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The production of semiconductor devices requires to satisfy high reliability standards. For this reason, 
manufactured devices are subject to burn-in, i.e., extensive testing under accelerated stress conditions, which is 
costly and time-consuming. The present work develops a model for predicting the quality of the devices from data 
collected during the production process. The developed modelling approach is based on: a) a combination of 
Piecewise Aggregate Approximation (PAA) and Principal Component Analysis (PCA) for the extraction of 
features relevant for inferring the quality of the devices from signal measurements collected during the production; 
and b) a model based on Probabilistic Support Vector Regression (PSVR) for predicting the number of defective 
devices in the production batch. The model is validated on synthetic data, which emulate signal measurements 
collected during the production of semiconductor devices. The obtained results show that the proposed model is 
able of predicting the number of defective devices in a production batch with satisfactory accuracy. 
 
Keywords: Semiconductor devices, Burn-in, Piecewise Aggregate Approximation, Principal Component Analysis, 
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1. Introduction 
In the semiconductor manufacturing 

industry, one of the main concerns of the 
manufacturers is to guarantee that the devices 
work when placed in service and do not fail at 
the beginning of their lives due to the presence 
of manufacturing defects (Kuo and Kuo, 1983). 
Burn-in (BI), which consists in testing the 
operation of some samples of the produced 
devices under accelerated stress conditions, such 
as high temperature and voltage, allows 
identifying the devices that are expected to fail 
during their early stages of life for removing 
them from the production and estimating the 
Early Life Failure Probability (ELFP) of the 
product population, i.e., the proportion of early 

failures, before the devices are delivered (Wood 
M. H., Muzik A, Huston H. H., 1993). Typically, 
the metric used is the upper one-sided 
confidence interval of the ELFP, computed by 
applying the Clopper-Pearson (CP) Estimator 
(Clopper and Pearson, 1934) to the number of 
BI-relevant failures. If the estimated value of 
ELFP is above a predefined target, given in 
terms of Parts Per Million (ppm), other devices 
of the production batches undergo BI until the 
desired quality level is guaranteed. BI can be 
very expensive and time-consuming to perform, 
particularly for new technologies, which require 
that all the produced devices undergo BI (100% 
BI) until the quality target is met. Considering 
that all semiconductor devices obtained from 
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tens of batches are BI-tested at the beginning of 
the production  by a new process technology, BI 
cost and time can be very large (Hui and Lu, 
1996). It is not surprising, then, that 
manufacturers are interested in reducing cost and 
time required for BI while maintaining the 
require quality target. 

In this work, we exploit the possibility of 
using production data to predict the likelihood of 
early failures without performing BI. This is 
based on the observation that early-life failures 
are typically caused by defects that result from 
anomalies occurred during the manufacturing 
process (Baraldi et al., 2021). The data typically 
collected during the manufacturing process 
include: production and electric signals 
measured by sensors installed on the machines 
used for production, images of the devices taken 
during different production stages and results of 
electrical diagnostic tests. Specifically, the 
present work investigates the possibility of 
developing a model which, on the basis of data 
collected during production, estimates the 
number of defective semiconductor devices 
within a production batch. 

To this aim, data-driven approaches for 
anomaly detection are considered. Their 
development requires to address the following 
challenges: i) dealing with multidimensional 
time-series containing the values of the signals 
measured during production or in electrical tests; 
and ii) estimating the model outcome 
uncertainty, which is caused by the intrinsic 
stochasticity of the number of defective devices 
in a production batch, the modelling error, and 
the signal measurement noise. To properly 
address these challenges, we develop a method 
that combines a feature extraction method based 
on Piecewise Aggregate Approximation (PAA) 
(Keogh et al., 2001) and Principal Component 
Analysis (PCA) with Probabilistic Support 
Vector Regression (PSVR) (Liu et al., 2013; 
Sollich, 1999a). The feature extraction method 
aims at extracting a reduced set of features 
correlated with the quality of the devices from 
the multidimensional time-series (Challenge i). 
The idea is to project the original data into a 
space of reduced dimensionality, where the 
number of time measurements associated to the 
production of a batch is reduced. This is obtained 
by applying PAA and, then, selecting the 
Principal Components (PCs) representing the 

largest variability of the data. With respect to 
Challenge ii), the choice of resorting to PSVR 
for the estimation of the number of defective 
devices in the production batch is motivated by 
its capability of properly representing the 
uncertainty associated to the model outcome. 

The proposed method is validated on 
simulated data, which synthetically emulate real 
BI process data. The use of synthetic data is 
motivated by the need of verifying the 
performance of the method. A comparison is 
also made with the classical Support Vector 
Regression (SVR). 

The rest of the paper is organized as 
follows. In Section 2, the problem of estimating 
the number of defective semiconductor devices 
within a production batch is formulated. In 
Section 3, the proposed method is presented and 
its application to a synthetic case study is given 
in Section 4. In Section 5, the results of the 
application of the developed method are 
presented and discussed. Finally, Section 6 
presents the concluding remarks. 

2. Problem Formulation 
A set of S signals are measured during the 

semiconductor manufacturing process. They 
include physical quantities measured during the 
production process and electrical signals 
measured during diagnostic tests. These 
quantities are expected to contain information 
related to the quality of the production. 

For simplicity of notation, we assume that 
the production of the generic batch  starts at 
time 0 and ends at time , and that all 
measurements are synchronously acquired every 
one time unit. 

Since the production is performed on batch 
basis and the production cycle is based on 
several production stages (Fisher et al., 2012), a 
single batch is associated to the time series of the 
physical quantities measured during its 
production. The measurements taken at the 
generic time t (i.e., the present calendar time) are 
represented by the vector: 

 (1) 

where the vector element  indicates the 
measurements of the physical quantity j at time t. 
We assume the availability of a dataset 

 containing the 
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following data collected during the production of 
 batches: 

� the matrix  of the 
measurements collected during the 
production of batch : 

 (2) 

� the number, , of devices of the batch 
that have been randomly selected and have 
undertaken the BI test; 

� the number, , of devices 
that have had BI-relevant failures. 

Considering a test batch, which has not yet 
undertaken BI tests, and the signal 
measurements, , collected during its 
production, the objective of the present work is 
to predict the number of defective devices, , 
which are expected to have BI-relevant failures 
if  devices of the test batch are to undergo 
BI. 

3. Method 
The proposed method for the prediction of 

the number of defective devices is depicted in 
Fig. 1. It consists in a feature extraction method 
and a Probabilistic Support Vector Regression 
(PSVR) algorithm for the estimation of the 
number of defective semiconductor devices. 

3.1. Feature extraction 
The training data,  with 

, and test data, , are 
preprocessed to extract vectors of reduced 
dimensionality,  and , respectively, 
containing features related with the quality of the 
production batch. To this aim, two sequential 
steps of feature extraction are performed: 1) 
reduction by PAA of the number, , of time 
measurements associated to the production of the 
lth batch and 2) reduction by PCA of the 
number, S, of the measured signals. 
 

 
Fig. 1. Proposed method for the prediction of the 
number of defective semiconductor devices. 

3.2. Probabilistic Support Vector Regression 
One of the most effective formulation of 

Support Vector Machine (SVM) for regression is 
the -insensitive Support Vector Regression ( -
SVR) (Vapnik, 1995). When a limited number of 
training patterns is available, the principle of 
Structural Risk Minimization (SRM) is 
implemented within the -SVR implementation 
(Gao et al., 2002) to balance the trade-off 
between variance and bias. A probabilistic 
framework for -SVR ( -PSVR) based on the 
Bayesian Evidence Framework is adopted in this 
paper. It is based on the interpretation of the 
SVR outcome as the maximum a posteriori 
(MAP) solution of the inference problem when 
Gaussian priors and an appropriate likelihood 
function are used (Gao et al., 2002). This 
probabilistic interpretation of the SVR enables 
the use of Bayesian methods to set the three 
main hyperparameters of the model, which are 
regularization parameter, C, sparsity control 
parameter,  and kernel parameter,  (Sollich, 
1999b), and allows obtaining a prediction 
interval as outcome (Lin and Weng, 2004). 
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4. Case Study 
The developed model has been validated 

considering a synthetic case study. The 
simulation for generating the data of the 
synthetic case study is based on the following 
assumptions: 

i) the values of the signals measured during the 
production of a generic batch, , depend 
on the quality of the production batch, 
represented by the ground truth ELFP, ; 

ii) the time, , needed to produce a batch is 
proportional to the number of BI-tested 
devices : 

 (3) 

We set the processing time required to 
produce a device, , equal to 

; 
iii) the batch-specific quality target level, 

, for BI at 90% confidence level (CL) 
is 23 ppm. 

According to the CP estimator and based 
on the above assumptions, it is possible to show 
that the minimum number of devices to be 
sampled and BI-tested to meet the batch-specific 
quality target if BI-relevant failures are not 
observed  is 100150. Then, 
considering a generic lth production batch, the 
simulation to generate values of the quantities 

, ,  is based on the following 
procedure: 

a. Sample the ground truth ELFP, , from a 
uniform probability distribution, , in the 
range [0, 23 ppm] for batches without BI 
relevant failures, or in the range  [23 ppm, 40 
ppm] for batches with BI relevant failures. 

b. Sample the number  of BI-tested devices 
from a uniform discrete probability 
distribution, , in the range 

. The range is chosen so 
as to ensure that any production batch made 
by a random sample, , taken from  
with  BI-relevant failures produces 
an estimate of  smaller than the required 
quality target level. 

c. The number of BI-relevant failures, , is 
binomially distributed: 

 (4) 

d. Generate the matrix  of the signal 
measurements. We assume that  signals 

are measured for a time period of duration 
 obtained from Eq. (3). The matrixes of 

measurements, , of size , are 
obtained by simulating at each time step t the 
vector  of the signal measurements 
using: 

 (5) 

where  is a matrix of size  representing 
the system process;  is a column vector 
of length 3 representing independent input 
parameters correlated to the quality of the 
batch, such as raw materials or machine 
types, and controlled and uncontrolled inputs 
(e.g., tool/machine parameters, operator 
variability); and  is a column vector of 
length S representing the measurement noise: 

 (6) 

The elements of the matrix A are reported 
in Eq. (6), whereas the elements of the vector of 
the independent and identically distributed 
measurement noises are sampled from a 
Gaussian distribution with mean equal to zero 
and standard deviation equal to 0.1, i.e., 

. The independent input parameters, 
, are time-dependent 

quantities influenced by the quality of the 
production batch: 

 (7) 
where the elements of the baseline, , 
are: 

 
(8) 

and the function  is built by randomly 
sampling from a uniform discrete distribution in 
which one of the three process parameters, 

, is influenced by the batch quality (  is 
the th column of the identity matrix) and, then, 
by adding to the sampled process parameter 

 a term proportional to  through a 
multiplication factor . 

The four steps procedure described above 
has been applied to generate a training dataset of 

 training batches, 
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, containing 700 
batches without BI relevant failures and 700 
batches with BI relevant failures, and a test 
dataset made by  test batches, 

, containing 
300 batches without BI failures and 300 batches 
with BI failures. The training dataset (which has 
been divided into 70% and 30% for training and 
validation sets, respectively) has been used to 
develop the proposed model and perform the 
feature extraction phases; the test dataset has 
been used to assess the method performance. 

5. Results and Discussions 
The feature extraction step of Section 3.1 

has been performed by setting the time series 
reduction length to 300 and the number of PCs to 
4, which allows explaining 99.81% of the data 
variability. This way, the original time-series 

 made by  values of 8 signals is 
projected into a vector  of length 4. Then, the 
extracted features are used to train the PSVR 
model. Since the proposed method provides in 
output a real number, the predicted number of 
defective devices, , is obtained by 
approximation to the nearest integer. 

The performances of the trained model 
have been computed on the test set. Fig. 2 shows 
the predicted versus groundtruth number of 
defective devices. Notice that one source of the 
prediction error, i.e., the variations between the 
predicted and groundtruth number of defective 
devices, is the stochasticity of the process due to 
the fact that the BI relevant failure follows a 
Binomial distribution. The overall rate of correct 
prediction  is 45% and the RMSE 
is close to 1.86. Fig. 3 shows the distribution of 
the prediction error ( ) in the test set for the 
batches without BI relevant failures (blue) and 
those with BI relevant failures (red). The rate of 
correct predictions of the number of defective 
devices of batches without BI failures is 
approximately four times larger than that of the 
batches with BI failures, and errors larger than 2 
units occur only for batches with BI failures. A 
further analysis of the errors made on batches 
with BI failures has shown that they tend to 
occur on batches characterized by large values of 

. This is due to the fact that the PSVR model 
considers the similarity among the test batch and 
the selected support vectors extracted from the 
training batches, and, since the number of 

training data  with large  is small 
(the fraction of batches having  more than 7 
is 3.75%), the estimation is less accurate. Other 
possible sources of errors in the prediction of the 
number of defective devices are: 
� the output of the model, i.e., the number of 

defective devices in a batch, is an integer 
random variable, whereas PSVR models 
provide in output continuous random 
variables; 

� PSVR assumes that the uncertainty of the 
output can be modeled using a Gaussian 
variable, whereas one of the main sources of 
uncertainty of the model output is the 
number of defective devices in a batch 
which follows a binomial random variable. 

 
Fig. 2. Predicted versus groundtruth number of 
defective devices of the test batches. 

The performance of the developed method 
has been compared to that of classical Support 
Vector Regression (SVR). Table 1 reports the 
values of root mean square error (RMSE) 
obtained by the two methods. It can be noticed 
that the proposed method outperforms the SVR 
method. 

 
Fig. 3. Distribution of the error in the test batches 
without BI relevant failures (green) and with BI 
relevant failures (red). 
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Table 1. RMSE of the methods. 
Model RMSE 
Support Vector Regression (SVR) 1.9391 
Proposed method (PSVR) 1.8586 

 

6. Conclusions 
In this paper, we have proposed a method 

for the prediction of the number of defective 
semiconductor devices in a production batch. 
The proposed method starts with a step of 
feature extraction and selection, which is 
performed using PAA and PCA. In the second 
step, the extracted features are fed to a model 
based on PSVR for the prediction of the number 
of defective devices. 

The method has been applied to synthetic 
data mimicking the statistics of a real burn-in 
process of semiconductor devices. The obtained 
results shows that the proposed method is 
capable of predicting the number of defective 
devices and outperforms another state-of-the-art 
method in terms of RMSE. 

Acknowledgement 
This work has been performed within the iRel40 
European co-funded innovation project, granted by the 
ECSEL Joint Undertaking (JU) under grant agreement 
No 876659. The funding of the project comes from the 
Horizon 2020 research programme and participating 
countries. National funding is provided by Germany, 
including the Free States of Saxony and Thuringia, 
Austria, Belgium, Finland, France, Italy, the 
Netherlands, Slovakia, Spain, Sweden, and Turkey. 

Disclaimer 
The document reflects only the author’s view and the 
JU is not responsible for any use that may be made of 
the information it contains. 

References 
Baraldi, P., Medici, S., Ahmed, I., Zio, E., 

Lewitschnig, H., 2021. A Method Based on 
Gaussian Process Regression for Modelling 
Burn-in of Semiconductor Devices, in: 
Proceedings Ofthe 31st European Safety and 
Reliability Conference. Angers, France, pp. 
2619–2626. 

Clopper, C.J., Pearson, E.S., 1934. The Use of 
Confidence or Fiducial Limits Illustrated in the 
Case of the Binomial. Biometrika 26, 404–413. 

Fisher, G., Seacrist, M.R., Standley, R.W., 2012. 

Silicon crystal growth and wafer technologies. 
Proc. IEEE 100, 1454–1474. 
https://doi.org/10.1109/JPROC.2012.2189786 

Gao, J.B., Gunn, S.R., Harris, C.J., Brown, M., 2002. 
A probabilistic framework for SVM regression 
and error bar estimation. Mach. Learn. 46, 71–
89. 

Hui, Y. V., Lu, W.L., 1996. Cost optimization of 
accelerated burn-in. Int. J. Qual. Reliab. Manag. 
13, 69–78. 

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S., 
2001. Dimensionality Reduction for Fast 
Similarity Search in Large Time Series 
Databases. Knowl. Inf. Syst. 3, 263–286. 

Kuo, W., Kuo, Y., 1983. Facing the Headaches of 
Early Failures: A State-of-the-Art Review of 
Burn-In Decisions, in: Proceedings of the IEEE. 
pp. 1257–1266. 

Lin, C., Weng, R.C., 2004. Simple Probabilistic 
Predictions for Support Vector Regression. 
National Taiwan University, Taipei. 

Liu, J., Seraoui, R., Vitelli, V., Zio, E., 2013. Nuclear 
power plant components condition monitoring 
by probabilistic support vector machine. Ann. 
Nucl. Energy 56, 23–33. 

Sollich, P., 1999a. Probabilistic methods for Support 
Vector Machines, in: Advances in Neural 
Information Processing Systems 12 (NIPS 
1999). 

Sollich, P., 1999b. Probabilistic interpretations and 
Bayesian methods for Support Vector 
Machines, in: IEE Conference Publication, 
Artificial Neural Networks. pp. 91–96. 
https://doi.org/10.1049/cp:19991090 

Vapnik, V.N., 1995. The Nature of Statistical 
Learning Theory. Springer, New York. 

Wood M. H., Muzik A, Huston H. H., R.H., 1993. 
Burn-In, in: Microelectronics Manufacturing 
Diagnostics Handbook. Springer 
Science+Business Media, LLC. 

 


