ξ, t) = u(ξ, t) + Aℵ(t)ℵ(ξ) =
∞∑

k=1

Ak(t)k(ξ) + Aℵ(t)ℵ(ξ),

for some ℵ(ξ) as in (2.15). Two cases may occur.
If the family {k}k∈N+ ∪ {ℵ} is also rarefied, one can take any Aℵ ∈ L∞(0, T ∗) and

obtain the result as a direct consequence of statement (a).
If the family {k}k∈N+ ∪ {ℵ} fails to be rarefied, we determine Aℵ ∈ L∞(0, T ∗) as

follows. By (3.2)we have thatw ∈ L∞(0, T ∗;U ) and, through (2.16), this allows to compute

(
w(t) · ∇)w(t)=

∞∑

k=1

Ak(t)
2N (k)

+
∞∑

1≤k< j

Ak(t)A j (t)B(k,  j )+Aℵ(t)2N (ℵ)+
∞∑

k=1

Ak(t)Aℵ(t)B(k, ℵ),

�w(t) = −
∞∑

k=1

λk Ak(t)k(ξ) − λℵAℵ(t)ℵ(ξ).

Hence, if we put

ϑ(t) := −λℵ
∞∑

k=1

Ak(t)B�(k, ℵ, ℵ) −
∞∑

k=1

λk Ak(t)N�(ℵ, k),

ω(t) := λℵ
∞∑

k=1

Ak(t)
2N�(k, ℵ),

ζ(t) := λℵ
∞∑

1≤k< j

Ak(t)A j (t)B�(k,  j , ℵ) +
∞∑

k, j=1

λ j Ak(t)A j (t)B�(k, ℵ,  j ),

we obtain

Iw(t) = ϑ(t)Aℵ(t)2 − [
ω(t) + ζ(t)

]
Aℵ(t) . (4.11)

If ℵ = X0,nℵ,pℵ by Lemma 4.3, we have ϑ(t) ≡ 0, ω(t) ≡ 0 and Jw(t) =
− ∫ t

0 Aℵ(s)ζ(s)ds; by choosing (e.g.) Aℵ(t) = ζ(t) we obtain Jw(t) ≤ 0 for all t ≤ T ∗,
proving statement (b). Note that other choices are possible, for instance Aℵ(t) = ζ(t)3, and
many others.

Remark 4.4 Slightly more difficult is the choice of Aℵ for eigenvectors ℵ among (2.9)–
(2.10)–(2.11)–(2.12), see Lemma 4.3. If ϑ(t) < 0, one can take Aℵ(t) > 0 so large that
(4.11) becomes pointwise negative. If ϑ(t) > 0 or ϑ changes sign, one can take Aℵ(t) =
ε[ω(t) + ζ(t)] for ε > 0 sufficiently small.
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Let us now prove statement (c). We denote by

z(ξ, t) :=
n∑

h=1

Aℵ
h (t)ℵ

h (ξ),

the finite linear combination of eigenvectors to be added to u. Again, w = u + z ∈
L∞(0, T ∗; V ), see (3.2). By taking into account Item (a), we compute
∫

�

(
w(t) · ∇)w(t) · �w(t) =

∫

�

[(
u(t) · ∇)u(t) · �z(t)

+ (
z(t) · ∇)z(t) · �u(t) + (

z(t) · ∇)z(t) · �z(t)

+ [(
z(t) · ∇)u(t) + (

u(t) · ∇)z(t)] · �u(t) + [(
z(t) · ∇)u(t) + (

u(t) · ∇)z(t)] · �z(t)
]

and we bound all the terms by using the Poincaré, Hölder and Young inequalities and by
exploiting the fact that z ∈ L∞(0, T ∗;C∞(�)) (this is why a finite sum for z is assumed):
∣
∣
∣
∣

∫

�

(
u(t) · ∇)u(t) · �z(t)

∣
∣
∣
∣ ≤ C‖∇u(t)‖2L2(�)

,

∣
∣
∣
∣

∫

�

(
z(t) · ∇)z(t) · �z(t)

∣
∣
∣
∣ ≤ C,

∣∣∣∣

∫

�

[(
z(t) · ∇)u(t) + (

u(t) · ∇)z(t)] · �u(t)

∣∣∣∣ ≤ C2

2ε ‖∇u(t)‖2L2(�)
+ ε

2‖�u(t)‖2L2(�)
,

∣∣∣∣

∫

�

[(
z(t) · ∇)u(t) + (

u(t) · ∇)z(t)] · �z(t)

∣∣∣∣ ≤ ε
2 + C2

2ε ‖∇u(t)‖2L2(�)
,

∣∣∣∣

∫

�

(
z(t) · ∇)z(t) · �u(t)

∣∣∣∣ ≤ C2

2ε + ε
2‖�u(t)‖2L2(�)

,

for some constantsC, ε > 0 (thatmay vary from line to line) accounting for Aℵ
h ∈ L∞(0, T ∗)

in various forms. By collecting terms we obtain (3.8), thereby proving statement (c).

4.5 Proof of Theorem 3.6

We start by proving some technical results that are needed in the proof of Theorem 3.6.

Lemma 4.5 Let T , μ, λ > 0; let α ∈ L2(0, T ) and γ ∈ R. Then the function

A(t) := e−μλt
[ ∫ t

0
α(τ)eμλτdτ + γ

]
∀t ∈ [0, T ] (4.12)

satisfies A ∈ H1(0, T ) and

‖A‖L p(0,T ) ≤ |γ |
(μλp)1/p

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖α‖L p(0,T )

μλ
p ∈ [1, 2],

‖α‖L2(0,T )√
2 p−1

p (μλ)
1
2 + 1

p

p ∈ [2, ∞]. (4.13)

In particular,

‖A‖L∞(0,T ) ≤ ‖α‖L2(0,T )√
2μλ

+ |γ | , ‖A‖L2(0,T ) ≤ ‖α‖L2(0,T )

μλ
+ |γ |√

2μλ
. (4.14)
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Proof From (4.12) the function A(t) is an exponential multiplied by a primitive of an
L2(0, T )-function so that A ∈ H1(0, T ) ⊂ C0[0, T ].

In order to prove (4.13), we treat the integral to be computed as a convolution, distin-
guishing two cases due to the assumption α ∈ L2(0, T ). Let p ∈ [1, 2], p′ = p

p−1 ∈ [2, ∞]
and a(t) := ∫ t

0 α(τ)e−μλ(t−τ)dτ so that A(t) = a(t) + γ e−μλt . The first step is to use the
triangle inequality:

‖A‖L p(0,T ) ≤ ‖a‖L p(0,T ) + |γ |
[∫ T

0
e−μλpt dt

]1/p

≤ ‖a‖L p(0,T ) + |γ |
(μλp)1/p

. (4.15)

By applying the Hölder inequality, we get

|a(t)|p =
∣
∣
∣
∣

∫ t

0
e

− μλ

p′ (t−τ)
e− μλ

p (t−τ)
α(τ )dτ

∣
∣
∣
∣

p

≤
[ ∫ t

0
e−μλ(t−τ)dτ

]p−1 ∫ t

0
e−μλ(t−τ)|α(τ)|pdτ

≤ 1

(μλ)p−1

∫ t

0
e−μλ(t−τ)|α(τ)|pdτ .

Hence, integrating and applying the Fubini Theorem, we obtain
∫ T

0
|a(t)|pdt ≤ 1

(μλ)p−1

∫ T

0

∫ t

0
e−μλ(t−τ)|α(τ)|pdτ dt

= 1

(μλ)p−1

∫ T

0
|α(τ)|p

∫ T

τ

e−μλ(t−τ)dt dτ ≤ ‖α‖p
L p(0,T )

(μλ)p
.

By (4.15) this implies

‖A‖L p(0,T ) ≤ ‖α‖L p(0,T )

μλ
+ |γ |

(μλp)1/p
. (4.16)

Let p ∈ [2, ∞], p′ = p
p−1 ∈ [1, 2] then we consider

|a(t)|p ≤
[ ∫ t

0
e

− μλ

p′ (t−τ)|α(τ)| p−2
p e− μλ

p (t−τ)|α(τ)| 2
p dτ

]p

≤
[ ∫ t

0
e−μλ(t−τ)|α(τ)| p−2

p−1 dτ

]p−1 ∫ t

0
e−μλ(t−τ)|α(τ)|2dτ

≤ ‖e−μλ(t−τ)‖p−1

L
2(p−1)

p (0,t)
‖α‖p−2

L2(0,T )

∫ t

0
e−μλ(t−τ)|α(τ)|2dτ

≤
‖α‖p−2

L2(0,T )
( p−1

p 2μλ
) p
2

∫ t

0
e−μλ(t−τ)|α(τ)|2dτ .

Hence, integrating and applying the Fubini Theorem as before, we obtain

∫ T

0
|a(t)|pdt ≤

‖α‖p−2
L2(0,T )

(
2 p−1

p μλ
) p
2

‖α‖2
L2(0,T )

μλ
≤

‖α‖p
L2(0,T )

(
2 p−1

p

) p
2 (μλ)

p
2 +1

,
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implying through (4.15)

‖A‖L p(0,T ) ≤ ‖α‖L2(0,T )√
2 p−1

p (μλ)
1
2 + 1

p

+ |γ |
(μλp)1/p

.

This proves (4.13). ��
Note that (4.16) holds for any p ∈ [1, ∞) for which α ∈ L p(0, T ). Hence, if α ∈

L∞(0, T ) (which is not the assumption of Lemma 4.5!), then (4.14)1 can be improved by
letting p → ∞ in (4.16), that is,

‖A‖L∞(0,T ) ≤ ‖α‖L∞(0,T )

μλ
+ |γ |.

In our proofs, only the bounds (4.14) in Lemma 4.5 are needed. However, because of their
elegance and simplicity, we proved the more general bounds (4.13).

Then we prove a calculus statement that highlights the role of the Weyl formula (2.14).

Lemma 4.6 Let ε > 0, {αk}k∈N+ ⊂ L2(0, T ), {γk}k∈N+ ⊂ R and {λk}k∈N+ ⊂ R+. If, for
some C, η > 0, we have that λk ∼ Ckη as k → ∞, then the following implication holds

∞∑

k=1

(
λ

1
η

−1+ε

k ‖αk‖2L2(0,T )
+ λ

1
η

+ε

k γ 2
k

)
< ∞ �⇒

∞∑

k=1

(‖αk‖L2(0,T )√
λk

+ |γk |
)

< ∞.

Proof By applying the Hölder inequality, we get

∞∑

k=1

‖αk‖L2(0,T )√
λk

=
∞∑

k=1

λ
− 1

2
k ‖αk‖L2(0,T )

λ
(ε+1/η)/2
k

λ
(ε+1/η)/2
k

≤
[ ∞∑

k=1

λ
1
η

−1+ε

k ‖αk‖2L2(0,T )

]1/2 [ ∞∑

k=1

1

λ
ε+ 1

η
k

]1/2
<∞

∞∑

k=1

|γk | =
∞∑

k=1

|γk | λ
(ε+1/η)/2
k

λ
(ε+1/η)/2
k

≤
[ ∞∑

k=1

λ
1
η

+ε

k γ 2
k

]1/2 [ ∞∑

k=1

1

λ
ε+ 1

η
k

]1/2
<∞,

since λ
1
η

+ε

k ∼ C
1
η

+εk1+εη as k → ∞ and the series of general term k−1−εη is convergent. ��
In the next lemma we give bounds on the L2(�)−norm of some bilinear terms involved

in the proofs. The norms are computed after neglecting the G-part.

Lemma 4.7 Let j andk be two eigenfunctions of (2.6) chosen among (2.8)–(2.9)–(2.10)–
(2.11)–(2.12) corresponding, respectively, to the eigenvalues λ j and λk . There exists a
constant C > 0 (independent of λ j and λk) such that

‖N (k)‖2L2(�)
≤ Cλk, ‖B( j , k)‖2L2(�)

≤ C(λ j + λk). (4.17)

Proof Let k be an L2(�)-normalized eigenfunction of the kind (2.8)–(2.9)–(2.10)–(2.11)–
(2.12) associated with some eigenvalue λk > 0. By its explicit form, there exists � > 0
(independent of λk) such that

‖k‖L∞(�) ≤ � .
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Then we bound

‖N (k)‖2L2(�)
= ‖(k · ∇)k‖2L2(�)

≤ ‖k‖2L∞(�)‖∇k‖2L2(�)
≤ �2 λk,

since ‖∇k‖2
L2(�)

= λk ; this proves the first of (4.17) with C = �2. Moreover,

‖B(k,  j )‖2L2(�)
= ‖(k · ∇) j + ( j · ∇)k‖2L2(�)

≤ 2
(‖k‖2L∞(�)‖∇ j‖2L2(�)

+ ‖ j‖2L∞(�)‖∇k‖2L2(�)

)

≤ 2C(λk + λ j ),

proving the second inequality in (4.17). ��
We are now ready to start the proof of Theorem 3.6. Let ε > 0 and let u0 ∈ U be such that

u0 = Lr (Wmk ,nk ,pk ). For each k, λk = m2
k + n2k + p2k is the eigenvalue of (2.6) associated

with Wmk ,nk ,pk . Then there exists a sequence {γk}k∈N+ ⊂ R satisfying

∞∑

k=1

λ
3
2 +ε

k γ 2
k < ∞ (4.18)

and a rarefied sequence {Wmk ,nk ,pk }k∈N+ of eigenvectors of the kind (2.12) such that

u0(ξ) =
∞∑

k=1

γk Wmk ,nk ,pk (ξ) . (4.19)

We claim that for any sequence {αk(t)}k∈N+ ⊂ L2(0, T ) satisfying

∞∑

k=1

λ
1
2 +ε

k ‖αk‖2L2(0,T )
< ∞ (4.20)

there exists a 3D-3D force f ∈ L2(QT ) yielding global uniqueness. This would prove Item
(i) in Theorem 3.6, since there is an uncountable family of such sequences {αk(t)}k∈N+ . We
prove this claim in two steps.

Step 1: Construction of f . For any k ∈ N+, we consider the linear ODE problem
⎧
⎪⎨

⎪⎩

Ȧk(t) + μ(m2
k + n2k + p2k︸ ︷︷ ︸

λk

)Ak(t) = αk(t) ∀k ∈ N+, ∀t ∈ (0, T )

Ak(0) = γk,

(4.21)

whose solution is given by (4.12) with Ak , λk , αk and γk replacing A, λ, α and γ . Then we
set

f (ξ, t) =
∞∑

k=1

αk(t)Wmk ,nk ,pk (ξ) +
∞∑

k=1

Ak(t)
2N (Wmk ,nk ,pk )

+
∞∑

1≤k< j

Ak(t)A j (t)B(Wmk ,nk ,pk ,Wm j ,n j ,p j ) (4.22)

and we show that the (rarefied) function

u(ξ, t) =
∞∑

k=1

Ak(t)Wmk ,nk ,pk (ξ) (4.23)

123



  215 Page 32 of 35 A. Falocchi, F. Gazzola

is the u-component of the solution (u, p) of (1.4) satisfying u(ξ, 0) = u0(ξ) as given in
(4.19). By (3.6) and (4.14) we know that

‖u‖2L∞(0,T ;U ) = sup
(0,T )

∞∑

k=1

λk Ak(t)
2 ≤

∞∑

k=1

λk‖Ak‖2L∞(0,T )

≤ 1

μ

∞∑

k=1

(
‖αk‖2L2(0,T )

+ 2μλkγ
2
k

)
< ∞ (4.24)

in view of (4.18) and (4.20). Furthermore, u in (4.23) satisfies

ut (ξ, t) − μ�u(ξ, t) =
∞∑

k=1

(
Ȧk(t) + μλk Ak(t)

)
Wmk ,nk ,pk (ξ) =

∞∑

k=1

αk(t)Wmk ,nk ,pk (ξ)

sinceWmk ,nk ,pk is an eigenfunction of (2.6) associated with the eigenvalue λk and Ak satisfies
(4.21). By (2.16) we also infer that

(u · ∇)u = N
( ∞∑

k=1

Ak(t)Wmk ,nk ,pk

)
=

∞∑

k=1

Ak(t)
2N (Wmk ,nk ,pk )

+
∞∑

1≤k< j

Ak(t)A j (t)B(Wmk ,nk ,pk ,Wm j ,n j ,p j ).

Hence, f in (4.22) can be written as f = ut − μ�u + (u · ∇)u and u = Lr (Wmk ,nk ,pk ) in
(4.23) is the u-component of the solution (u, p) of (1.4)–(1.6).

Step 2:Regularity of f . To complete the proof of Item (i), we need to prove the regularity
of f in (4.22). Since {αk}k∈N+ satisfies (4.20), we infer that the first term in (4.22) satisfies

∞∑

k=1

αkWmk ,nk ,pk ∈ L2(QT ) . (4.25)

In order to bound the L2(QT )-norm of the second term in (4.22), we observe that

∥∥∥∥∥

∞∑

k=1

A2
kN (Wmk ,nk ,pk )

∥∥∥∥∥

2

L2(QT )

=
∫ T

0

∫

�

( ∞∑

k=1

Ak(t)
2N (Wmk ,nk ,pk )

)2

by the Hölder inequality ≤ T sup
(0,T )

∫

�

( ∞∑

k=1

Ak(t)
2
∣∣N (Wmk ,nk ,pk )

∣∣
)2

by the Minkowski inequality ≤ T sup
(0,T )

( ∞∑

k=1

Ak(t)
2 ‖N (Wmk ,nk ,pk )‖L2(�)

)2

by(4.17) ≤ CT

(
sup
(0,T )

∞∑

k=1

Ak(t)
2
√

λk

)2

< ∞, (4.26)

in view of (4.24) and because λk ≥ 2 for all k, see Remark 2.5. Hence, the second term in
(4.22) is in L2(QT ). We now bound the L2(QT )-norm of the (most delicate) third term in
(4.22):
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∥
∥
∥∥
∥
∥

∞∑

1≤k< j

Ak A jB(Wmk ,nk ,pk ,Wm j ,n j ,p j )

∥
∥
∥∥
∥
∥

2

L2(QT )

≤
( ∞∑

1≤k< j

∥
∥Ak A jB(Wmk ,nk ,pk ,Wm j ,n j ,p j )

∥
∥
L2(QT )

)2

=
( ∞∑

1≤k< j

∥
∥Ak A j

∥
∥
L2(0,T )

∥
∥B(Wmk ,nk ,pk ,Wm j ,n j ,p j )

∥
∥
L2(�)

)2

≤ C

( ∞∑

j=2

‖A j‖L2(0,T )

√
λ j

j−1∑

k=1

‖Ak‖L∞(0,T )

)2

≤ C

μ

[ ∞∑

k=1

(‖αk‖L2(0,T )√
μλk

+ |γk |
)]4

< ∞. (4.27)

This bound is obtained by applying the Minkowski inequality, the Hölder inequality,
(4.17) (recalling that k < j , hence λk ≤ λ j ) and Lemma 4.6 with η = 2/3; the choice of η

is justified by the Weyl asymptotic for λk = m2
k + n2k + p2k , see Theorem 2.8 in dimension

d = 3. The three bounds (4.25)–(4.26)–(4.27) show that (4.22) belongs to L2(QT ), which
completes the proof of Theorem 3.6 (i).

In order to prove Theorem 3.6 (i i), the assumptions (4.18) and (4.20) should be replaced
by

∞∑

k=1

λ1+ε
k γ 2

k < ∞,

∞∑

k=1

λε
k‖αk‖2L2(0,T )

< ∞.

We recall that the eigenvalues associated to Wmk ,nk ,nk are λk = m2
k + 2n2k = O(k) as

k → +∞, see Theorem 2.8 (and its proof) for d = 2. Hence, the proof of Theorem 3.6 (i i)
is the same as (i) until the estimate (4.26). The only difference is the estimate (4.27), that
can be obtained applying Lemma 4.6 with η = 1.

In Theorem 3.6 (i i i) the assumptions (4.18) and (4.20) should be replaced by

∞∑

k=1

λkγ
2
k < ∞,

∞∑

k=1

‖αk‖2L2(0,T )
< ∞

and the proof is the sameuntil the estimate (4.26).Here (4.27) is obtained applyingLemma4.6
with

ε1 = ε

ε + 1
, η ≥ 1

1 − ε1
= 1 + ε.
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