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Abstract. For structural health monitoring (SHM) of civil structures, one needs to 
install sufficient sensors for measuring structural responses and influential 
environmental/operational (E/O) factors. Due to various reasons such as total budgets, 
weather conditions, structure locations, and monitoring target and duration, it may not 
be feasible to install all potential sensors. In order to devise and implement an 
affordable SHM program on large-scale civil structures, this paper proposes a new 
methodology for verifying the sufficiency of contact-based E/O sensors installed in 
long-span bridges by benefiting machine learning and spaceborne remote sensing. 
The main premise of the proposed methodology lies in the fact that structural 
responses obtained from some products of remote sensing allow civil engineers to 
investigate the sufficiency of contact sensors and also analyze the impacts of 
measured and unmeasured E/O factors. Using structural displacement responses 
obtained from remote sensing and limited measured E/O data from contact-based 
sensors, a regression model developed from a supervised artificial neural network is 
designed to evaluate the sufficiency of contact E/O sensors using the R-squared metric 
under three scenarios. Real-world long-span bridges are considered to testify the 
proposed methodology using displacement responses and air temperature data. 
Results demonstrate that the methodology presents an effective and practical strategy 
for affordable SHM programs. 
 
Keywords: Remote Sensing, Machine Learning, Sensor, Environmental/Operational 
Data, Displacement Response, Long-Span Bridge 

1. Introduction 

Long-span bridges are vital civil engineering structures with significant importance in human 
daily life, transportation, and commerce. Compared to other civil structures and even bridges 
with short or moderate spans, long-span bridges are significantly susceptible to weak 
oscillations leading to large vibrations and displacements. On the other hand, such bridge 
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types are more sensitive to environmental/operational (E/O) variability attributable to daily 
and seasonal temperature, wind, and traffic [1-3]. For protecting long-span bridges against 
any catastrophic incidents, structural health monitoring (SHM) systems in terms of contact 
and non-contact sensor platforms are often considered to measure influential parameters such 
as dominant E/O factors and different structural responses. The most applicable contact 
sensors for SHM of civil structures includes accelerometers, strain gauges, displacement 
sensors and crack meters, thermocouples, anemometers, humidity sensors, etc. These sensors 
mainly aim at measuring some prominent structural responses (i.e., acceleration, strain, and 
displacement) as well as dominant environmental factors (i.e., temperature, wind, and 
humidity). Although applications of such conventional sensors are prevalent in SHM, recent 
development in computational algorithms, hardware and software, and data communication 
has enabled civil engineers to benefit next-generation non-contact sensing systems such as 
digital cameras [4], smartphones [5], and satellites [6]. 

Generally, SHM sensing systems can be installed permanently or temporarily. In a 
permanent sensor installation, as its name indicates, installed sensors act as non-structural 
elements of bridges that undertake sensing parameters, which are designed to be measured, 
and transferring sensory data for a long period of operation until those fail. Mostly, this type 
of sensing requires a sophisticated and automated data acquisition system such as wireless 
networks. On the contrary, a temporary sensing system is often installed during a short period 
of time for specific targets. Comparing both systems, one can state that each of them has its 
own pros and cons. A permanent sensor installation allows civil engineers to measure E/O 
and structural parameters in a real-time manner and automatically inspect civil structures 
during long-term monitoring; however, the total costs of permanent sensor deployment may 
be substantial. Moreover, regular sensor inspections, faulty sensor replacement, utilization of 
experts, the lack of exploiting some next-generation sensors and measurement techniques are 
other limitations of this sensing system. On the other hand, although a temporary sensing 
installation needs less costs and attempts, it may loss some important E/O and structural 
parameters that can seriously affect civil structures. Therefore, it is essential to consider an 
operational evaluation and anticipate which sensing system is more beneficial. 

Among different sensing systems, spaceborne remote sensing provides the benefit of 
long-term monitoring programs through images. This is an advantage compared to other non-
contact sensing systems, which may not be feasible to capture vision information (i.e., images 
and videos) during a long period. Typically, some societies such as European Space Agency 
(ESA) access some products of some satellites. In most cases, synthetic aperture radar (SAR) 
images are the most useful information for SHM [7-11]. The primary objective is to extract 
displacements of the civil structure under monitoring via various interferometric techniques 
[12]. The displacement responses at different areas from SAR images are then used as 
engineering features for SHM. These features may be caused by operational loadings (e.g., 
traffic on a long-span bridge), environmental variations (e.g., strong wind, temperature 
fluctuation and distinction), and natural disasters (e.g., earthquakes, floods, etc.) and man-
made hazards (e.g., blasts, accidents, etc.). 

Alongside the loads produced by natural disasters and man-made hazards, which are 
often unmeasurable and sudden, the E/O factors affecting structural responses (i.e., 
displacements) are measurable. However, some restrictions such as structure locations and 
environments, operation conditions, weather, SHM targets, and budgets may not allow civil 
engineers to use all possible sensors for measuring dominant E/O parameters. Regarding 
long-span bridges, some of these factors may not be influential and there is not an engineering 
justification to install some specific E/O sensors. In order to devise and implement an 
affordable SHM program on such complicated structures, it is necessary to develop an 
effective and efficient sensing system by taking advantage of novel computational methods 
such as machine learning. It is a branch of artificial intelligence that exploit data and 
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automated algorithms to learn intelligent models that can perform tasks without explicit 
instructions [13, 14]. Machine learning models are developed for different targets such as 
classification [15], regression [16], anomaly detection [17], and clustering [18]. To fulfill 
these objectives, the method utilizes key algorithms from both supervised learning 
(classification and regression) and unsupervised learning (anomaly detection and clustering). 

This paper is intended to suggest an innovative methodology for evaluating the 
sufficiency of contact E/O sensors mounted on bridges by leveraging machine learning and 
remote sensing technology. The crux of the proposed methodology lies in regression-based 
data prediction via a supervised artificial neural network (SANN) and regression accuracy 
rate in terms of the R-squared (R2) measure. For sensor sufficiency evaluation, three scenarios 
are defined by comparing R2 values of regression modeling with two criteria. On this basis, 
one can interpret whether the installed contact-based sensors for measuring E/O parameters 
are sufficient for SHM of the structure under monitoring or other unmeasured E/O factors 
impacts on structural responses (i.e., displacements) thereby installing or adding further 
sensors. Several important and large bridge structures are considered to validate the proposed 
methodology. Results can confirm the methodology effectiveness and practicability. 

2. Proposed Methodology 

2.1 Regression by Supervised Artificial Neural Network 

The SANN is a feedforward fully connected neural network for the regression problem. It 
entails an input layer, some fully connected (hidden) layers, and an output layer. The initial 
hidden layer connects to the network inputs, while each subsequent hidden layer links to the 
layer preceding it. In each fully connected layer, the input data is multiplied by a weight 
matrix and a bias vector is then added. Following each fully connected layer, an activation 
function is used, excluding the last one, which has one output; that is, predicted response 
values. For simplicity, Fig. 1 shows the graphical schematic of a SANN with an input layer, 
N fully connected layers, and an output layer. To train the SANN, a backpropagation 
algorithm is considered by defining a loss function in terms of the prediction error between 
the measured and predicted response data to estimate the weights and bias values. Stochastic 
gradient descent is also applied to optimize the loss function.  
 

 
Fig. 1. The graphical schematic of the SANN for the regression problem 

Different activation functions can be used to link the network layers. Typically, the 
most practical functions include rectified linear unit (ReLU), hyperbolic tangent (tanh), 
sigmoid, and linear functions [19]. On the other hand, the neuron sizes of the fully connected 
layers are important components of the SANN, which may differ from the input and output 
layers. Unlike these layers with constant neurons compatible with the input and output 
dimensions, the sizes of fully connected layers may be variable. Hence, the main 
hyperparameters of the SANN for the regression problem are the type of activation function, 
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the number of hidden layers (N), and the number of neurons of these layers. In this paper, 
these items are tuned by Bayesian hyperparameter optimization [20]. 
 
2.2 Sensor Sufficiency Metric 

Suppose that x and y refer to the measured predictor and response data, respectively. In this 
paper, the predictor is the recorded temperature data obtained from contact-based 
thermocouples, while the response is the SAR-extracted displacement. Using such 
information, one can train the SANN to predict the response data ŷ. In the regression 
problem, the R-squared (R2) metric is a popular and tried-and-tested measure for evaluating 
the fit quality and accuracy of any regression model. This metric ranges from 0 to 1, where 
0 means no fit and 1 means perfect fit [21]. Mathematically, the R2 function is given by: 

 𝑅! = 1 −
∑ (𝑦" − 𝑦(")#
"$%
∑ (𝑦" − 𝑦*)#
"$%

 (1) 

where 𝑦* denotes the mean of the recorded response data and n is the number of measured 
and predicted points. To define a sensor sufficiency metric, the R2 value regarding the 
measured and predicted response data is compared with two criteria β1 and β2, which are 
scalar values for fixing boundaries. Accordingly, one can derive three scenarios: 
1. If R2≥β1: This means that the measured predictor is the main reason for variability in the 

response data. Hence, the installed contact-based sensor for recording the predictor of 
interest is sufficient. 

 
2. If β2≤R2<β1: This means that although the measured predictor is not the only factor for 

variability in the response data, it may be influential. Nonetheless, installing more E/O 
sensors is required to gain other significant factors. 

 
3. If R2<β2: This means that the measured predictor does not have any strong influences on 

the response data, while other unmeasured predictors are dominant. For this scenario, the 
sensor regarding the measured predictor is not necessary and one should install other E/O 
sensors. 

3. Real-World Examples 

In order to demonstrate the practicability and performance of the proposed methodology, this 
section considers three long-span bridges. In these real-world examples, the measured 
predictor comes from the recorded air temperature measured by contact-based 
thermocouples. Moreover, the measured response is the displacement samples of some areas 
of the bridges extracted from limited SAR images of some satellites. Fig. 2 shows the long-
span bridges as well as the areas for displacement extraction. 
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Fig. 2. Real-world examples: (a) Bridge I, (b) Bridge II, (c) Bridge III 

The first example (Bridge I) is a steel railway bridge with different long spans 
constructed in China for high-speed trains [7]. The primary structure of this bridge was made 
as a continuous steel arch truss. Above the deck, three truss planes are included in the bridge 
arches and the primary truss is equipped with a welded monolithic joint. During April 25, 
2015 to August 05, 2016, 29 SAR images of Sentinel-A1 belonging to European Space 
Agency (ESA) were used to extract limited displacement responses by using a technique 
called Persistent Scatterer Interferometry [7]. The responses were extracted at Piers 1-6 as 
named in Fig. 2(a). Moreover, temperature data during the monitoring period was recorded 
by a temperature sensor. Fig. 3 displays the recorded temperature data as well as the SAR-
extracted displacements of Bridge I. 

 
Fig. 3. Data of Bridge I: (a) Temperature, (b) Displacements at Piers 1-6 

 
Fig. 4. Data of Bridge II: (a) Temperature, (b) Displacements at the bridge arch, (c) Displacements at the 

bridge girder 

 
Fig. 5. Data of Bridge III: (a) Temperature, (b) Displacements at Piers 1-4, (c) Displacements at Girders 1-3 
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The second example (Bridge II) is a steel arch bridge built in China [9]. This structure 
has a total length of 750m; that is, the main span of 550m and two side spans of 100m, see 
Fig. 2(b). The main span has a double box-girder form as open steel box-beams, which were 
joined by open cross-beams. The bridge arch section is a torsionally stiff shape. To 
compensate the significant horizontal thrust of the main girder, both side span arches, i.e., at 
their tips, were equipped with horizontal wires. Bridge II was affected by the geological and 
weather conditions; hence, a field monitoring plan between 2009-2010 was conducted. This 
plan included the use of 55 SAR images of TerraSar-X was to obtain the displacement 
responses at the bridge arch and girder sections. Similar to the previous structure, air 
temperature within the monitoring period was also measured as the main environmental 
factor. Fig. 4 shows the temperature and displacements of Bridge II. 

Finally, the third example (Bridge III) is an arch bridge located in China [9]. The length 
of the main structure of this bridge corresponds to 496.7m including three key spans of the 
lengths 164, 168, and 164.7m as shown in Fig. 2(c). Bridge III entails a rigid arch system via 
a simple supported down bearing flexible tie rod. The deck system consists of a middle cross 
girder made of prestressed concrete, a longitudinal girder with a T-shape and reinforced 
concrete for stiffness, and another T-shaped longitudinal girder. After identifying damage 
patterns, Bridge III was subjected to a long-term SHM program, which made use of 53 SAR 
images retrieved from Sentinel-A1 to monitor the bridge status between April 01, 2015 to 
March 27, 2017 [9]. Under this program, a technique called Multi-Temporal Differential 
Interferometry Synthetic Aperture Radar was applied to extract displacement responses at 
four pier locations (i.e., Piers 1-4) and three spans (i.e., Girders 1-3). Moreover, air 
temperature was recorded during the monitoring scheme as the underlying environmental 
factor. Fig. 5 shows the temperature and displacement responses of Bridge III. 

Table 1. Bayesian hyperparameter optimization of the SANN model for Bridge I 

Bridge components N Neuron sizes 
1st layer 2nd layer 3rd layer 

Pier 1 2 3 2 – 
Pier 2 3 2 2 3 
Pier 3 3 3 1 5 
Pier 4 3 2 6 3 
Pier 5 2 6 8 – 
Pier 6 3 2 6 3 

Table 2. Bayesian hyperparameter optimization of the SANN model for Bridge II 

Bridge components N Neuron sizes 
1st layer 2nd layer 3rd layer 

Arch 2 3 2 – 
Girder 3 2 2 3 

Table 3. Bayesian hyperparameter optimization of the SANN model for Bridge III 

Bridge components N Neuron sizes 
1st layer 2nd layer 3rd layer 

Pier 1 3 42 14 3 
Pier 2 3 3 40 2 
Pier 3 3 22 2 7 
Pier 4 1 48 - - 
Girder 1 1 17 - - 
Girder 2 3 11 8 6 
Girder 3 3 14 13 47 
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The predictor (temperature) and each response are jointed to make the inputs for 
training different SANN models. For this purpose, the ratio of 80%-20% is considered to 
generate the training and test data. Initially, Bayesian hyperparameter optimization is applied 
to determine the numbers of hidden layers (N) and their neuron sizes. In this regard, the initial 
choices for the layer and neuron numbers are set 3 and 50, respectively. The outputs of 
hyperparameter optimization in three bridges are presented in Tables 1-3, respectively. For 
example, the optimized SANN model at Pier 1 of Bridge I requires two hidden layers with 
three and two neurons for the first and second hidden layers. It should be noted that the 
activation function ReLU is used without any hyperparameter optimization for the model 
development. 

Table 4. Sensor sufficiency evaluation for Bridge I by the proposed methodology 

Outputs Pier no. 
1 2 3 4 5 6 

R2 0.9818 0.9753 0.9513 0.9671 0.9578 0.9754 
Evaluation Sufficient Sufficient Sufficient Sufficient Sufficient Sufficient 

Table 5. Sensor sufficiency evaluation for Bridge II by the proposed methodology 

Outputs 
Bridge components 
Arch Girder 

R2 0.8509 0.9223 
Evaluation Sufficient Sufficient 

Table 6. Sensor sufficiency evaluation for Bridge III by the proposed methodology 

Components 
Outputs 
R2 Evaluation 

Pier 1 0.3698 Insufficient – Replace the temperature sensor and add new sensors 
Pier 2 0.1759 Insufficient – Replace the temperature sensor and add new sensors 
Pier 3 0.0635 Insufficient – Replace the temperature sensor and add new sensors 
Pier 4 0.2243 Insufficient – Replace the temperature sensor and add new sensors 
Girder 1 0.5098 Insufficient – Retain the temperature sensor but add new sensors 
Girder 2 0.4878 Insufficient – Retain the temperature sensor but add new sensors 
Girder 3 0.5227 Insufficient – Retain the temperature sensor but add new sensors 

The results of the proposed methodology for sufficiency evaluation of the temperature 
sensors in long-term monitoring of the three bridges are presented in Tables 4-6. For these 
results, the amount of β1 and β2 are set as 0.8 and 0.4, respectively. Accordingly, if R2≥0.8, 
one can infer that the installed temperature sensor is sufficient and variations in the bridge 
displacements are primarily due to air temperature. If 0.4≤R2<0.8, this means that the other 
unmeasured E/O factors affect the displacement responses. Hence, the temperature sensor is 
insufficient and one needs to add further sensors for recording other parameters such as 
humidity, rainfall, wind, and traffic. If R2<0.4, it can be realized that the temperature has the 
lowest influence on the displacement responses and it can be ignored it and installed other 
E/O sensors. Therefore, the outputs in Tables 4-6 reveal that the air temperature is dominant 
in Bridge I and Bridge II, whereas it is not the major predictor for changes in the displacement 
responses of Bridge III. 
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4. Conclusions 

This study has presented an innovative application of machine learning and remote sensing 
technology for an engineering problem regarding SHM of long-span bridges. In SAR-based 
SHM, structural behavior assessment is based on analyzing displacement responses extracted 
from SAR images. Since the E/O conditions are the major causes for variability in bridge 
displacement responses, the choice of all possible contact sensors for recording E/O 
parameters may be challenging. In this paper, an innovative methodology has been proposed 
to evaluate sufficiency of contact sensors. The central core of the proposed methodology has 
concentrated on a SANN model related to the regression problem. Hence, a fully connected 
layer neural network with the feedforward structure has been developed by training data 
including the measured predictor and response data. The main objective has been to 
determine the R2 value between the measured and predicted response data. Three scenarios 
have been defined to interpret the sensor sufficiency. The practicability and reliability of the 
proposed methodology have been verified by three large-scale bridge structures. The results 
of this study have revealed that the proposed methodology is useful for optimal sensor 
selection by benefiting the machine learning paradigm. 
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