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Introduction

Imaging flow cytometry (IFC) is a powerful screening technique that combines the
advantages of flow cytometry and optical microscopy (Basiji et al., 2007; Rees et al., 2022). By
capturing microscopy images of the specimens as they move along a liquid stream, IFC
provides high-throughput collection of morphological and spatial information from
thousands or even millions of samples. This makes it a key enabling technology for
screening at the single-cell level, which is fundamental for identifying and characterizing
pathogenic drivers and biomarkers in a cellular population and for understanding
heterogeneity in a biological system.

Imaging flow cytometry can be used at different scales, to study bioparticles such as
extracellular vesicles (Lannigan and Erdbruegger, 2017; Görgens et al., 2019), bacteria
(Power et al., 2021) and cells. It is widely used to study complex tissues, by dissociating the
specimen in single cells (Covarrubias et al., 2019). New imaging systems, combined with
custom microfluidics are opening to the study of entire organisms, including C. Elegans
(Hernando-Rodríguez et al., 2018), Drosophila (Memeo et al., 2021) and zebrafish (Liu et al.,
2017) or organoids (Paiè et al., 2016) in three dimensions.

Imaging flow cytometry is today a tool for biological, drug discovery and clinical
research. It has the potential to transform into a clinical diagnostic method (Doan et al.,
2018), but advancements are needed both in automation and in artificial intelligence to
handle and analyze the large amount of data retrieved by such high-throughput methods. In
this paper we will introduce the typical pipelines for IFC acquisition and processing, and we
will focus on the challenges that artificial intelligence should address to facilitate the
transformation of IFC from a scientific to a medical diagnostic tool.

Data acquisition schemes

In an IFC system, the specimen flows in a capillary and images of the specimen are
rapidly captured by a detector (Figure 1). Illumination of the sample is provided by light
emitting diodes (LED) or lasers (not shown in the figure) in different configurations, which
include transillumination (Basiji et al., 2007), excitation from an angle (Goktas et al., 2019),
structured (Mashayekh et al., 2022) or light-sheet illumination (Gualda et al., 2017). The
samples flow in a simple straight tube, in more sophisticated capillaries, or in lab-on-chip
devices (Paiè et al., 2018). The detection is typically performed with widefield cameras (CCD
or fast CMOS cameras) but single pixels detection methods such as Ghost cytometry (Ota
et al., 2018) or methods encoding spatial information into spectral or temporal codifications
(Wu et al., 2017; Mikami et al., 2018) are showing potential guaranteeing high speed rates,
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good image resolution as well as continuative acquisition modality,
particularly in combination with computational imaging and
machine learning methods (Ota et al., 2020).

Different acquisition modes are adopted in IFC, including
brightfield, darkfield, phase contrast, and fluorescence (Basiji et al.,
2007). Morphological and functional information can be extracted
exploiting these contrast mechanisms; even mechanical phenotyping
can be assessed using in-flow deformability measurements allowing
the quantification of physiological and pathological functional
modifications (Otto et al., 2015; Soteriou et al., 2023).

In fluorescence-IFC, the development of light sheet fluorescence
microscopy (LSFM) has recently opened new possibilities. LSFM uses a
thin sheet of light to excite only the fluorophores within a restricted
focal volume, providing optical sectioning capability to the imaging
system, and uses widefield cameras to record hundreds or thousands of
images of the samples per second. This high acquisition speed and high
collection efficiency have facilitated the development of IFC at
extremely high throughput (Holzner et al., 2021; Ugawa and Ota,
2022), and the implementation of 3D screening methods (Sala et al.,
2020; Vargas-Ordaz et al., 2021), which can even be used to study entire
organisms (Memeo et al., 2021; Bernardello et al., 2022), without
dissociating the tissue in single cells. The adoption and further
development of three-dimensional imaging will likely contribute to
improving the study of proteins localization, co-localization, and to
protein-protein interactions within the entire sample volume.

Among label free IFC stands out Quantitative Phase Imaging
(QPI), as it enhances the acquired sample information, enabling the
acquisition of the optical phase shift induced by the sample, which is
given by both the sample thickness and the optical refractive index
(Bianco et al., 2017). Three dimensional QPI enables decoupling these
parameters and obtaining three-dimensional refractive index

reconstruction, by illuminating the sample along different directions.
Recently, this method has been successfully coupled with microfluidic
sample delivery exploiting the self-rotation of cells in fluids (Villone
et al., 2018; Pirone et al., 2022). However, these developments in
throughput and multidimensional imaging come with an increased
amount of acquired data, opening new challenges in real time and
quantitative image processing.

Real time processing

Computer vision algorithms are routinely used in processing
conventional two-dimensional IFC data. These allow the
identification of the flowing samples, the extraction of signal
from background, and cells segmentation (Pedreia et al., 2013).
Segmentation of isolated single cells in a fluidic system is efficiently
achieved with standard image processing pipelines, based, for
example, on local thresholding and binary morphological
operations. While these approaches work efficiently in two-
dimensional IFC, they become less accurate when considering 3D
data, such as cells aggregates, tissue chunks or entire organisms.

In this context, convolutional neural networks can produce higher
quality results, especially for complex samples, and can be less dependent
on the segmentation parameters chosen by manual operators. Machine
learning models (Henning et al., 2017) are being developed to process
the images rapidly and are becoming the tool of choice for segmentation
in advanced IFC systems. Deep learning opens the way to semantic
segmentation of complex cells or structures, which consists in associating
a label or category to every pixel of the sample image.

Machine and deep learning are increasingly used in IFC, a
number of architectures have been exploited (for a review see

FIGURE 1
Schemeof an imaging flow cytometer with workflow for binary classification. Cells or particles are rapidly flowing in a capillary or in amore advanced
lab on chip that has at least a transparent window for collecting the light emitted or transmitted by the samples. In a typical implementation amicroscope
consisting of high magnification optics (an objective lens and a tube lens are shown) forms the image of the cell/particles at a widefield detector. In other
implementations (e.g., Ota et al., 2018) the images are not directly acquired in space, but a time signal is collected by a single pixel detector while the
samples are passing through a specialized illumination. Artificial intelligence is used to process the images or the time signal, typically to classify the cells/
particles in two (binary classification) or more classes.
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Luo et al., 2021). The need for machine and deep learning tools is
further emphasized by the fact that segmentation is only a
preprocessing step in IFC. Real time sample classification and
labeling is required in the majority of the screening applications,
for different reasons:

(i) In cell sorting devices, the IFC system is used to distinguish a
particular cell type from others contained in a sample on the
basis of a specific label. The cells flowing in a capillary or in a
fluidic chip are physically separated by an actuator that divides
them into multiple batches. Image processing should permit
the labeling in milli to micro-seconds time scales.

(ii) Ideally in a diagnostic system the samples should be classified
into two classes (healthy/unhealthy as in Figure 1) or in
multiple classes, indicating e.g., the state of a certain disease,
the level of inflammation or to identify the presence of
heterogeneities in the tissue.

(iii) In future portable systems and point-of-care devices, the
storage of large amounts of raw data could be critical.
Segmentation, classification, and labeling should be
performed in real time, in order to retrieve and store the
screening results only. However, this requires the
development of very accurate and reliable processing methods.

Deployment of real-time machine learning and deep learning
algorithms is possible in different hardware configurations. While
Central Processing Units (CPUs) and Graphics Processing Units
(GPUs) are well suited for offline operation, prototypes based on
Field Programmable Gate Arrays (FPGA) have shown promising
results for the future development of Application Specific Integrated
Circuits (ASIC), with the potential to allow real time processing in
miniaturized devices with minimal power requirements (Isozaki et al.,
2019a). A possible emerging alternative is the use of System on a Chip
(SoC) that integrates GPU and CPU in the same electronic chip.

The hardware for analyzing IFC data will undoubtedly progress in
the next years, and we do not expect it to be the limiting factor in the
deployment of real-time analysis pipelines. Nevertheless, IFC data
processing opens new challenges related to the robustness of machine
learning and deep learning approaches. Robustness refers to the ability
of an AI algorithm to maintain its performance and accuracy even in
the presence of unforeseen or unexpected input or environmental
changes. In the context of IFC, a robust AI system can handle image
artifacts, optical aberrations, staining variations in cell, low signal-to-
noise ratio, and continues to perform the required tasks reliably and
efficiently. Achieving robustness is important in building all AI
systems, but it is critical in medical diagnosis. We delve here into
two aspects that are, in our opinion, particularly relevant to the
robustness of machine learning and deep learning methods in image-
based flow cytometry: training and standardization.

Training

While the identification (Yang et al., 2018) or compensation
(Guo et al., 2020) of image artefacts and aberrations due to
imperfections of the acquisition system can be corrected with
general purpose machine learning methods, machine learning-
based analysis for imaging flow cytometry starts from building a

training dataset and training a model on that dataset. These steps
rely critically on accurate data annotation.

Manual annotation is the traditional method of labeling data,
but it can be time-consuming in the context of IFC, considering that
a massive amount of data can be acquired. It becomes a labor-
intensive process that limits the scalability of machine-learning-
based approaches to IFC analysis. In addition, manual operators
may not be capable of accurately discriminating healthy from
diseased cells or classifying different cell types and states.
Automating the annotation process is essential for improving
machine learning-based approaches.

Fluorescence imaging can facilitate data annotation, as the
fluorescence signal can often be associated with a particular cell
state, providing a strong supervision that does not require manual
labeling of individual images. This linking of fluorescence to the state
of cells and to the presence of different biomarkers is an available
option, employed in biological screening and clinical research (Refaat
et al., 2022). However, fluorescence has its drawbacks when
considering its use in diagnostics, as it complicates the sample
preparation workflow, and it increases the preparation time
(incubations are needed for cellular staining with fluorescent
markers). This makes it less appealing from a clinical perspective.

Label-free approaches are very attractive, instead. One can
identify protocols where the cells are extracted from a liquid
biopsy, or disaggregated from solid biopsies, and are directly
processed without staining. Brightfield, phase and scattering
measurements offer faster and simpler sample preparation
workflows. Yet, one of the challenges in cell classification from
label free imaging is how to accurately identify and classify a cell
when specific labeling is unavailable.

The observation of cell morphology has a significant potential
for distinguishing between different cell types and states and for
identifying various diseases, being the pilasters of classic cytological
differential diagnosis. This potential is emerging in one field that is
particularly relevant for diagnosis, i.e., automatic screening of blood
samples. Bright-field and dark-field IFC have been implemented to
identify phases in the cell cycle (Eulenberg et al., 2017) and classify
white blood cell types (Nassar et al., 2019; Lippeveld et al., 2020).
Similarly, IFC was used for acute lymphoblastic leukemia
diagnostics, using a residual convolutional neural network (CNN)
architecture (Doan et al., 2020a, Cytometry Part A). Morphology
based identification has also been used to differentiate aggregated
platelets from single platelets and white blood cells with a high
specificity (Jiang et al., 2017). Doan et al (Doan et al., 2020b, PNAS)
used IFC and deep learning to distinguish clinically relevant red
blood cells morphologies associated with cell storage lesions. In the
field, deep learning is expected to be applicable to many other
medical image classification tasks (Rubin et al., 2019).

To avoid manual annotation, researchers have explored
innovative approaches, such as weakly supervised machine
learning models (Zhou, 2018) that can learn to associate IFC
data with macroscopic biological and clinical variables. A notable
example was developed for the diagnosis of Sézary syndrome. The
training was based on the information about the disease state, at the
level of the specimen, which was extracted from the entire collection
of cells images (Otesteanu et al., 2021). Although this approach
requires clear morphological manifestations in the malignant cells,
its generalization is possible. Generalization is facilitated when there
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is a morphological similarity between the specimens used for
training the model and the specimens derived when investigating
a new pathology. Nevertheless, the use of transfer learning methods
could play a substantial role in accelerating the adoption of self and
weakly supervised deep learning that will circumvent the need for
manual labelling.

Standardization

A prerequisite to the development of robust AI pipelines, is the
establishment of standard calibration, acquisition, and processing
protocols. In the field of IFC, these protocols are lacking partially
because the technique is not widely adopted yet and because custom
scientific instruments are constantly developed, employing different
and novel imaging modalities and lab-on-chip devices.

Standardization helps to ensure consistency and reproducibility in
acquisition and processing of data collected across different samples,
experiments, and laboratories. At the same time, establishing
guidelines with consistent steps for sample preparation, image pre-
processing, cell segmentation, feature extraction, and data annotation,
can reduce potential sources of variability and errors. Finally, standard
pipelines provide a reference point for validating and benchmarking
new AI algorithms or for improving the existing ones. In the fields of
flow cytometry and microscopy, two initiatives (Quarep-LiMi and
MIFlowCyt) are supporting the establishment of standardized
guidelines and protocols.

QUAREP-LiMi, Quality Assessment and Reproducibility for
Instruments and Images in Light Microscopy (Nelson et al.,
2021), provides a set of guidelines for assessing the quality and
reproducibility in light microscopy. It covers aspects such as
instrument setup, data acquisition and analysis, and reporting
standards. The aim is to improve the reliability and
comparability of microscopy data across different laboratories.

MIFlowCyt, The Minimum Information about a Flow Cytometry
Experiment (Lee et al., 2008), consists of a set of guidelines that ensure
that critical information is included when reporting a flow cytometry
experiment, such as sample preparation, instrumentation, and data
analysis. The adoption of MIFlowCyt has facilitated the discovery and
reuse of flow cytometry data across different research groups.

The establishment of similar working groups, which involve
scientific, industrial, and medical actors, along with regulatory
bodies, is urgent to initiate the definition of standard guidelines
for calibration, acquisition, processing and use of AI in imaging flow
cytometry and cellular screening. Nonetheless such initiative would
integrate well with the mandate of the National Institute of Health
(NIH) to promote the sharing of scientific data and with the open
science policy of the European Commission.

It is worth noting that the diagnostic decision will not be based on
a single-cell basis but rather by a combination of the single-cell results,
integrating multiple acquisition modalities and even different
experimental techniques. This approach is already emerging in
cytometry and single-cell acquisition techniques (Ashhurst et al.,
2022; Pedersen et al., 2022). Standardization will be crucial in this
context, serving as a prerequisite for correct data integration.

In summary, improving the robustness of AI systems is a critical
challenge that requires the establishment of clear standards and
guidelines for acquisition, processing and AI training. The lack of

standards in IFC can limit the progress in the field, but the initiatives
started in microscopy and flow cytometry could be the optimal
starting point to promote the development of more robust and
reliable data-driven IFC systems.

Conclusion

The integration of AI with cellular screening can revolutionize
the way we analyze and understand cells and tissues, leading to new
discoveries, and improvements in healthcare. In this setting, IFC has
been proved a powerful tool for high-throughput characterization of
biomarkers, with its unique asset of enabling an exhaustive sample
heterogeneity investigation. Moreover, IFC can evolve into a reliable
diagnostic technology that would be a game changer for several
diseases, as in the case of liquid biopsy for tumor diagnosis and
monitoring. With respect to tissue biopsy, which represents the
current gold standard in oncology, it promises non-invasiveness,
rapidity, and automation of the analysis. Indeed, microfluidics and
lab-on-chips offer the advantage of reducing the cost and complexity
of the technology.With high resolution single-cell imagingmethods,
the data extracted from the sample is maximized, meaning that only
small amounts of potentially costly samples are necessary.
Moreover, scale-out (i.e., parallelization) of microfluidic systems
allows for both small-scale, point-of-care implementation, as well as
large-scale, high throughput analyses.

Nevertheless, progress in hardware and software for addressing
these new challenges is under the scientific community magnifying
glass. Machine learning is poised to play a critical role in the analysis
of IFC data, particularly for the segmentation and classification of
complex cellular structures. While there are still challenges to be
addressed, such as the need for more efficient annotation methods
and standardized imaging protocols, the potential benefits of
machine learning and deep learning in IFC are clear and are
likely to drive further advances in this field in the future years.
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