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Abstract: The need for energy efficiency in neighborhood-scale architectural design is driven by

environmental imperatives and escalating energy costs. This study identifies three key phases in a

design process framework where machine learning can be applied to optimize energy consumption

in early design stages. The overall framework integrates machine learning tools into the design

workflow, enhancing design exploration from concept level and enabling targeted energy assessments.

This paper focuses on the first phase (Phase 1) of the framework, which employs machine learning

for building energy forecasting using only the few inputs available in a business-as-usual early-

stage design workflow. The CatBoost model was selected for its high accuracy in predicting energy

consumption using minimal input data. A preliminary application to a case study in New York City

showed high predictive accuracy while reducing the input needed, with R2 scores of 0.88 for both

cross-validation and test datasets. Shapely additive explanation analysis validated the selection of

key influencing parameters such as building area, principal building activity, and climate zones. The

test demonstrated discrepancies between the test data-driven model and a physics-based energy

model values ranging from −8.69% to 11.04%, which can be considered an acceptable result in

early-stage design. The remaining two phases, though outside the scope of this study, are introduced

at a conceptual level to provide an overview of the full framework. Phase 2 will analyze building

shape and elevation, assessing the total energy use intensity, while Phase 3 will apply district-level

energy optimization across interconnected buildings. The findings from Phase 1 underscore the

potential of machine learning to integrate energy efficiency considerations into neighborhood-scale

design from the earliest stages, providing reliable predictions that can inform sustainable design.

Keywords: predictive analysis; energy efficiency strategies; data-driven neighborhood design; design

process framework; urban building energy modeling

1. Introduction

The transformation of urban landscapes since the industrial revolution has positioned
cities as major hubs of energy consumption and carbon emissions [1]. Today, urban areas
are home to over half of the global population and are responsible for approximately 75%
of global carbon emissions [2]. With urban populations expected to double by 2050, this
proportion is likely to rise further [3]. Within these urban settings, buildings play a critical
role, accounting for around 40% of total energy consumption and 38% of CO2 emissions
across the European Union [4]. These figures highlight the critical role buildings play in
the global carbon footprint. However, the path to significantly reduce carbon emissions in
urban buildings is complex and fraught with challenges. It requires a detailed understand-
ing of urban energy consumption patterns and the development of strategies to reduce this
consumption. Collaboration among building designers, policymakers, administrators, and
tenants is essential to create and implement effective, cost-efficient measures [1].
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Implementing comprehensive strategies for the heating, cooling, and electricity re-
quirements of communities at a district and city level can lead to substantial reductions in
energy consumption, lower emissions, and enhanced energy reliability. Although there is a
wealth of information on energy-efficient design for neighborhoods and districts [5–11],
current resources primarily focus on building-scale and technology-driven strategies, such
as renewables integration, passive building strategies and dynamic systems integration,
neglecting the specific challenges—and opportunities—of neighborhood-scale sustainable
design. Furthermore, the vast array of tools and instruments available to design practition-
ers is often limiting, due to the lack of a cohesive, streamlined framework to effectively
implement energy reduction strategies at the masterplan and district level. Post-carbon
master planning is a process designed to identify the best combination of energy sources
to fulfill the energy needs of a community over its lifetime. It begins with the setting of
objectives in the initial strategic planning stages and extends into the operational phase,
which includes measurement and verification tasks. However, the holistic approach to
post-carbon design for neighborhoods and districts is complex due to its requirement
to balance both quantitative factors, such as economic and technical considerations, and
qualitative factors, like environmental and social impacts.

Over the past few decades, building performance simulations (BPSs) have become
essential tools for designers, helping them explore a wide range of design options. These
simulations involve many variable parameters, creating a complex, multi-dimensional
design space. Navigating this space requires substantial modeling and computational
efforts, which can increase costs and introduce uncertainties [12]. As a result, the practi-
cality of large-scale applications—such as design space exploration, uncertainty analysis,
sensitivity analysis, and optimization—remains limited. Nonetheless, rapid technological
advancements, particularly in artificial intelligence (AI) and machine learning (ML)-driven
BPS, offer significant new opportunities [13].

AI systems are emerging as key tools for addressing the diverse challenges associ-
ated with urbanization. The European Green Deal [14] highlights the urgent need for
comprehensive policy initiatives to address the climate crisis, emphasizing improvements
in health, quality of life, resilience, and economic competitiveness. It identifies digital
innovations, including AI, as pivotal tools for achieving sustainability targets across vari-
ous sectors [14]. In parallel, the European sustainable investment framework [15] and the
Energy Performance Building Directive recast [16] prioritize energy efficiency within the
built environment. These strategic initiatives aim to lower greenhouse gas emissions and
energy consumption in buildings by 2030, ultimately striving for climate neutrality across
Europe by 2050.

In this scenario, ML techniques have been increasingly applied to enhance energy
forecasting at the building scale, enabling faster and efficient predictions. Recent studies
have demonstrated the potential of ML models in optimizing energy systems [17,18],
addressing challenges such as the predictive maintenance of heating, ventilation and air
conditioning (HVAC) systems [19] and improving the integration of renewable energy
sources [20].

Despite these advancements, there remains a need for integrating ML tools into
existing early-stage design workflows effectively, especially at the neighborhood scale.
While several studies have explored ML models for energy forecasting [21–26], they often
do not address how these tools can be incorporated into the business-as-usual (BAU)
workflows used by practitioners. This highlights the necessity for frameworks that bridge
advanced computational methods and design practices.

To address this gap a novel framework that integrates ML tools into BAU workflows
for neighborhood-scale energy forecasting during early design stages is introduced. The
main objective of this paper is to test the first phase of this framework, demonstrating its
effectiveness through a case study application, and illustrate how it can be integrated into
existing design workflows to enhance energy efficiency considerations from the outset of
neighborhood-scale projects.
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The novelty of this work lies in three main contributions: first, the integration of
machine learning models into early-stage design workflows to facilitate rapid and accurate
energy consumption predictions with minimal input data; second, an innovative use of Cat-
Boost for early-stage energy use intensity (EUI) predictions; third, a data-efficient approach
that facilitates neighborhood-level energy assessments. By focusing on minimal input
requirements, this approach enables practitioners to make informed decisions throughout
the project’s earliest stages, aligning with carbon reduction pathways and sustainability
goals. This framework’s uniqueness lies in (1) its seamless integration into BAU workflows,
ensuring that it adapts to typical input data and operational structures, and (2) its potential
for application across varied design stages.

The remainder of this paper is organized as follows: Section 2 provides a literature
review, identifying current gaps and recent advancements in neighborhood-scale energy
forecasting using machine learning. Section 3 outlines the methodology, including the
rationale for selecting specific variables, machine learning models, and evaluation methods.
Section 4 presents the development of the proposed framework and its integration into
BAU workflows. Section 5 discusses the development of the framework, while Section 6
discusses its application and the testing of Phase 1 through a case study. Section 7 discusses
the results obtained, and Section 8 concludes the paper by summarizing the key findings,
contributions, and potential directions for future research.

2. Literature Review

The appeal of data-driven models lies in their ability to provide fast and reliable
energy consumption information. However, surpassing traditional BPS methods remains
a complex challenge. Despite their promise, these models face significant obstacles in
fully replacing conventional BPS approaches due to entrenched practices and various
field complexities. As data-driven BPSs continue to advance, they still face challenges
such as high computational demands and the risk of overestimating energy savings [27].
Issues like underlying biases and ambiguous data processing also persist. However, recent
research highlights the promise of data-driven tools [28,29], including models like artificial
neural networks [30,31], support vector machines [32,33], and decision trees [34], which
are increasingly used in BPSs [35]. While various researchers have explored different
tools [28,36], simulation techniques, algorithms, and evaluation indicators [27,37,38], a gap
remains in integrating these advanced machine learning models into practical workflows
for neighborhood-scale energy forecasting.

In BPS applications, various methods such as polynomial regression, multivariate
adaptive regression splines, Gaussian processes, support vector machines, and artificial
neural networks are commonly employed. For instance, Romani et al. [39] applied poly-
nomial models to optimize the heating and cooling energy requirements for a low-energy
building in Morocco. Similarly, Cheng and Cao [40] enhanced the prediction of building
energy performance by developing a method that leverages evolutionary multivariate
adaptive regression splines. To assist with design guidance and performance labeling for
passive commercial buildings in hot climates, Rackes et al. [41] utilized support vector ma-
chines. Additionally, Yuan et al. [42] introduced a technique based on Gaussian processes
that simultaneously calibrates and ranks parameters within building energy models.

The integration of AI and ML models into urban BPSs has gained significant attention
recently. Nutkiewicz and Jain [43] examined how physics-based building simulation meth-
ods can be integrated with machine learning techniques, specifically using transfer learning
to assess the impact of retrofit policies on urban structures. Their integrated approach,
known as the Data-driven Urban Energy Simulation, demonstrated its effectiveness in iden-
tifying the energy implications of retrofitting urban buildings. In a similar study, Neumann
et al. [44] explored the feasibility of creating Positive Energy Districts across different urban
typologies in Vienna. Their research emphasized the necessity for comprehensive energy
efficiency measures, electrification, and the incorporation of renewable energy sources
to transform existing buildings. Focusing on large-scale building analysis, Dai et al. [45]
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introduced an innovative methodology that automatically measures building dimensions
from remote sensing data using unsupervised machine learning algorithms. Hey et al. [46]
highlighted the importance of modeling energy retrofits in urban residential buildings
and proposed a concept where carbon valuations inform optimal retrofit solutions. Their
approach combined surrogate models, optimization procedures, and neural networks to
evaluate building performance, offering valuable insights into policy decisions. Addition-
ally, AI-driven models provide detailed analyses of building energy demand [47], clarify
energy dynamics in urban microclimates [48], and categorize unique energy consumption
patterns [49], thereby enabling more informed decision-making. At the same time, as urban
areas increasingly embrace renewable energy sources, data-driven models become indis-
pensable for forecasting, planning, and optimizing energy consumption and distribution.
By utilizing diverse datasets to generate predictions, these models offer valuable insights
into emission levels and consumption patterns within complex urban environments.

A longstanding issue in BPSs (both at building and neighborhood scale) is addressing
the performance gap—the often significant divergence, sometimes up to 30% [50]—between
the anticipated energy performance and the actual energy consumption of buildings. This
gap can arise from several factors, including the use of unsuitable modeling tools [51].
Therefore, selecting appropriate modeling tools and methodologies that are validated for
energy performance modeling is essential, especially with AI-driven tools. Discrepancies
between predicted and actual energy consumption and savings are often linked to chal-
lenges in accurately representing occupant behavior [52], interactions between building
systems [53], uncertainty in model parameters [54], and operational inefficiencies resulting
from low maintenance and issues in the management of building systems [55].

Historically, the limited availability of empirical energy data has posed significant
barriers to validating engineering estimates of potential energy savings in buildings. How-
ever, the growing adoption of energy benchmarking practices [56] has recently led to a
notable increase in accessible building energy data [57]. These datasets offer a real-world
basis for analysis, which is indispensable for validating and refining simulation tools used
in the design and retrofitting of buildings. By utilizing metered data, the analysis gains
a level of precision that hypothetical or averaged datasets cannot provide. This is crucial
for the development of reliable energy performance benchmarks and the establishment
of energy-saving strategies that are both effective and practical. Moreover, the breadth
and depth of those publicly available datasets allow for optimization in the selection of
parameters. With numerous instances—each instance representing individual buildings
with unique characteristics—and a wide array of parameters capturing various aspects of
energy usage and building features, it is possible to tailor a specific data selection process.

In summary, while significant progress has been made in applying machine learning
techniques to building and urban energy modeling, there is a research gap in developing
and integrating ML-based frameworks into existing design workflows for neighborhood-
scale energy forecasting during early design stages. Most existing studies focus on specific
algorithms or applications without addressing how these tools can be seamlessly incor-
porated into the BAU workflows, thus considering the available input data related to the
design stage. Additionally, the potential of leveraging large-scale datasets to enhance ML
models for practical application has not been fully realized. Addressing this gap is crucial
for enabling practitioners to make informed decisions that align with sustainability goals
and carbon reduction pathways.

3. Methodology

The methodology for this study was structured into four distinct phases.
The first step involved the identification of a BAU workflow. This baseline workflow

was developed based on the authors’ experiences and informal interviews with design
firms and professionals in both the European Union and the United States, encompassing
diverse disciplines within neighborhood-scale architectural design.
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In the second step, the research team identified potential areas for improvement and
the opportunities to integrate data-driven tools within the established workflow. This
process was driven by pinpointing stages where data-driven tools could enhance efficiency,
outcome predictability, and design exploration. The integration areas were selected based
on their potential to provide substantial improvements over the traditional methods,
particularly in terms of data processing, simulation capabilities, and information exchange
between different actors.

The third step involved the development of a framework—here introduced at a
conceptual level—detailing how data-driven tools, and, in particular, ML algorithms, can
be applied to the workflow identified in the first phase.

The fourth and final step tested the feasibility of the initial phase (Phase 1) of this
framework with the development of a ML-based tool to optimize massing and functional
program. This involved the development of the necessary code and its application to a theo-
retical case study based in New York City. The new ML-driven approach and the traditional
BAU, focusing on traditional model-based simulations, were then directly compared.

3.1. Data Collection and Preprocessing

To build a robust predictive model for energy consumption, a comprehensive dataset
that captures a wide range of building characteristics was required. In the realm of building
energy consumption analysis, two datasets stand out for their comprehensive coverage and
public availability: the Residential Energy Consumption Survey (RECS) in the United States
and its commercial counterpart, the Commercial Buildings Energy Consumption Survey
(CBECS). These datasets offer an extensive collection of real-world, metered data on energy
use across diverse residential and commercial building typologies. The RECS dataset, a
product of the United States Energy Information Administration (EIA), offers a detailed
account of energy consumption within the residential sector, providing insights into the
energy expenditures and equipment usage of homes across the United States. Similarly,
CBECS yields granular information regarding the energy-related characteristics of commer-
cial buildings, including their energy usage, equipment types, and operational practices.

In order to develop a comprehensive and flexible database for testing the framework,
the two datasets were cleaned and merged into a single one, representing most building
typologies from a geometrical and operational energy perspective. Starting from a deep
analysis of all the parameters, a selection of the most appropriate and relevant parameters
was conducted. The selection of variables was guided by their relevance to energy con-
sumption patterns and their availability across both datasets. Parameters such as building
geometry (e.g., square meters, number of floors), building typology, climate zones, and
energy consumption data were included to ensure that the model captured the essential
factors influencing EUI. The objective of the selection was to represent the buildings’ energy
patterns while reducing the number of inputs needed, thereby enhancing the model’s
applicability in early design stages where detailed data may not be available.

3.2. Machine Learning Models

To identify the most effective ML model for predicting energy consumption, several
models were tested, including Linear Regression, Decision Tree Regressor, Random Forest
Regressor, Gradient Boosting Regressor, and CatBoost Regressor. Deep learning networks,
such as Long Short-Term Memory and Recurrent Neural Network models, were not in-
cluded in this study because they are primarily designed for time-related predictions and
sequential data analysis. Given the focus on static predictions of EUI based on building
characteristics rather than temporal patterns, traditional regression and ensemble methods
were deemed more suitable for this task.

The rationale behind testing these models is based on their unique strengths and capabilities:

• Linear Regression: This model serves as a baseline due to its simplicity and inter-
pretability. It helps to understand the linear relationships between input features and
energy consumption.
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• Decision Tree Regressor: This model is useful for capturing non-linear relationships by
splitting the data into subsets based on feature values, providing a straightforward
interpretation of decision rules.

• Random Forest Regressor: As an ensemble method, it combines multiple decision trees to
improve prediction accuracy and reduce overfitting. It is robust to noise and captures
complex interactions between features.

• Gradient Boosting Regressor: This model builds an ensemble of weak prediction models,
typically decision trees, in a sequential manner. It optimizes model performance by cor-
recting errors from previous iterations, making it highly effective for complex datasets.

• CatBoost Regressor: This advanced gradient boosting algorithm is specifically designed
to handle categorical features without extensive preprocessing. It offers high accuracy,
efficient training, and robustness to overfitting, making it well suited for energy
consumption prediction tasks.

3.3. Model Training and Evaluation

All the models were tested on the full dataset, with a train–test split of 80%-20%,
meaning the models were trained on 80% of the data and tested on the remaining 20%. Hy-
perparameter tuning was conducted for each model using grid search and cross-validation
techniques.

For example, for the CatBoost Regressor, parameters such as the number of iterations,
learning rate, depth, and L2 regularization coefficient were optimized. The final selected
parameters are as follows:

• CatBoost Regressor: iterations = 1000, learning_rate = 0.03, depth = 6, l2_leaf_reg = 3.0.
• Gradient Boosting Regressor: n_estimators = 100, learning_rate = 0.1, max_depth = 3,

alpha = 0.9.
• Random Forest Regressor: n_estimators = 100, max_depth = None.
• Decision Tree Regressor: max_depth = None.
• Linear Regression: default parameters.

After evaluating the performance of these models using cross-validation and multiple
error metrics—including R-squared (R2), Mean Absolute Error, and Root Mean Squared
Error—it has been observed that all metrics consistently identified the CatBoost Regressor
as the most accurate and reliable model. For simplicity and ease of interpretability, and
since all metrics yielded the same conclusion regarding the best-performing model, it has
been opted to present only the R2 scores in the results. The CatBoost Regressor achieved the
highest R2 scores for both the cross-validation and test datasets, demonstrating its ability
to capture the complexities of urban energy consumption patterns. Specifically, it achieved
an R2 score of 0.88, a Mean Absolute Error of 81,683 kWh, and a Root Mean Squared Error
of 315,960 kWh.

Recognizing the necessity for computationally efficient modeling, the computational
time required by the CatBoost Regressor has been evaluated. While a detailed time com-
parison with traditional physics-based modeling tools is complex and beyond the scope
of this paper, it is reported that the CatBoost Regressor achieved notable computational
efficiency with a training time of 2.61 s. This demonstrates the model’s capability to provide
rapid predictions, highlighting its suitability for early-stage design processes where a quick
turnaround is essential.

In summary, this study employs several advanced machine learning and simulation
techniques to analyze and optimize neighborhood-scale energy consumption. Specifically,
SHapley Additive exPlanations (SHAP), CatBoost Regressor, Grasshopper, and Honeybee
were utilized, each serving distinct roles within the framework. SHAP provides inter-
pretability to the machine learning models by attributing the output predictions to input
features, thus helping us understand the impact of each feature on the energy consumption
predictions [58]. CatBoost Regressor, a gradient boosting algorithm that handles categorical
features efficiently, was chosen for its high predictive accuracy and robustness, making
it suitable for energy consumption modeling [59,60]. Grasshopper and Honeybee, which
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are plugins for the Rhino environments, were employed for their powerful capabilities in
parametric design and energy modeling [61–64]. Grasshopper facilitated the creation of
complex geometrical configurations and parametric variations, which were then analyzed
for their energy performance using Honeybee. Honeybee leveraged an EnergyPlus engine
to perform detailed energy simulations, providing us with granular insights into the energy
dynamics of different building designs.

The results from this case study provided critical insights into the improvements
offered by the phase, highlighting the framework’s potential to integrate energy efficiency
in urban planning from the earliest design stages.

4. Workflow Identification

The effective integration of advanced digital technologies into architectural and urban
design practices depends on their seamless incorporation into the established workflows
of designers operating at the district and neighborhood levels. Notably, the growing
preference for data-driven methodologies [65] aligns with the broader adoption of such
technologies across diverse industries. This widespread uptake is largely due to their
intuitive usability and ability to complement existing practices without disrupting tradi-
tional workflows.

A standardized workflow was identified based on expert judgment and interviews
with professionals, as illustrated in Figure 1 and detailed in Table 1. Data-driven analysis
played a pivotal role throughout the process, from initial planning stages to construction,
with its impact being most pronounced during the early-stage design phase.

Figure 1. “Phases of the building design lifecycle—Each phase is depicted with a distinct color to

denote the corresponding phase, while the circle dimension indicates the level of influence on the

project’s energy efficiency and sustainability outcomes” (adapted from [66]).

The BAU workflow [66] highlights specific stages, particularly during the early design
phases, where the integration of data-driven tools can offer significant benefits. These early
stages often involve frequent iterations among various teams and professionals, increasing
the risk of errors and information loss. Such challenges present key opportunities for
embedding digital tools into the process. The proposed framework promotes a holistic
approach, positioning digital tools as integral to the design workflow. It underscores
the value of iterative feedback loops, collaborative engagement with stakeholders, and
adaptability to diverse project scales and typologies.

Table 1 shows in more detail the highlighted portion of the workflow (Briefing to
Technical Design), defining the areas in which the proposed framework could be integrated.
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Table 1. Business-as-usual detailed workflow.

Design Phase
Client and Other

Stakeholder
Other Disciplines

Sustainability
Expert

Energy Modeler
(Envelope)

Energy Modeler
(Systems)

Briefing Brief Definition
GEA */GFA **
Definition

Set Up Masterplan
Concept

Schematic Design
Design Basis and
High-level
Specifications

Define the
Regulatory Regime
Preliminary
Energy Use
(Milestone 01)

-

Concept Design Validate the
Building Concept

Define the General
Building Envelope
Components
Run Solar
Radiation Analysis

Define Thermal
Zones and
Conditioned
Spaces
Collect Data on the
Producibility of the
PV System

Create Building
Massing Model
(Milestone 02)

System Definition

Spatial
Coordination

Specific
Requirements for
the PV System

Collect Total
Length of
Distribution Pipes
Extract the Air
Flow Rates
Air Handling Units
Color Plan
Run Detailed PV
Producibility
Analysis

Define Building
Schedule and
Diversity Rates
Collect
Information about
Systems at
Building Scale
Collect
Information about
Air Flow Rates at
Building Scale
Collect Lighting
Loads at Building
Scale
Collect
Information about
Urban Scale
Systems

Extract PV
Production
Monthly Data

Set Up the Plant
System
Configuration
Input Lighting
Loads
Input HVAC
Information
Input Air Flow
Rates
Input Producibility
of PV System
Energy Code
Compliance Check
(Milestone 03)

Technical Design - Mechanical
Schedules

Clash and
Interference Check
(Milestone 04)

Performance
Indices Check
System Efficiency
Check

Heating and
Cooling Thermal
Performance Index
Global
Performance Index
Renewable
Coverage

* Gross External Area; ** Gross Internal Area.

5. Framework Development

In this context, integration techniques refer to the synthesis of data flows and modeling
processes, creating a cohesive approach to neighborhood-scale design. The rise in machine
learning and data-centric methodologies marks a significant evolution in the BAU workflow,
offering notable advancements across the field.

The proposed framework—illustrated in Figure 2 and elaborated in Table 2—introduces
the application of three distinct machine learning algorithms to optimize the workflow
while preserving the rigor of various assessments. This framework is built on the premise
that each project generates unique data streams. Consequently, adopting a layered machine
learning strategy enables the selective application of specific components of the model as
needed, avoiding the necessity of completely restructuring the existing workflow.



Buildings 2024, 14, 3866 9 of 23

Figure 2. Framework definition.

Table 2. Framework phases and applications.

Phase Use Case Inputs Outputs

Phase 01—Concept Level

Service for policymakers, urban
planners, developers and energy
providers to understand the overall
energy requirements of a masterplan.

Climatic data
Building typology
Building morphology

Overall energy consumption
predictions
Identification of critical needs
Potential environmental and
economic issues

Phase 02—Building Level

Service (or internal use) for architects
for early-stage project optimization
and for developers for defining
building development rules.

Building geometry
Environmental inputs

Detailed energy usage
predictions
Optimization
recommendations

Phase 03—Masterplan Level

Service for designers, urban planners,
and energy providers to understand
urban scale energy consumption and
develop active strategies.

Multiple building data
Urban layout
Energy systems data

Comprehensive energy
consumption analysis
Urban energy strategies
System efficiency
recommendations

In the initial phase, related to the concept level (Phase 1), the integration of machine
learning can impact the schematic design stage by rapidly synthesizing and interpreting
vast datasets to identify optimal design configurations (overall strategy) and energy needs
(building scale). This can lead to a reduction in design time and enable a more informed
decision-making process regarding the building envelope’s performance characteristics.

5.1. Phase 1—Concept Level (ML01): Preliminary Analysis and Data Synthesis

At the outset, Phase 1 serves as the foundational stage, specifically at the Briefing stage,
where the initial machine learning algorithm is deployed to analyze building morphology
and typology. This phase harnesses architectural principles and standards to set baseline
models for various building classes. Integration of weather data aids in understanding
the impacts of seasonal and regional variations on energy consumption. Simultaneously,
benchmarks from datasets like CBECS and RECS establish industry standards for assessing
building performance.

This synthesis of data enables preliminary energy consumption predictions, setting a
conceptual benchmark that will be further refined.
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5.2. Phase 2—Building Level (ML02): Detailed Building Analysis

Advancing to Phase 2, machine learning refines the massing and establishes the basis
for urban models by predicting the effects of design modifications, thereby enhancing
sustainability and energy efficiency. This phase introduces specific physical parameters—
building footprint and height—crucial for calculating the building’s EUI. Further analysis
incorporates the surface-to-volume ratio, significantly influencing thermal performance and
energy consumption, thus providing an overall understanding of building energy demands.
This phase of the framework is not meant to substitute traditional energy modeling tools
and, therefore, is not supposed to accurately describe all the typical building properties
used in a simulation—that would require many additional inputs.

Rather, it is designed to be integrated into existing workflows, specifically during
the Concept Design and Spatial Coordination stages, to provide quick insights into urban
energy that inform preliminary design decisions and help streamline the early stages of
the project.

5.3. Phase 3—Masterplan Level (ML03): Urban-Scale Energy Modeling

Transitioning to Phase 3, the focus expands to the urban scale, employing data-driven
methodologies to evaluate building schedules, loads, and system performance compre-
hensively. This phase offers real-time insights into energy consumption patterns and
identifies potential inefficiencies across multiple buildings. The total EUI, assessed in
conjunction with the diversity rate, reflects variations in building function and occupancy,
enriching the analysis with technical assumptions that capture a wide array of design and
operational factors.

The outcome is a sophisticated model depicting the masterplan’s energy profile.

5.4. Phase 4—Optimization: Final Optimization

In the final phase, insights from prior analyses are integrated to establish a robust
optimization strategy. This phase incorporates a feedback mechanism attentive to seasonal
load variations and refines technical assumptions about building operations. The resulting
comprehensive strategy not only enhances energy efficiency but also supports sustainable
design and policymaking decisions. The integration of these insights culminates in a
pragmatic framework designed to optimize energy consumption and support sustainability
objectives across urban developments.

Each phase of this framework builds progressively, ensuring that every level of analysis
contributes to a more energy-efficient and sustainable urban environment.

5.5. Integration and Iterative Refinement

Throughout all phases, the framework emphasizes iterative refinement and integration.
As each phase feeds into the next, the ML algorithms learn and adapt, continually refining
the predictive accuracy of the model. This iterative process ensures that the model remains
dynamic and responsive to new data and changing conditions, ultimately culminating in
an optimized design that aligns with contemporary sustainability standards and practices.

In order to develop a comprehensive and flexible database for testing the framework,
the two datasets have been cleaned and merged into a single one, representing the most
building typologies from a geometrical and operational energy perspective. Starting from a
deep analysis of all the parameters, a selection of the most appropriate and relevant has
been conducted. The objective of the selection is to represent the buildings’ energy patterns,
while reducing the number of inputs needed. Table 3 represents the merging operation on
the cleaned datasets.
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Table 3. CBECS and RECS data merging.

CBECS 2018 RECS 2020 Merged Dataset Description

PUBCLIM BA-climate PUBLICM ASHRAE climate zone
REGION REGIONC REGION Census region
NFLOOR STORIES NFLOOR Number of floors

BTU KWH TOTALKWH
Total energy consumption
(yearly)

SQFT SQFTEST SQM Total area
WINTYP TYPEGLASS WINTYP Window glass type
RENWIN ORIGINWIN RENWIN Windows upgrade

PBA TYPEHUQ PBA Principal building activity
HDD65 HDD65 HDD65 Heating degree days (base 65)
CDD65 CDD65 CDD65 Cooling degree days (base 65)

YRCONC YEARMADERANGE YRCONC Year of construction
WLCNS WALLTYPE WLCNS Wall construction material
RFCNS ROOFTYPE RFCNS Roof construction material

RENINS ADQINSUL RENINS Insulation upgrade
FUEL FUELHEAT FUEL Main space heating fuel

WKHRSC - WKHRSC Weekly working hours

To merge the datasets, overlapping parameters between CBECS and RECS were first
identified and harmonized. Each parameter was matched based on its relevance and
representation in both datasets.

The merging process involved standardizing units, resolving discrepancies in parame-
ter definitions, and addressing missing values through statistical imputation techniques.
The merged dataset is structured as follows:

• Location and Geographic Information (ASHRAE climate zone, census region, BA-climate,
heating degree days, cooling degree days): Both RECS and CBECS contain parameters
related to the geographic location of the buildings surveyed, including region, state,
and sometimes urban or rural classification. This information can be critical for
understanding and analyzing energy usage patterns due to climatic, cultural, and
infrastructural differences.

• Building Characteristics (number of floors, total area, principal building activity, year of
construction, window glass type, wall construction material, roof construction material): Key
parameters include the age of the building, size in square footage, number of floors,
typology, and building characteristics. These factors are vital as they directly influence
the building’s thermal properties and, consequently, its heating and cooling demands.

• Heating, Ventilation, and Air Conditioning Systems (main space heating fuel, weekly working
hours): Parameters cover the types of heating and cooling systems present, fuel types
used (such as electricity, natural gas, fuel oil), and the working hours of the building.

• Energy Use (total energy consumption): This category includes detailed metered data
on annual energy consumption. These parameters are critical for assessing energy
performance and identifying savings opportunities.

• Renovation Features (insulation upgrade, windows upgrade): Parameters that capture the
presence of renewed insulation and or windows. These factors, related to the year
of construction and the building characteristics, are useful to assess the uptake and
impact of these technologies on overall energy consumption and carbon emissions.

Weather-related parameters were selected due to their significant impact on heating
and cooling demands, while home characteristics such as the building’s age and wall type
were chosen for identifying specific energy consumption patterns in similar buildings.
Moreover, these parameters have implications on retrofitting potential and energy effi-
ciency improvements. The inclusion of high-level HVAC system information is crucial
to understand and potentially optimize energy consumption patterns, thus influencing
performance assessment.
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By leveraging the selected parameters, designers and stakeholders can gain valuable
insights into the energy and carbon implications of their design choices. Despite the
rigorous data selection process, challenges such as data gaps, regional discrepancies, and
the exclusion of certain parameters were acknowledged. Efforts were made to ensure a
balanced representation of various building types and climates to mitigate these issues.

6. Framework Application and Testing

As described in the previous sections, this paragraph is going to test the applicability of
Phase 1. This first step of the framework stands on several technical assumptions intrinsic
to the dataset and the modeling techniques used. The primary technical assumptions
include the following:

• Data Integrity: It is presumed that the dataset is representative of the broader pop-
ulation of commercial buildings and that the data collection process was devoid of
systematic bias.

• Conversion Factors: The conversion of energy units from kBTU to kWh and square
footage to square meters is based on standard conversion factors, assuming no loss of
information.

• Statistical Fill: Missing values within the dataset are filled with zeros, under the
assumption that they correspond to non-usage or unreported data, which does not
distort the overall energy consumption profile.

• Variable Selection: The choice of variables to keep in the dataset is driven by domain
knowledge, considering factors such as climate, region, primary building activity, year
of construction, and energy consumption across multiple sources.

The simulation process commences with data preprocessing, where the dataset is
refined to include only the most pertinent variables in the analysis. The simulation process
began by combining the two selected datasets, CBECS and RECS, as described previ-
ously. Initial data visualization, using histograms and heatmaps, helped us understand
the distribution of energy consumption and identify inter-variable relationships. Out-
lier detection algorithms were employed to identify and exclude anomalous data points
that could negatively impact prediction accuracy. Specifically, the combined data were
normalized—removing outliers—based on the EUI metric (measured in kWh/m2). Any
data points that fell outside 1.5 times the interquartile range were excluded. This step
mitigated the influence of anomalous observations that could skew the predictions, without
oversimplifying the dataset. The original dataset consisted of 24,932 rows, and 22,865 after
the initial data cleaning.

Figure 3 illustrates the EUI distribution in the combined dataset. On the left is the
original distribution, and on the right is the cleaned one, consisting of 22,865 measurements
(against the 24,932 measurements of the original combined dataset). The frequency de-
creased from approximately 1400 to 1200 due to the removal of outliers, which were data
points falling outside 1.5 times the interquartile range. This cleaning process helped ensure
that the dataset better represented typical energy use patterns, improving the accuracy of
subsequent predictive modeling.

After a first dataset normalization phase, the code analyzes linear correlations be-
tween the selected parameters. The heatmap in Figure 4 shows the correlation matrix
for the filtered dataset. These attributes reflect commercial and residential building char-
acteristics and their relationship with energy consumption, measured in kilowatt-hours
(TOTALKWH) and the total building area in square meters (SQMs). The color scale, ranging
from dark blue to dark red, indicates the strength and direction of the correlations. Dark
red represents a strong positive correlation, while dark blue indicates a strong negative
correlation. Significant correlations are evident between several pairs of variables. The
size of the building, represented by SQMs, shows a strong positive correlation with energy
consumption (TOTALKWH). Variables like insulation upgrade (RENINS) and window
upgrade (RENWIN) show a strong positive correlation with each other, indicating that
renovations often occur together as part of comprehensive retrofit projects aimed at im-
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proving energy efficiency. However, they do not show a significant correlation with total
energy consumption.

Figure 3. EUI distribution in the combined dataset. On the left is the original distribution, and on the

right the cleaned one, consisting of 22,865 measurements.

Figure 4. Heatmap showing the correlation matrix for selected building attributes. The color scale

ranges from dark blue to dark red, representing the strength and direction of the correlations.

These relationships are critical for both designers and energy modelers as they seek to
identify factors that most influence energy use in buildings. Understanding these correla-
tions can lead to more accurate energy models and targeted energy efficiency measures.

After this initial step, various machine learning models, including the Linear Regres-
sion, Decision Tree, Random Forest, Gradient Boosting, and CatBoost Regressor, were
compared to predict energy consumption. The selection of the most predictive and general-
izable model was informed by cross-validation and R-squared metrics. All models were
trained on 80% of the dataset and tested on the remaining 20%.

Table 4 provides a comparative evaluation of the performance of various ML models
used to predict energy consumption. The models are assessed using the R2 metric for both
cross-validation and test datasets reflecting how well each model captures the variance in
the data.
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Table 4. ML models’ performance comparison.

ML Model Cross-Validation R2 Test R2

Linear Regression 0.57 0.52
Decision Tree Regressor 0.54 0.56
Random Forest Regressor 0.75 0.75
Gradient Boosting Regressor 0.76 0.75
CatBoost Regressor 0.88 0.88

The Linear Regression model shows modest predictive performance, with an R2 score
of 0.57 for cross-validation and 0.52 for the test dataset. This indicates that the model
captured just over half of the variance in the energy consumption data but struggled with
more complex relationships due to its linear nature.

The Decision Tree model achieved a similar performance to linear regression, with R2

scores of 0.54 and 0.56 for cross-validation and test datasets, respectively. While decision
trees can handle non-linear relationships, this model may have overfitted on certain features,
leading to moderate predictive accuracy.

Random forests, a type of ensemble model, demonstrated significant improvement
in predictive performance, achieving an R2 score of 0.75 for both cross-validation and test
datasets. This model excels at handling data complexity and generalizes well, leading to
better predictions.

Similarly to random forests, gradient boosting also uses an ensemble approach but
builds models sequentially to correct previous errors. With R2 scores of 0.76 and 0.75 for
cross-validation and test datasets, respectively, it indicated strong predictive capabilities.

The CatBoost Regressor achieved the highest R2 scores, 0.88 for both cross-validation
and test datasets, demonstrating the best predictive accuracy. CatBoost is particularly
effective at handling categorical features and reducing overfitting, making it an effective
choice for energy consumption prediction.

The performance comparison suggests that ensemble models, particularly the Cat-
Boost and Gradient Boosting Regressors, provided the most accurate predictions. The
results indicate that using advanced ensemble techniques significantly improves predictive
performance over simple models like Linear Regression or Decision Trees. However, as
shown in Figure 5, it is evident that buildings with lower energy consumption are better
represented by the model.

Figure 5. Scatter plot of test set versus predicted values showing the performance of the machine

learning model. The diagonal line represents perfect predictions, indicating the model’s accuracy.
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The scatter plot graph in Figure 5 illustrates the relationship between predicted and
actual energy consumption values across a test dataset. The X-Axis (True) represents the
actual, observed energy consumption values, while the Y-Axis (Predicted) represents the
predicted energy consumption values using the model developed. The black dashed line
running diagonally represents the line of perfect prediction, where each predicted value
matches exactly with its corresponding actual value. If the model was perfectly accurate,
all data points would fall directly on this line. The individual blue dots represent each
building or entity in the dataset. Most of these points cluster closely around the perfect
prediction line, indicating that the predictive model performs reasonably well, with many
predictions being quite accurate. A few data points deviate significantly from the line,
which may be due to various factors such as irregular building characteristics, extreme
weather variations, or inaccuracies in the input data.

The spread of points widens as energy consumption increases, suggesting a higher
variance in predictions at larger consumption scales. Despite some deviations, the overall
trend closely aligns with the perfect prediction line, showing a positive linear relationship
between actual and predicted values. This indicates that the predictive model captured the
general pattern of energy consumption reasonably well.

In summary, the scatter plot offers a comprehensive view of the model’s performance.
While it shows some inconsistencies, the proximity of most points to the perfect prediction
line indicates that the model is largely effective, providing useful predictions for energy
consumption with a reasonable degree of accuracy.

The visual comparison between actual and predicted energy consumption in the bar
graph (Figure 6) offers a clear representation of model performance in predicting building
energy use. The blue bars represent the actual energy consumption values, while the orange
bars depict the model’s predictions for each corresponding instance in the test dataset. The
model captures the general trend of energy consumption across the dataset; however, there
are noticeable disparities between the actual and predicted values in specific instances.

Figure 6. Comparison of actual versus predicted energy consumption values (in kWh) for the test

dataset. The blue bars represent actual values, while the orange bars represent predicted values,

illustrating the model’s performance and accuracy in predicting energy use.

These disparities could be due to the model’s inability to capture some of the more
complex patterns within the data or to unexpected anomalies that were not represented
in the training set. The sharp peaks and troughs in energy usage suggest that the model
performs well in lower ranges of energy consumption but may struggle with accurately pre-
dicting higher consumption values. This discrepancy could indicate the presence of outliers
or extreme values in the test data that were not well represented in the training phase.
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The SHAP summary plot provided in Figure 7 visualizes the impact of each feature
on the CatBoost model’s output. This plot is a tool for interpretability, explaining the
prediction of a machine learning model in a more understandable way. In the plot, each
point represents a SHAP value for a feature and an instance. The position on the horizontal
axis indicates the impact of the feature on the model’s prediction. Features are stacked
vertically in descending order of importance, with SQM at the top, indicating it as the
most impactful feature. The color represents the feature value from low to high (from pink
to blue), providing insight into how the value of the feature impacts the prediction. For
example, higher values of SQM tend to push the model prediction higher, which can be
seen as many blue points have positive SHAP values.

Figure 7. SHAP summary plot illustrating the impact of various features on the model’s predictions

for energy consumption. The horizontal axis represents the SHAP value, indicating the influence of

each feature on the model’s output. Features are ranked in descending order of importance.

Several observations can be made from this plot:

• Square Meters (SQM): As the most influential feature, higher values lead to sig-
nificantly higher SHAP values, suggesting that larger buildings tend to consume
more energy.

• Primary Building Activity (PBA): This feature shows a mix of positive and negative
impacts, indicating that building use cases (such as office vs. residential) affect energy
consumption differently.

• Number of Floors (NFLOOR): Higher building stories tend to have higher SHAP
values, indicating greater energy use.
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• Working Hours (WKHRSC): A longer working schedule correlates with increased
energy consumption.

• Heating Degree Days (HDD65), Cooling Degree Days (CDD65), and ASHRAE Climate
Zone (PUBCLIM): These parameters contribute to energy demand, with higher values
indicating a greater need for heating or cooling. PUBCLIM is more balanced—closer
to the 0 axis—and can be used for both heating and cooling analysis.

• Insulation upgrade (RENINS) and window upgrade (RENWIN) have varying impacts,
possibly due to the clustering of renovations in retrofitting projects.

The SHAP analysis results align with the proposed framework, therefore confirming
the knowledge-based hypotheses and emphasizing the significant influence of specific
features on predicting building energy consumption. This observation correlates with
the conceptual structure outlined in Phase 1, which emphasizes these key parameters in
understanding the overall energy consumption at concept level.

After validating the initial findings, the same ML model was applied using only the
four most influential parameters identified in the framework, as shown in Table 5. This
focused approach yielded consistent results, demonstrating the framework’s first phase
effectiveness in accurately modeling energy consumption.

Table 5. Final dataset with reduced inputs.

TOTAL KWH SQM PBA NFLOOR PUBCLIM

1 5.09 × 105 2601.284 3 5 4

2 1.54 × 104 195.0963 6 1 4

3 9.36 × 105 22,296.72 0 1 5

4 1.37 × 106 27,406.385 0 1 3

5 1.16 × 106 8732.882 5 2 3

6 5.88 × 105 3809.023 5 2 5

7 1.14 × 106 11,334.166 0 2 2

8 8.76 × 105 8918.688 4 1 2

12 6.43 × 105 2833.5415 3 3 3
. . .

22,503 5.88 × 104 743.224 5 1 4

The reduced dataset, which focuses on the key parameters identified by the framework
and the SHAP analysis, includes four primary inputs: SQM, PBA, NFLOOR, and PUBCLIM.
These features were selected due to their significant impact on energy consumption as
observed in previous analyses.

The results, as illustrated in Figure 8, obtained from using this reduced dataset, demon-
strate the effectiveness of prioritizing these parameters. The R2 value on the validation
dataset was 0.8691, and on the test dataset, it was 0.8435. This high predictive accuracy
confirms that these four parameters were instrumental in forecasting energy consumption.
Notably, the feature importance ranking shows SQM as the dominant factor, accounting
for 62.74% of the influence, followed by PBA (16.59%), NFLOOR (11.02%), and PUBCLIM
(9.65%).

This simplified yet accurate model demonstrates that carefully selecting key features
allows for precise predictions without compromising computational efficiency. Such stream-
lined analysis supports data-driven decision-making in neighborhood-scale planning and
energy optimization, providing an effective tool for architects, engineers, and policymakers.

Lastly, the predictive model was tested against a BAU energy modeling approach
using Grasshopper and Honeybee. This test involved a model comprising four mixed-use
test case buildings located in New York City. To evaluate the predictive model’s accuracy
and robustness, various configurations were applied by altering the buildings’ dimensions
and functions. This process generated a total of nine distinct configurations, as illustrated
in Figure 9.
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Figure 8. Comparison of actual vs. predicted energy consumption in the reduced inputs dataset.

Figure 9. Different buildings cluster configuration. Each color represents a function.

After running the model, the calculated energy consumption values were compared
with those predicted by the Grasshopper-based BAU energy model.

The percentage differences between the calculated values and the modeled values are
displayed in Table 6. The results show deviations ranging from −8.69% to 11.04%, with the
majority of errors staying within a relatively narrow range. These discrepancies highlight
the predictive model’s performance and its potential to provide energy consumption
estimates that align closely with the BAU model.

The findings support a nuanced application of machine learning in energy prediction,
highlighting the importance of guarding against overfitting and advocating for an iterative
approach to model training and testing. By evaluating multiple models and assessing
their performance across various metrics, this study ensures that the selected model not
only captures the underlying patterns in the data but also generalizes effectively to new,
unseen scenarios.
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Table 6. Comparison between BAU energy modeling and ML modeling.

GH [kWh] ML01 [kWh] Error [%]

Prop 1 158.79 152.06 4.24
Prop 2 148.54 161.45 −8.69
Prop 3 180.33 160.42 11.04
Prop 4 160.12 161.26 −0.71
Prop 5 159.56 158.80 0.48
Prop 6 181.74 178.20 1.95
Prop 7 155.19 155.09 0.06
Prop 8 149.55 162.15 −8.43
Prop 9 169.54 152.99 9.76

The results demonstrate the model’s potential for practical application in neighborhood-
scale energy consumption analysis while underscoring the importance of continual testing
and validation against traditional methods. This approach allows designers to incorporate
data-driven predictions into their workflows more confidently.

7. Discussion

This study investigated the feasibility of integrating ML tools into early stage neighborhood-
scale energy forecasting within business-as-usual, BAU, design workflows. By focusing on the
first phase (Phase 1) of the proposed framework, the research focused on predicting building
energy consumption using minimal input data typically available during the early design stages.

The results demonstrate that the CatBoost Regressor, an ensemble ML model, effec-
tively predicts energy consumption with high accuracy. Specifically, the model achieved
R2 scores of 0.88 for both cross-validation and test datasets, indicating a strong ability to
capture the variance in energy consumption based on limited inputs. This high level of
predictive performance confirms the first objective of the study: to facilitate rapid and
accurate energy consumption predictions using minimal input data.

The SHAP analysis further validated the framework by identifying the most influential
features impacting energy consumption predictions. The key parameters—SQM, PBA,
NFLOOR and PUBCLIM—were shown to significantly influence the model’s output. By
reducing the dataset to these four parameters, the model still maintained a high predictive
accuracy (R2 of 0.84 on the test dataset). This finding underscores the efficacy of the
proposed framework in simplifying input requirements without compromising accuracy,
aligning with the goal of making the tool practical for early-stage design workflows.

When applied to a hypothetical cluster of buildings in New York City, the model’s
predictions closely matched those of traditional physics-based energy modeling tools
(Grasshopper and Honeybee), with discrepancies ranging from −8.69% to 11.04%. Consid-
ering the inherent uncertainties in early-stage design and energy modeling, these discrep-
ancies are acceptable and demonstrate the model’s reliability in practical scenarios.

However, the model showed reduced performance with large-scale buildings, likely
due to the limited representation of such buildings in the dataset. This limitation highlights
the need for incorporating more diverse data, especially for large-scale typologies, to
improve model generalizability. Despite this, the overall findings remain robust, as the
framework is primarily intended for early design stages where detailed data may not
be available.

The ability to predict energy consumption accurately at the early design stages has
significant implications for sustainable urban design. It enables architects, designers, and
policymakers to make informed decisions that can lead to energy-efficient and sustainable
neighborhoods. By integrating ML tools into BAU workflows, practitioners can quickly
assess energy performance impacts of design choices, facilitating proactive adjustments
that can reduce costs and improve project feasibility.

In summary, the results confirm that the proposed data-driven framework effectively
addresses the challenges of early-stage energy forecasting by providing accurate predic-



Buildings 2024, 14, 3866 20 of 23

tions with minimal input data. This contributes to bridging the gap between advanced
computational methods and practical design workflows, promoting the integration of
energy efficiency considerations from the outset of neighborhood-scale projects.

8. Conclusions

This research developed and tested a novel framework for integrating machine learn-
ing tools into early-stage neighborhood-scale energy forecasting within existing design
workflows. Utilizing the CatBoost Regressor, the framework achieved accurate energy
consumption predictions with minimal input data, specifically targeting static predictions
of EUI.

The key findings of the study are as follows:

• High Predictive Accuracy with Minimal Inputs: The CatBoost model achieved R2 scores of
0.88, demonstrating that accurate energy consumption predictions are possible using
only a few key parameters available during early design stages.

• Identification of Influential Parameters: SHAP analysis confirmed building area, primary
building activity, number of floors, and climate zone as the most influential factors
affecting energy consumption. Focusing on these parameters allows for streamlined
data collection without sacrificing accuracy.

• Testing Against Traditional Models: The ML model’s predictions closely aligned with
those from traditional energy modeling tools, with acceptable discrepancies, confirm-
ing its reliability and practical applicability.

The outcome of this research has significant implications for neighborhood-scale
and sustainable design. By enabling early-stage predictions of energy consumption, the
framework empowers practitioners to incorporate energy efficiency considerations into the
design process from the beginning. This proactive approach can lead to more sustainable
urban environments, reduced energy costs, and alignment with global sustainability goals.

To enhance the applicability and robustness of the framework, future research should
focus on the following:

• Expansion to Subsequent Phases: Developing and testing the remaining phases (Phase
2 and Phase 3) of the framework to evaluate its effectiveness across different design
stages and with more detailed data inputs.

• Enhancing Model Generalizability: Incorporating more diverse datasets, especially for
large-scale buildings, to improve model performance and applicability across various
building typologies.

• Integration of Additional Sustainability Metrics: Expanding the framework to include
other sustainability indicators such as embodied carbon, water usage, and indoor
environmental quality for a more holistic assessment.

• Application in Different Contexts: Conducting case studies in various geographic lo-
cations and regulatory environments to validate the framework’s adaptability and
effectiveness.

In conclusion, this study lays the groundwork for transforming urban energy model-
ing practices by integrating machine learning into early design workflows. The proposed
framework offers a practical, efficient, and accurate tool for predicting energy consumption
at the neighborhood scale, contributing to the development of energy-efficient and sustain-
able cities. By focusing on minimal yet impactful inputs, the framework aligns with the
needs of practitioners during the early design stages, enabling data-driven decision-making
that supports global sustainability objectives.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence

BAU Business-as-usual

BPS Building Performance Simulations

CBECS Commercial Buildings Energy Consumption Survey

CDD65 Cooling Degree Days (base 65)

EIA Energy Information Administration

EUI Energy Use Intensity

HDD65 Heating Degree Days (base 65)

HVAC Heating Ventilation Air Conditioning

ML Machine Learning

NFLOOR Number of Floors

PBA Principal Building Activity

PUBCLIM ASHRAE Climate Zone

RECS Residential Energy Consumption Survey

SHAP Shapely Additive Explanations

SQM Total Building Area

TOTALKWH Total Energy Consumption
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