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Entanglement is a genuine form of quan-
tum correlation, which plays a pivotal role
in characterizing collective phenomena,
from topological order to criticality and be-
yond. Here, results about entanglement
Hamiltonians—an operator-based charac-
terization of entanglement—inmany-body
systems are reviewed, from field theory
and statistical mechanics models, to re-
cent applications in the context of quan-
tum information and quantum simula-
tion.
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Results about entanglement (or modular) Hamiltonians of quantum
many-body systems in field theory and statistical mechanics models, and
recent applications in the context of quantum information and quantum
simulation, are reviewed. In the first part of the review, what is known about
entanglement Hamiltonians of ground states (vacua) in quantum field theory
is summarized, based on the Bisognano–Wichmann theorem and its
extension to conformal field theory. This is complemented with a more
rigorous mathematical discussion of the Bisognano–Wichmann theorem,
within the framework of Tomita–Takesaki theorem of modular groups. The
second part of the review is devoted to lattice models. There, exactly soluble
cases are first considered and then the discussion is extended to
non-integrable models, whose entanglement Hamiltonian is often well
captured by the lattice version of the Bisognano–Wichmann theorem. In the
last part of the review, recently developed applications in quantum
information processing that rely upon the specific properties of entanglement
Hamiltonians in many-body systems are summarized. These include protocols
to measure entanglement spectra, and schemes to perform state tomography.
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1. Introduction

Since its inception, quantum mechan-
ics has routinely thrilled theoretical
and experimental physicists due to
its striking—and, at times, counter-
intuitive—differences from the classical
world one is accustomed to. One of the
most remarkable examples of those is
certainly entanglement:[1,2] this form of
quantum correlations went relatively un-
noticed until the last decades of the 20th
century, but has experienced renewed
and widespread interest over the last
thirty years.
Entanglement captures the degree

of inseparability between quantum
mechanical states: it vanishes in the
absence of quantum correlations, and
it is instead finite in case separability is
not satisfied. It has found numerous and
profound applications in quantum infor-
mation science, ranging from quantum

communication to its connection to the capabilities of quantum
computing hardware, just to name a few.[1–3]

In parallel to progresses in quantum information and quan-
tum optics, it has emerged that entanglement is not only useful
to describe few-body processes at a microscopic level, but that,
in addition, it is an invaluable resource in characterizing and
classifying genuine quantum mechanical features of many-body
systems.[4–9] Nowadays, entanglement is routinely used in a
variety of contexts. Since its first applications in many-body
lattice models—in particular, focused on critical behavior[4–6]

and topological order[7,8]—it has found applications as wide
as the characterization of computational methods and their
performances,[10] to the classification of many-body behavior
and holographic properties in quantum field theory.[9,11–13]

Themain actors in determining the relevance of entanglement
in many-body systems are measures of bipartite entanglement
(and, to a lesser extent, entanglement witnesses and measures
of multipartite entanglement).[2,14] Consider as an example the
setting described in Figure 1: given a state 𝜌, one is interested in
characterizing the quantum correlations between its partition A
and its complement B. Those are captured by the reduced density
matrix (RDM):

𝜌A = TrB 𝜌 =
rA∑
𝛼=1

𝜆𝛼|𝛼⟩⟨𝛼| (1)

where the last equality represents an eigendecomposition with
eigenvalues 𝜆𝛼 and eigenvectors |𝛼⟩, and rA is the rank of 𝜌A.[15]
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Figure 1. Playground of this review: given a quantum mechanical state 𝜌, and two spatial partitions A and B, we are interested in determining the
properties of 𝜌A in many-body systems.

For the case of globally pure states—that is, states for which
Tr𝜌2 = 1—a paramount quantity that quantifies the entangle-
ment between A and B is the von Neumann entropy.[16] The
von Neumann entropy and other related measures (such as
concurrence[4]) have found extensive use in quantummany-body
theory—see, for example, the reviews in refs. [4, 9, 11]. One key
aspect of the entropy and related quantities is that they are solely
sensitive to the eigenspectrum of RDM—the so-called entangle-
ment spectrum.[7,17] The much richer relation between the finer
structure of the RDM—that is, the structure of the eigenvectors,
and their relation to the corresponding eigenvalues—has instead
been initially overlooked, partly because it is considerably more
challenging to characterize at the theoretical (and experimental)
level. It is this finer structure that is the topic we plan to cover in
this review.
Our starting point is the observation that, given the fact that a

density matrix is always positive semi-definite, it is always possi-
ble to cast it in an exponential form (analogously to a “partition
function”) as follows.

𝜌A ∝ e− (2)

The dimensionless operator  is known under two different
names: modular Hamiltonian in quantum field theory, and en-
tanglement Hamiltonian (EH) in the context of lattice mod-
els and quantum information. Throughout this work, we will
follow the second nomenclature. The operator  is bounded
from below, as a consequence of the semi-positive-definiteness
of the RDM.
The entanglement Hamiltonian has a somehow interesting

history, that proceeds along three parallel routes. Historically, the
first appearance of EH was related to developments in the field
of axiomatic field theory (1970s): the most relevant achievement
in that field was a set of results that are referred to as Bisognano–
Wichmann (BW) theorem,[18,19] that presented a mathemati-
cally rigorous computation of the EH within certain—rather
generic—field theoretical settings. This was shortly followed up
by works dealing with conformal field theories.[20] The second ad-
vent of the EH is related to integrable models (1980s): within cer-
tain settings, the EH has very strong ties with the CTM,[21] a piv-
otal object in the field of lattice statistical mechanics.[22] The third
one is related to topological matter (2000s):[8] there, the spectrum
of the EH was identified as a very potent tool to diagnose and
characterize topological phases,[17] both at the level of topologi-
cal order (e.g., fractional quantum Hall effect) and of symmetry-
protected topological phases (e.g., topological insulators).

Interestingly, the three aforementioned routes proceeded al-
most independently, with very few intersections, until very re-
cently. In particular, developments in the field of quantum field
theory have been almost completely decoupled from lattice sta-
tistical mechanics models.
Against this background, the aim of this review is twofold.

First, we will present the basic toolkit and most representative
results from those three separate research lines, and empha-
size the net of connections between all of those that has been
developed over the last years. The quantum field theory side of
the story will be presented in Sections 2 and 3: we will start
from a brief collection of all relevant results in the field, and
then proceed with a more mathematical oriented derivation
of the main tool available—Tomita–Takesaki theory—on the
basis of the Bisognano–Wichmann theorem. In Section 4, we
will discuss integrable lattice models: these models allow for
considerable analytical insight into the structure of EH, that is of
key importance to gauge the relevance of field theory results on
the lattice. This discussion will naturally evolve to non-integrable
lattice models in Section 5. There, we will emphasize the role
played by entanglement Hamiltonians in the context of topologi-
cal and quantum critical matter. The second aim of this review is
to present applications of such knowledge in the broader context
of quantum information science. Section 6 will be devoted to this
task: in particular, we will review methods to characterize many-
body systems in quantum computers and quantum simulations
that leverage on the many-body insights based on entanglement
Hamiltonians.
While, as mentioned above, different communities have stud-

ied entanglement Hamiltonians with limited crosstalks, we have
opted to follow a different route. While we have kept the vari-
ous lines separate in terms of sections, throughout the review, we
have often commented on how results in one field have impacted
others, both in terms of interpretation of the physical results, and
methods. Hopefully, such choice may help the reader interested
in a specific section to better appreciate the breadth of the field,
and the various intersections.
The entanglement Hamiltonian is of course not disconnected

from entropies and the entanglement spectrum: the first are
nothing but moments of its expectation value, and the latter is its
spectrum. Since these quantities have already been subjects of ex-
cellent reviews (see refs. [6, 7, 11]), the stress of our article will be
on aspects of the EH that go beyond those - in particular, its struc-
ture as a many-body operator. While not extensively, we will refer
to properties of the ES whenever useful. In addition to the afore-
mentioned works, we emphasize that generic aspects of modular
Hamiltonians have also been reviewed recently in Ref. [9].
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2. Entanglement Hamiltonian: Definitions and
Insights from Quantum Field Theory

In this section, we will first provide some definitions and basic
observations on entanglement Hamiltonians and related quanti-
ties. Then, we will review some basic results about EH of quan-
tum field theories. Some of those will then be reframed in amore
rigorous mathematical framework in the next section.

2.1. Definitions and Notations

Let us recall here some basic properties of the RDMs we are deal-
ing with. First of all, we will always work with normalized RDMs

Tr 𝜌A = 1,
∑
𝛼

𝜆𝛼 = 1 (3)

This will require some care in defining the EH: indeed, shifting
the operator  by a constant will change the trace of 𝜌A. We will
utilize the following normalization

𝜌A = e−∕Z (4)

which is related to another one used in the literature as follows:

𝜌A = e−(+C), Z = expC (5)

where C is a constant. This consideration implies that the ab-
solute values of the entanglement spectrum 𝜖𝛼 have little opera-
tional meaning, while what is really relevant are the correspond-
ing entanglement energy differences and relative magnitudes.
This fact will have direct implications in protocols to measure
the ES experimentally.
It is worth noting that, at first sight, it is very unclear whether

the EH shall have a meaningful many-body structure. Indeed,
one could simply interpret it as the logarithm of a density matrix.
In general, the corresponding operator does not have to be local,
neither few-body.[23]

It is thus a remarkable fact that there are generic circum-
stances under which the EH of an extended partition A of a
many-body system is extremely well approximated—if not exactly
given—in terms of operators (x) that are both local and few-
body

 = ∫x∈A
dx 𝛽(x)(x) (6)

where 𝛽(x) is some weight function. The reason behind this fact
traces back to quantum field theory (that naturally encompasses
locality, relativistic invariance, and quantummechanical effects),
and is centered around the locality of many-body dynamics.

2.2. Entanglement Hamiltonian and the Bisognano–Wichmann
Theorem

The most basic result at the heart of the few-body, local nature of
EH is the Bisognano–Wichmann theorem.[18,19] Consider a rel-
ativistic quantum field theory in (D+1) dimensions (D denotes

the spatial dimensions only), withHamiltonian densityH(x), and
with coordinates x = {x1, x2, .., xD} labeling spatial coordinates.
Given a half-plane partition A defined by the condition x1 > 0,
the Bisognano–Wichmann theorem states that the entanglement
Hamiltonian of the vacuum state reads

 = 2𝜋
c ∫x∈A

dx x1H(x) (7)

where c is the corresponding “speed of light,” which makes the
EH dimensionless. This result—applicable irrespective of the
particle content of the theory, and compatible with the existence
of gauge symmetries—establishes that not only is the EH of such
states local and few-body: it is actually nothing but the boost oper-
ator, that is, the original Hamiltonian with space-dependent cou-
plings.
A first physical interpretation of the Bisognano–Wichmann

theorem is illustrated in Figure 2a: one can either see Equa-
tion (7) as describing a thermal state with respect to the boost
operator, or, equivalently, describing a thermal state with respect
to the original Hamiltonian, but with a position-dependent tem-
perature. In this second interpretation, the entanglement tem-
perature is “high” close to the boundary, and progressively de-
creases moving away from it. This interpretation immediately
suggests that the quantum correlations between A and its com-
plement are overwhelmingly dominated by the “high” region—
the boundary—thus providing a simple picture to understand a
conjecture (proved in D = 1 for the case of gapped theories[24])
known as area law.[6] At the end of next section, wewill discuss an-
other physical interpretation in the context of the Unruh effect[25]

(somehow related to the first viewpoint above).

2.3. Entanglement Hamiltonians in the Presence of Conformal
Symmetry

In the presence of additional global conformal symmetry, the re-
sult above can be extended to different systems, and different
types of partitions. Here, we review the basic extensions of the
BW theorem that have been obtained so far.

2.3.1. D-Dimensional Theories

For a partitionA consisting of a ball of volumeV and radiusR in a
D-dimensional relativistic conformal field theory, it was shown in
Ref. [20, 26] that the corresponding entanglement Hamiltonian
reads

CFT0
A = 2𝜋R

c ∫x∈A
dx R2 − r2

2R2
T00(x) (8)

where the ball has been placed at the origin, r(x) is the Euclidean
distance from the origin, T00 is the stress-energy tensor of the
CFT (in fact analogue of the Hamiltonian density). The physi-
cal consequence of this result is that, in the presence of confor-
mal symmetry, the EH retains all its useful locality and few-body
properties even in cases of finite partitions, even if it is not cor-
respondent to the boost operator any more. Note that the treat-
ment of more complicated partitions (other than the half-space
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Figure 2. Bisognano–Wichmann theorem and entanglement Hamiltonian in quantum field theory. a) For a generic, relativistic quantum field theory,
the entanglement Hamiltonian of a half-system is given by the boost operator. The corresponding RDM can be interpreted as either a thermal state
with Hamiltonian density x1H(x), where x1 is the distance from the boundary, or with an equilibrium state subject to a position-dependent inverse
temperature 𝛽(x) = 2𝜋x1∕c, and Hamiltonian density H(x). In the second interpretation, the entanglement temperature goes from “high” close to the
boundary between the partitions (red), to cold away from the boundary (blue). b) Some of the extensions of the Bisognano–Wichmann to (1 + 1)
dimensional conformal field theory, formulated in terms of a space-dependent inverse entanglement temperature: finite interval in an infinite system
(top) and half chain with open boundary conditions (bottom).

and the sphere) in D > 1 is very complicated in general, how-
ever, some approximate approaches exist for free field theories,
predicting the emergence of anisotropic inverse entanglement
temperatures.[27]

2.3.2. 1D Theories

In D = 1 spatial dimension, conformal symmetry becomes even
more powerful in allowing the determination of EH for var-
ious types of partitions. This was originally explored in ref.
[20], and further extended in ref. [28]. We review here the basic
cases of interest to equilibrium physics, noting that, remarkably,
some extensions to time-dependent problems have also been
derived.[28,29]

The first relevant case deals with a partition of finite size 𝓁,
embedded in an infinite chain (Figure 2b). In that case, the EH
reads

CFT1
A = 2𝜋𝓁

c ∫
𝓁

0
dx

[
x(𝓁 − x)

𝓁2
H(x)

]
(9)

that corresponds to the (1 + 1)-d version of Equation (8). Note
that, close to each of the boundaries, the EH is reminiscent of
the original BW functional form. By exploiting conformal map-
pings, it is possible to generalize this formula to the case of a
finite interval inside a finite circle of circumference L, that then
reads

CFT2
A = 2L

c ∫
𝓁

0
dx

⎡⎢⎢⎢⎣
sin

(
𝜋(𝓁−x)

L

)
sin

(
𝜋x
L

)
sin

(
𝜋𝓁
L

) H(x)

⎤⎥⎥⎥⎦ (10)

This last equation will be particularly useful in the numerical
studies in Section 5.
Finally, it is possible to consider a finite interval of length L∕2

at the boundary of an open chain of length L (Figure 2b): in this
case, the EH reads

CFT3
A = 2L

c ∫
L∕2

0
dx sin

(
𝜋x
L

)
H(x) (11)

The physical interpretation of these results is immediate, and
graphically illustrated in Figure 2: all of them predict 𝛽(x) to be
linear close to the boundaries, that is, the entanglement tempera-
ture decreases with the inverse of the distance within the “entan-
gled” region, whereas 𝛽(x) saturates following a “parabolic-like”
shape at large distances, consistently with the generic prediction
in ref. [26].

2.4. Entanglement Hamiltonian at Finite Temperature

So far, we have only dealt with vacuum states of a field theory—
that is, pure states. Remarkably, under some specific conditions,
it is also possible to get insights on the structure of the EH for
the case of mixed states.
The first examples are thermal states at inverse temperature

𝛽. If one considers a small partition embedded in a large system
whose dynamics is described by a non-integrable theory, the cor-
responding entanglement Hamiltonian is determined by quan-
tum typicality, and it is nothing but the Hamiltonian of the sub-
systemHA, that is, 𝜌A ∝ e−𝛽HA , up to corrections due to boundary
terms. This formula is expected to work well for temperatures
larger than the typical energy scales in the system.
Remarkably, again for the case of (1 + 1)-d conformal field

theories, even more precise statements can be made at any
temperature.[30,31] In that case, the EH of a finite region embed-
ded in an infinite system reads

CFT4
A = 2𝛽 ∫

𝓁

0
dx

⎡⎢⎢⎢⎣
sinh

(
𝜋(𝓁−x)
𝛽c

)
sinh

(
𝜋x
𝛽c

)
sinh

(
𝜋𝓁
𝛽c

) H(x)

⎤⎥⎥⎥⎦ (12)

The result above reproduces Equation (9) in the limit 𝛽 ≫ 𝓁,
where the EH properties are well captured by the BW theorem.
On the other hand, in the limit 𝛽 ≪ 𝓁 one approaches a Gibbs
state at inverse temperature 𝛽. This prediction would also be ob-
tained, assuming typicality, for pure states of the total system at
high energies. We note that some of these results can also be
extended to the post-measurement case, as has been show in
ref. [32].
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2.5. Further Results

The examples discussed so far are valid for generic CFTs. Fur-
ther results exist for some specific field theories, such as the
free boson or fermion theories. In particular, the case of mul-
tiple disjoint intervals has been derived for the massless Dirac
fermion[33] and free scalar theories,[34] where the local part of
the EH has again a similar structure (6) as in the single interval
case. Namely, the energy density is multiplied with an appropri-
ate space-dependent weight function 𝛽(x) which can be obtained
explicitly.[33–36] Some of these results can even be extended to fi-
nite temperatures.[37–39] For the Dirac theory the main new fea-
ture is a subleading bilocal piece in the EH, which couples only
to a single conjugate point in each of the intervals. Similar fea-
tures have been observed for the massless Dirac fermion in the
presence of a boundary or defect.[40,41] The explicit treatment of
the massive case is much more difficult even for a single inter-
val, and the available results suggest the presence of a sublead-
ing nonlocal piece in the EH.[36,42] Remarkably, similar nonlocal
terms were found to appear also for massless fermions in the
presence of zero modes[43] and in low-lying excited states.[44]

Finally, one should mention that some extensions to inhomo-
geneous physical systems exist, the simplest example being the
massless Dirac fermion with a spatially varying Fermi velocity.[45]

This inhomogeneity can be absorbed by a local change of themet-
ric and is equivalent to considering the Dirac theory in a curved
background.[46] Considering the EH of a singly connected biparti-
tion, the effect of the curvedmetric can be taken into account and
leads again to a local expression (6) where 𝛽(x) can be obtained
explicitly.[45]

We have now provided a full picture about what is known about
EH in quantum field theory. The pivotal result throughout our
discussion has been the Bisognano–Wichmann theorem, both
as a result per se, and as a starting point for extensions to con-
formal field theory. In the following section, we will address the
question: why is the EH taking such a simple functional form? In
particular, what is the principle that determines its locality? Those
questions are properly answered in the context of axiomatic quan-
tum field theory, that we will try to present in a concise form that
is of use to theoretical physics. Readers who are not familiar with
QFT can proceed directly to Section 4, where we discuss lattice
statistical mechanics models.

3. Tomita–Takesaki’s Modular Theory and
Bisognano–Wichmann’s Theorem in Algebraic
QFT: Mathematics Comes to the Rescue

In this section we will briefly overview two interconnected math-
ematical aspects of quantum theories that play a crucial, if
somewhat unexpected, role in the description of entanglement
Hamiltonians: Tomita–Takesaki theory of modular groups, and
Bisognano–Wichmann’s theorem in algebraic QFT. The mathe-
matical details will be kept to a minimum, the interested reader
may refer to several books and reviews on algebraic quantum
field theory, and the references thereof contained; among those,
let us single out,[47–50] from which we drew inspiration in writing
this review, and the more physically oriented review by Witten.[9]

3.1. Tomita–Takesaki’s Theory

This theory has been developed by Tomita in the late sixties [the
results were announced in [51]], and then expanded and made
known to a broad audience by Takesaki with his 1970 lecture
notes.[52]

The theory of Tomita and Takesaki provides a way to construct,
given an algebra of quantum observables realized as operators
on some Hilbert spaceℋ, and a quantum state realized as a vec-
tor Ω (with some “reasonable” properties, to be detailed below),
two operators associated with the couple (,Ω): themodular op-
erator Δ, and the modular conjugation J. These operators enjoy
some nice properties, again to be detailed below.
The importance of modular operators Δ and J in characteriz-

ing algebras of operators, both as pure mathematical objects and
as collections of quantum observables, has very soon become ap-
parent. In fact, on the one hand Tomita–Takesaki’s theory is at
the heart of Connes’ 1973 classification of “type III” factors in
von Neumann algebras, and on the other hand it has been put in
relation to the KMS condition describing quantum equilibrium
states by Takesaki in his 1970 lecture notes,[52] and by himself
and Winnink in 1973, while studying the algebraic properties of
KMS states.[53] While the second aspect is the one that is more
relevant for this review, let us mention nonetheless that all rela-
tivistic local algebras of observables in QFT turn out to be type
III factors, in particular of the so-called “type III1” in Connes’
terminology. They are characterized by the fact that the spectrum
of the modular operator Δ is the whole real line, [see [54]]. Before
Connes’ work, inspired as we said by Tomita–Takesaki theory, the
type III factors were very poorly understood (in fact, the type III1
was not even defined), and thus this is another key application of
such theory to quantum physics, even if it lies beyond the scope
of this review.
To introduce Tomita–Takesaki’s modular operators, and their

connection to equilibrium states in quantum statistical mechan-
ics, let us fix some mathematical terminology. Preliminarily, let
us remark that Tomita–Takesaki’s theory can be developed in a
more general framework than the one presented below, however
the setting given here is general enough for the physical applica-
tions we have inmind. Letℋ be a separableHilbert space, and let
 be a collection of bounded operators (quantum observables).
Then is an algebra iff it is closed under addition and multipli-
cation (i.e., given any A, B ∈ , then A + B ∈  and AB ∈ ).
The commutant′ of an algebra of operators is the collection
of all bounded operators on ℋ that commute with all elements
of . Clearly,  ⊆′′ (an algebra is contained in its bicom-
mutant). An algebra of operators  is a von Neumann algebra
iff

 = ′′ (13)

Given a von Neumann algebra , the center is given by  ∩
′. Then,  is a factor iff  ∩′ = ℂ𝟙, i.e that is, the only
operators in that commute with all the others are multiples of
the identity operator. Now, letΩ ∈ ℋ be a vector (associated to the
quantum state |Ω⟩⟨Ω|); then Ω is cyclic and separating iff both
Ω and ′Ω are dense subsets of ℋ. The main idea behind
Tomita–Takesaki’s theory is that one can define the closure of the
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conjugation antilinear operators acting as

SΩ = †Ω

F′Ω = (′)†Ω (14)

They are both densely defined, since Ω is cyclic and separating.
Tomita proved that their closures exist, they are one adjoint to
another (F = S†), and they can be expressed, as every closed op-
erator, through an antilinear polar decomposition S = JΔ1∕2, that
introduces the modular operators. The term “modular” is used
exploiting the analogy between the operator polar decomposition
and the polar expression of complex numbers (Δ1∕2 plays the role
of the modulus, and J that of the phase, that in addition takes an-
tilinearity into account). Because S and S† conjugate the observ-
ables in and in its commutant, the modular operators inherit
very useful properties, described below.

3.1.1. The Modular Operator and the Modular Conjugation

Given a couple (,Ω), where is a vonNeumann algebra of op-
erators onℋ and Ω ∈ ℋ is cyclic and separating, a couple of op-
erators (Δ, J) onℋ can be defined, called, respectively, the mod-
ular operator and the modular conjugation. The couple (Δ, J) is
identified uniquely by the following properties:

• Δ is self-adjoint, positive, and invertible; in addition, the vector
Ω is invariant under the action of both Δ and J

ΔΩ = JΩ = Ω (15)

• The unitary group (Δit)t∈ℝ defines a group of automorphisms
of the algebra: for any t ∈ ℝ

ΔitΔ−it =  (16)

Let us denote by

𝜎t(A) = ΔitAΔ−it , A ∈  (17)

such a group of automorphisms, also called the modular
group.

• Ω ⊆ D(Δ1∕2), the latter being the domain of self-adjointness
of Δ1∕2.

• The operator J is a conjugation, that is, J is antilinear, J =
J† = J−1, and it commutes with the modular group: [J,Δit] = 0.
Hence

JΔJ = Δ−1 (18)

• The modular conjugation maps the algebra  into its com-
mutant

JJ = ′ (19)

• The operators S = JΔ1∕2 and S† = Δ1∕2J = JΔ−1∕2 “conjugate”
Ω: ∀A ∈ , ∀A′ ∈ ′

SAΩ = A†Ω

S†A′Ω = (A′)†Ω (20)

• The function

ℝ ∋ t → ΔitAΩ ∈ ℋ , A ∈  (21)

has an analytic continuation in the strip {z ∈ ℂ , − 1
2
< ℑz <

0}. The function

ℝ ∋ t → ΔitA′Ω ∈ ℋ , A′ ∈ ′ (22)

has an analytic continuation in the strip {z ∈ ℂ , 0 < ℑz < 1
2
}.

As a consequence, ∀A ∈  and ∀A′ ∈ ′

Δi(t− i
2
)AΩ = ΔitJA†Ω , Δi(t+ i

2
)A′Ω = ΔitJ(A′)†Ω (23)

• The function t → ⟨Ω|B𝜎t(A)Ω⟩ℋ , A, B ∈ , can be analyti-
cally continued in the strip {z ∈ ℂ , −1 < ℑz < 0}. At the lower
boundary, the following condition holds

⟨Ω|B𝜎t−i(A)Ω⟩ℋ = ⟨Ω|𝜎t(A)BΩ⟩ℋ (24)

or equivalently,

⟨Ω|BΔi(t−i)AΩ⟩ℋ = ⟨Ω|AΔ−itBΩ⟩ℋ (25)

The last property, 24, is called 𝜎-KMS condition for the state|Ω⟩⟨Ω|, and it is related to the notion of equilibrium in quantum
statistical mechanics, as we will explain shortly. Let us remark
that, even if it may not be apparently so, this KMS condition is by
itself sufficient to identify the modular couple (Δ, J).

3.1.2. Equilibrium States, and their Relation to Modular Groups

What is an equilibrium state in a quantum theory? Given the evo-
lution of a physical system as a unitary operator e−itH on some
Hilbert space, the equilibrium state 𝜔𝛽 at inverse temperature
𝛽 ∈ ℝ is typically given by the Gibbs prescription

𝜔𝛽 (⋅) =
1

tr e−𝛽(H−𝜇N) tr(e
−𝛽(H−𝜇N) ⋅ ) (26)

provided that such a state makes sense mathematically (e.g.,
tr e−𝛽(H−𝜇N) could not be finite; this typically happens in taking the
thermodynamic limit). A generalization of the notion of Gibbs
state, that survives the thermodynamic limit and is applicable to
QFTs, is that of a KMS state.[55] Let (𝜏t)t∈ℝ be a group of auto-
morphisms of a von Neumann algebra of observables . Then
a state 𝜔𝛽 on  is a 𝜏-KMS state at inverse temperature 𝛽 ∈ ℝ
iff for any t ∈ ℝ, and for any A, B ∈ 
𝜔𝛽

(
𝜏t(A)B

)
= 𝜔𝛽

(
B𝜏t+i𝛽 (A)

)
(27)

In other words, the state 𝜔𝛽 behaves almost like a trace, the cor-
rection to being a trace “measured” by 𝜏i𝛽 .
If 𝜏t(A) = eitHAe−itH, and the Gibbs state can be defined, then

the latter is a 𝜏-KMS state at inverse temperature 𝛽. It can more-
over be shown that in a finite volume, the only KMS states are
the Gibbs states [see, for example, [49], Ch. V].
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Comparing (24) with (27), it is clear that |Ω⟩⟨Ω| is a 𝜎-KMS
state at inverse temperature 𝛽 = −1. It is perhaps convenient
to rescale temperature to its physical value 𝛽 in the units of
our choosing. First of all, by functional calculus it is possible to
rewrite

Δ = e−K (28)

where K is now called the modular Hamiltonian. In 24, let us
make the substitution t = −𝛽−1s

⟨Ω|B𝜎−𝛽−1s−i(A)Ω⟩ℋ = ⟨Ω|𝜎−𝛽−1s(A)BΩ⟩ℋ (29)

Now, let us defineH = 𝛽−1K, obtaining

⟨Ω|B𝜏s+i𝛽 (A)Ω⟩ℋ = ⟨Ω|𝜏s(A)BΩ⟩ℋ (30)

that is, |Ω⟩⟨Ω| is a 𝜏-KMS state at inverse temperature 𝛽, with the
evolution 𝜏 generated byH = 𝛽−1K.
We can therefore draw the following key conclusion:

Any equilibrium state at inverse temperature 𝛽 can be seen as
a faithful state[56] over the algebra  of observables, whose
modular group is given by time translations, with a group pa-
rameter s related to physical time by t = −𝛽s.

We also have a nice converse piece of information, due to
Takesaki.[52] Let  be a von Neumann algebra, and 𝜔 a faithful
state (represented on someℋ by |Ω⟩⟨Ω|, with Ω cyclic and sepa-
rating), whose associated modular group is given by (𝜎t)t∈ℝ. Are
there any other equilibrium states, apart from 𝜔, with respect to
the modular group flow? The answer is as follows. Let 𝜚 be a den-
sity matrix. Then the following two statements are equivalent:

• 𝜚 is a 𝜎-KMS state
• There exists a (unique) positive operator T onℋ, whose spec-
tral decomposition belongs to the center of , such that for
all A ∈ 
trℋ 𝜚A = ⟨T1∕2Ω, AT1∕2Ω⟩ℋ (31)

Clearly, if  is a factor (as many physically interesting alge-
bras of observables are) then T = 1, that is, 𝜔 is the unique equi-
librium state for the modular group flow.

3.2. The Theorem of Bisognano and Wichmann

Bisognano and Wichmann’s results, published in a couple of pa-
pers between 1975 and 1976,[18,19] concern local algebras of ob-
servables in relativistic quantum theories, and in particular the
concept of Haag duality for wedge regions, to be explained be-
low. Their results have then be extended to CFTs by Hislop and
Longo:[20] in conformal theories, duality can be proved for more
general regions than the wedges considered by Bisognano and
Wichmann, in particular for diamonds (see the illustrative exam-
ples in Section 2.3).
At a first glance, the result of Bisognano andWichmann seems

unrelated to Tomita–Takesaki’s theory. This is however true only
in appearance, in fact Bisognano and Wichmann themselves re-
marked the connection of their result to the modular theory. We

focus on such connection, and on the additional connectionswith
entanglement Hamiltonians, in the last part of this section. For
the moment, let us focus on Bisognano–Wichmann’s theorem it-
self.

3.2.1. Haag Duality in Relativistic Quantum Theories

If one wants to build up a (field) theory of relativistic observables
in Minkowski spacetime (or on any other Lorentzian manifold),
causality shall be taken into account. However, there are serious
mathematical obstructions to the definition of pointwise local rel-
ativistic quantum observables: as is well known, quantum fields
should be smeared by smooth functions supported on some open
region in the Minkowski spacetime, in order for them to make
sense as operators. A field that is smeared by a function sup-
ported in a region , is said to be localized in . Causality for
localized fields is assumed in the following form: fields that are
localized on space-like separated regions of spacetime shall com-
mute between each other. Algebras of observables in QFT are
built by the action of fields (and possibly their momenta). Given a
spacetime region , the local algebra of observables () shall
be, intuitively, the one constructed by the action of fields local-
ized in the region . In general, Haag’s idea is to start with a
collection of abstractly defined local algebras

(())⊆Σ of ob-
servables, each defined on an open region of a given spacetime
Σ. Such a collection of local algebras shall satisfy certain assump-
tions that reflect the physical axioms of a relativistic theory, and
in particular causality, in the form of commutation of space-like
separated observables.
A desirable feature, that is however somewhat difficult to

prove, is the following, called Haag duality. Let us denote by ′

the causal complement of the region , that is, the set of space-
time points that are at a space-like distance from all the points of
. Then duality is true for the region  iff

()′ = (′) (32)

In other words,

The commutant of a local algebra of observables in  consists
precisely of all observables in the causal complement ′.

We will not discuss all the results about duality avail-
able in the literature, let us only mention, in addition to
the Bisognano–Wichmann’s papers, the pioneering works by
Araki,[57,58] Dell’Antonio,[59] and Eckmann–Osterwalder[60] for
special Minkowski regions and free field’s scalar observables.

3.2.2. The Result of Bisognano and Wichmann: Haag Duality on
Wedges

Let Σ be the Minkowski spacetime: Σ = (ℝ4, 𝜂𝜇𝜈), where

𝜂 =
⎛⎜⎜⎜⎝
+ 0 0 0
0 − 0 0
0 0 − 0
0 0 0 −

⎞⎟⎟⎟⎠ (33)
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is the flat pseudo-Riemannian metric. The right wedge WR ⊂ Σ
is the open set enclosed by two light rays starting from the origin
and propagating in the x1 direction:

WR =
{
x = (x0, x1, x2, x3) ∈ Σ , x1 > |x0|} (34)

Its causal complement is the left wedgeWL

W ′
R = WL =

{
x = (x0, x1, x2, x3) ∈ Σ , x1 < −|x0|} (35)

Let us now denote by 𝚲 a generic spacetime transformation
belonging to the Poincaré group. Of special usefulness will be
the following Lorentz transformations: the boosts Λ(s) in the 1
direction, with parameter s ∈ ℝ

Λ(s) =
⎛⎜⎜⎜⎝
cosh s sinh s 0 0
sinh s cosh s 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ (36)

and the spatial rotation R1(𝜋), meaning a rotation of spatial coor-
dinates by an angle of 𝜋 around the 1-axis.
Let us now consider a possibly interacting quantum field the-

ory onMinkowski spacetime. In particular, let us suppose that we
can properly define the vacuum representation of the field theory
as an algebra of operators acting on a Hilbert spaceℋ on which
the vacuum Ω ∈ ℋ is represented as a vector, and that there is
a unitary representation U(𝚲) of every Poincaré transformation,
suitably acting on smeared quantum fields, that are defined as
self-adjoint operators𝜑(f ), where f is any smooth test function on
Σ. The rigorous construction of the “correct” local algebras of ob-
servables(WR) and(WL), localized on the right and the left
wedge, respectively, given by Bisognano andWichmann is rather
technical, and we shall omit it here. It suffices to keep in mind
that these algebras (of bounded operators) are suitably related to
the (unbounded) operators obtained by forming polynomials of
the fields, each one localized in the right or left wedge, respec-
tively.
The (main) theorem of Bisognano and Wichmann then reads

as follows:

Haag duality holds for the von Neumann algebras(WR) and(WL). More precisely (by taking the commutant of the Haag
duality for the right wedge below, one gets Haag duality for the
left wedge)

(WR)
′ = (WL) = (W′

R) (37)

This result positively resonated in the community of mathe-
matical physics: the aforementioned duality theorems of Araki
and Eckmann–Osterwalder, despite being far from trivial, were
true only for free scalar fields; the results of Bisognano andWich-
mann are true for every field theory that can be reasonably de-
fined, be it free or interacting. The only drawback is that one
shall restrict to wedges. As already mentioned, their result (and
idea of the proof) was later extended to conformal fields by His-
lop and Longo, where, thanks to the additional conformal sym-
metry, more general spacetime regions such as diamonds could
be considered. Bisognano–Wichmann’s theorem is still a topic

of research in algebraic QFT nowadays [see, e.g., [61–63], and the
references therein].

3.2.3. The Link to Modular Operators

How is the Haag duality of Bisognano and Wichmann related to
Tomita–Takesaki’s modular theory? The link, although not used
directly, was already remarked by Bisognano and Wichmann in
their original paper.[18] In fact, they are able to provide one of the
very few concrete and explicit realizations of the modular couple
(Δ, J). The special properties of the modular couple, explicit in
their case, play a crucial role in their proof of Haag duality.
The von Neumann algebras they consider are, clearly, the

wedge local algebras (WR) and (WL). A very general result
of relativistic QFTs, that goes by the name of Reeh–Schlieder’s
theorem,[64,65] ensures that the vacuumΩ is cyclic and separating
for (WR) (and (WL)). Hence, there exists a modular couple
(ΔR, JR) associated to the vacuum on the right wedge local algebra
(and analogously for the left wedge). To write the couple explic-
itly, let us consider the unitary realization of the group of boosts(
U
(
Λ(s)

))
s∈ℝ

. As any strongly continuous unitary group, it can

be written by Stone’s theorem as

U
(
Λ(s)

)
= eisK (38)

with K some self-adjoint operator on ℋ, the quantum genera-
tor of the Lorentz boost. In addition, let us denote by Θ the CPT
operator on ℋ, where CPT stands for charge-parity-time rever-
sal (such an operator can always be defined, both abstractly and
when possible concretely, on a relativistic QFT). Then

ΔR = e−2𝜋K

JR = ΘU
(
R1(𝜋)

)
(39)

Hence, it also follows that the modular group of the right
wedge is given by the adjoint action of the group of boosts(
U
(
Λ(2𝜋s)

))
s∈ℝ

.

This remarkable aspect of Bisognano–Wichmann’s construc-
tion is key for applications: it paved the way to the use of Tomita–
Takesaki’s theory as the foundational motivation of important
concepts of both theoretical and experimental physics, in partic-
ular that of entanglement Hamiltonian.

3.3. The Modular Hamiltonian as an Entanglement Hamiltonian:
Relation to Unruh’s Effect

To explain the connection (even more so, the identification) be-
tween modular and entanglement Hamiltonians, it is useful to
reformulate the Bisognano–Wichmann setting in a slightly dif-
ferent way.
We are given a quantum theory, that is bipartite: one part

consists of the right wedge, and the observables (WR) local-
ized on it, the rest of all other observables. The vacuum state
𝜔Ω(= |Ω⟩⟨Ω|) is a “special state,” being the ground state of the
whole system. It is also a state when restricted to the subsystem
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of local observables (WR), again playing a special role: it is in
fact faithful, and thus the corresponding modular couple (ΔR, JR)
can be defined.
However, in making the restriction to the wedge and its lo-

cal observables, the nature of the vacuum state changes. In
fact, as we explained in 3.1.2, 𝜔Ω is now a thermal equilibrium
state, at temperature 𝛽 = −1, for the modular group of the right
wedge, that corresponds to the adjoint action of the group of

boosts
(
U
(
Λ(2𝜋s)

))
s∈ℝ

, as discussed above. Equivalently, defin-

ing the entanglement Hamiltonian as H = 𝛽−1K, and time as
t = −(2𝜋𝛽)s, one obtains that 𝜔Ω is an equilibrium state at tem-
perature 𝛽 for the entanglement Hamiltonian time flow. We can
rephrase the last statement in a more physical fashion:

In a relativistic field theory, tracing out the degrees of free-
dom other than the ones localized on the right wedge, thermal-
izes the vacuum. The resulting state is an equilibrium (Gibbs)
state, at inverse temperature 𝛽 <∞, with respect to the flow
generated by the entanglement Hamiltonian H, given by a
suitable rescaling of the generator of Lorentz boosts K.

The general physical definition of an entanglement Hamilto-
nian is indeed the Hamiltonian (in a subsystem) with respect to
which the partial trace (with respect to the other subsystem) of a
ground or equilibrium state on the total bipartite system thermal-
izes. So, the entanglement Hamiltonian and the modular Hamil-
tonian of a von Neumann sub-algebra represent the same phys-
ical concept (provided that the considered state is faithful on the
sub-algebra, but that is mostly a mathematical nuisance).
In a very powerful and almost unique way, Bisognano–

Wichmann’s theorem provides an explicit form for the entangle-
ment Hamiltonian on aMinkowski wedge, for the vacuum of any
relativistic field theory.
Let us conclude by remarking that the thermalization of the

vacuum in Bisognano–Wichmann is intimately related (essen-
tially, a mathematical proof) to Unruh’s effect. In fact, the trajec-
tory of the spacetime point (0, a−1, 0, 0) under the boosts Λ(s) is
that of a uniformly accelerated motion on the right wedge, with
acceleration a. For an observer on this trajectory that uses his
proper time 𝜏 = s

a
as the time coordinate, the generator of time

translations, in the coordinate system at rest with her/him, is
none other thanH = aK. Therefore, by Bisognano–Wichmann’s
theorem, the vacuum state 𝜔Ω is thermalized for her/him, with
temperature

T = a
2𝜋

(40)

that, up to restoring the physical constants always omitted by
mathematicians, is exactly the Hawking–Unruh temperature. In
his book,[49] Haag goes even further by arguing that the right
wedge, populated by observers that are constrained to never leave
it, provides the simplest example of an event’s horizon, and this
is why Unruh’s temperature coincides with Hawking’s tempera-
ture. Wemerely report this interpretation as a nice little extra fea-
ture, to conclude this section, and hopefully to further invite the
readers to the exploration of Tomita–Takesaki’s and Bisognano–
Wichmann’s beautiful mathematical works.

4. Entanglement Hamiltonians of Integrable
Models

In the previous section we took a detour in algebraic field the-
ory in order to provide a strict mathematical background to the
BW result and its CFT generalizations in Section 2. These are the
most important examples where the EH of a system composed by
continuous degrees of freedom is exactly tractable. From here on
we shall rather turn our attention toward particular lattice mod-
els, whose low-energy behavior is known to be described by a rel-
ativistic field theory. Then the most important question is how
the results derived for the EH in the QFT context generalize to
these lattice systems. Indeed, the presence of the lattice breaks
the Lorentz invariance of the theory, which is central to the BW
theorem. Nevertheless, the continuum results turn out to pro-
vide, after a proper discretization, a very accurate description of
the lattice EH. In this regard integrable systems play an impor-
tant role, since they allow for explicit analytical results. These are
available for two different subsystem geometries, namely a half-
infinite chain corresponding to the BW setting, as well as a fi-
nite interval.

4.1. Half Chain

The RDM of a half-chain 𝜌 ∝ exp(−half) can be related to the
corner transfer matrix (CTM) of a corresponding 2D statistical
physics model.[21] The CTM was introduced and studied for in-
tegrable models by Baxter,[22,66,67] showing that they allow for an
explicit analytical treatment in the thermodynamic limit. We first
consider the ground state of the transverse Ising (TI) chain

Ĥ = −
∞∑

n=−∞

(
𝜆 𝜎xn𝜎

x
n+1 + h 𝜎zn

)
(41)

where the half-chain RDM is related to the CTM of the 2D Ising
model.[21] The EH has different forms in the ordered (h < 𝜆) and
the disordered phase (h > 𝜆) of the chain and reads[68,69]

half =
⎧⎪⎨⎪⎩
−2I(k′)

∑∞
n=1

[
n 𝜎xn𝜎

x
n+1 + k

(
n − 1

2

)
𝜎zn

]
, ordered

−2I(k′)
∑∞

n=1

[
k n 𝜎xn𝜎

x
n+1 +

(
n − 1

2

)
𝜎zn

]
, disordered

(42)

where I(k′) is the complete elliptic integral of the first kind, and
the elliptic parameters are defined as k = min(𝜆∕h, h∕𝜆) and k′ =√
1 − k2. Hencehalf has exactly the BW form, the energy density

being multiplied with a linear term, albeit with a prefactor that
depends explicitly on the ratio h∕𝜆. The EH can also be diagonal-
ized exactly and has an equidistant single-particle entanglement
spectrum[21]

𝜀l =

{
2l 𝜀 ordered
(2l + 1) 𝜀 disordered

, 𝜀 = 𝜋
I(k′)
I(k)

(43)

with l = 0, 1,… and spacing 𝜀. Similar results are found for the
anisotropic XY chain, where the RDM is related to the CTM of a
triangular Ising model.[70]
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The CTM approach can also be applied to the interacting XXZ
chain

Ĥ =
∞∑

n=−∞

(
𝜎xn𝜎

x
n+1 + 𝜎

y
n𝜎

y
n+1 + Δ𝜎zn𝜎

z
n+1

)
(44)

in the gapped phase (Δ > 1), where the half-chain RDM is related
to the CTM of the six-vertex model,[21] which was studied previ-
ously in refs. [22, 71, 72]. This has again a lattice BW form with

half = c(Δ)
∞∑
n=1

n
(
𝜎xn𝜎

x
n+1 + 𝜎

y
n𝜎

y
n+1 + Δ𝜎zn𝜎

z
n+1

)
(45)

where the constant c(Δ) depends on the anisotropy. The EH can
again be diagonalized exactly, and the spectrum is similar to the
TI case (43) in the ordered phase, with the spacing given by 𝜀 =
arcoshΔ. Note that the above results even generalize to the XYZ
chain (related to the eight-vertex model) both at the level of the
CTM[73] as well as the corresponding entanglement spectrum.[74]

The CTMmethod is, however, not restricted to spin chains but
allows for the study of continuous variable systems as well, such
as the harmonic oscillator chain

Ĥ = 1
2

+∞∑
n=−∞

[
p2n + 𝜔

2 q2n + K(qn+1 − qn)
2
]

(46)

Choosing K = k and 𝜔 = 1 − k, the RDM is related to the CTM of
the 2D Gaussian model with an elliptic parameterization of the
couplings.[75] The EH of the half chain then reads[76]

half = 2I(k′)
∞∑
n=1

[(
n − 1

2

)
p2n +

(
n − 1

2

)
(1 − k)2 q2n

+k n
(
qn+1 − qn

)2 ]
(47)

which has again a BW form, with single-particle spectrum as
for the TI chain in (43) in the disordered phase. Note that, via
a canonical transformation of the positions and momenta, one
can also obtain the result for the parameterization K = 1 and ar-
bitrary 𝜔. In this case the elliptic parameter k is the solution of

𝜔2 = (1 − k)2∕k and the prefactor of the EH reads 2I(k′)
√
k.[77]

4.2. Interval

The case of an intervalA = [1, N] ismore difficult to handle, and a
direct calculation of the EH is only possible for free lattice mod-
els. In particular, analytical results are available for an infinite
hopping chain

Ĥ = −
∑
n

t (c†ncn+1 + c†n+1cn) +
∑
n

d c†ncn (48)

where c†n and cn are fermion creation/annihilation operators. Set-
ting t = 1∕2 and d = cos qF , the Hamiltonian (48) is diagonal-
ized by a Fourier transform and the ground state is a Fermi sea
with occupied momenta q ∈ [−qF, qF ]. Due to Wick’s theorem,

Figure 3. Hopping matrix elements in −H∕N and nearest-neighbor hop-
ping in 𝜋T (green) as functions of the position for N = 40 sites at half
filling. The third and fifth neighbor hopping amplitudes are magnified by a
factor of 20 for better visibility. Reproduced with permission.[83] Copyright
2017, Institute of Physics.

the RDM is given by 𝜌A = Z−1 exp(−), where the EH is another
free-fermion operator[78–80]

 =
N∑

i,j=1
Hi,jc

†
i cj (49)

The matrix elements are given by

Hi,j =
N∑
k=1

𝜙k(i) 𝜀k 𝜙k(j) , 𝜀k = ln
1 − 𝜁k
𝜁k

(50)

where 𝜁k and 𝜙k(i) are the eigenvalues and eigenvectors of the
reduced correlation matrix CA, with matrix elements Ci,j = ⟨c†i cj⟩
restricted to i, j ∈ A.
The expression (50) allows for a calculation of the EH, which

requires very high precision numerics, as the dominant 𝜀k contri-
butions originate from eigenvalues 𝜁k that lie exponentially close
to zero or one. The analytical treatment, however, follows a differ-
ent route based on the existence of a commuting tridiagonal op-
erator T ,[81,82] withmatrix elements Ti,i = di and Ti,i+1 = Ti+1,i = ti
given by

ti =
i
N

(
1 − i

N

)
, di = −2 cos qF

2i − 1
2N

(
1 − 2i − 1

2N

)
(51)

Thus T describes an inhomogeneous hopping chain, with hop-
ping amplitudes following the exact same parabolic profile as
one would obtain from a proper discretization of the CFT re-
sult (9). This suggests the relation H = −N𝜋T , which was also
found for the low-lying 𝜀k eigenvalues.

[82] However, compared to
the numerical results, one finds some discrepancies as shown in
Figure 3 for half filling (qF = 𝜋∕2). Indeed, one observes a slight
deviation from the expected nearest-neighbor hopping profile, as
well as nonvanishing hopping to more distant sites (note that
only odd distances appear due to the particle-hole symmetry).
The difference can be understood by a proper comparison of

the spectra of h = −H∕N and T , which was studied by Slepian
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in ref. [81]. It turns out that, in the limit N → ∞, one can relate
them via a series expansion

h =
∞∑
m=0

𝛼m𝛽mT
2m+1 (52)

with appropriate constants 𝛼m and 𝛽m.
[83] The leading order has

𝛼0𝛽0 = 𝜋 and thus gives the expected CFT behavior. However,
higher powers of T generate more distant hopping and alsomod-
ify the nearest-neighbor one. Interestingly, the matrix elements
of h can be found in a closed form via generalized hypergeomet-
ric functions. In particular, in the limit i, N → ∞ with x = i∕N
fixed, one has ref. [83]

hi,i+1 = 𝜋 x(1 − x) 3F2
(1
4
, 1
2
, 3
4
; 1, 2;

[
4x(1 − x)

]2)
(53)

where the parabolic profile is multiplied by a function which in-
creases smoothly from 1 at x = 0 to 1.076 at x = 1∕2 and thus
gives a deviation of roughly 8% in the middle. Similar formulae
are found for hi,i+r with r odd, showing a strong suppression of
the distant hopping. Nevertheless, the maxima of the profiles at
x = 1∕2 decays only as a power law r−3.[83] Note that the analytical
treatment can be extended for general fillings, where the relation
(52) between h and T becomes more complicated,[83] and also
hopping with even r appear.
A similar approach can also be applied for the study of the EH

in a finite chain. In fact, a commuting tridiagonal matrix T ex-
ists for both periodic[84] as well as for open chains,[85] describ-
ing a hopping profile that is again the discretized version of the
CFT result in the corresponding geometries.[28] Analogously to
the infinite chain case, however, the nearest-neighbor hopping in
the EH is slightly larger around its maximum, and longer-range
terms withmuch smaller amplitudes are also present. Numerical
investigations suggest a relation similar to (52), where the coef-
ficients depend only on the ratio of subsystem and full system
lengths, but their analytical expression is not known explicitly.[85]

Note that, based on the theory of bispectrality, commuting tridi-
agonal matrices have also been identified for particular inhomo-
geneous free-fermion Hamiltonians,[86,87] the corresponding re-
lation (52) was, however, not yet studied.
Finally, we discuss the case of a non-critical chain, obtained

by dimerizing the couplings t2n−1 = (1 − 𝛿)∕2 and t2n = (1 + 𝛿)∕2
of the hopping chain in (48). Using the spin representation
and introducing dual variables,[88–91] such a Hamiltonian can
be mapped into two interlacing TI chains where h1 = t2n−1 and
𝜆1 = t2n, whereas the couplings in the second chain are inter-
changed. For a half chain, this would yield an EHof the form (42),
where the two terms are now replaced by the even and odd hop-
ping terms, with the elliptic parameter k = (1 − 𝛿)∕(1 + 𝛿) multi-
plying the odd ones for 𝛿 > 0. One can now argue that, if the size
of the interval ismuch larger then the correlation length (N ≫ 𝜉),
then the contributions from the two boundaries should decouple
in the RDM. Thus the EH should effectively behave as a half-
infinite chain from each end, with the profile given by

h2i−1,2i ≃ 2I(k′) kΔ((2i − 1)∕N) , h2i,2i+1 ≃ 2I(k′)Δ(2i∕N) (54)

Figure 4. Nearest-neighbor hopping in the EH of the dimerized chain for
various 𝛿 andN = 40. The hopping across odd bonds (empty symbols) are
divided by a factor of k. The dashed lines have slopes 2I(k′) corresponding
to the result (54). Reproduced with permission.[77] Copyright 2020, Insti-
tute of Physics.

with the triangular function

Δ(x) =

{
x 0 ≤ x ≤ 1∕2
1 − x 1∕2 ≤ x ≤ 1

(55)

The numerical results are shown in Figure 4, and are well de-
scribed by (54) in the vicinity of the interval edges, with some
deviations around the center. The triangular approximation im-
proves with decreasing correlation length 𝛿 → 1, however, toward
the critical limit 𝛿 → 0 one observes a crossover to a roughly
parabolic form.

4.3. Continuum Limit

The exact form of the EH for an interval in a critical free-fermion
chain thus shows characteristic deviations from the continuum
CFT results, which need to be properly understood. On the one
hand, one could check whether the discretized CFT result (i.e., re-
placing  → −N𝜋T in the RDM) would produce an error in the
expectation values of local observables that vanishes in the limit
N → ∞. Indeed, using this approximation, one observes that the
fermionic correlation matrix CA can be reproduced to very high
accuracy even for smaller values of N (although its translational
invariance is lost). Moreover, one can make even stronger state-
ments by considering the trace distance between the two RDMs
as a function of N, as shown in the next section.
On the other hand, it would be desirable to understand how the

proper continuum limit of the lattice EH arises, when we intro-
duce a lattice spacing s and consider the limit N → ∞ and s → 0
with 𝓁 = Ns fixed. For the simple homogeneous hopping chain
(48), the standard procedure is to linearize the dispersion around
the Fermi points ±qF, and introduce slowly varying fields that de-
scribe left- and right-moving fermions. Then one ends up with
a massless Dirac Hamiltonian with a single parameter given by
the Fermi velocity vF. Let us now add long-range hopping over
2p + 1 sites with amplitude t2p+1, which enters the dispersion
with a factor 2 cos[(2p + 1)qs] and thus modifies vF. Finally, as-
sume that the argument holds true for hopping amplitudes that
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Figure 5. Left: 𝛽(i) = vF(x)∕2𝜋𝓁 for an interval of N = 25 sites in a finite ring with subsystem ratio r = 1∕2. The symbols correspond to different cutoffs
P of the sum in (56), while the solid line shows the CFT result (10). Right: same for an interval ofN = 20 sites in an infinite chain at inverse temperature
𝛽 = 20, compared to the CFT result (12). Note the different vertical scales. Reproduced with permission.[92] Copyright 2019, Institute of Physics.

vary slowly in space t2p+1(x) = Nhi−p,i+p+1 as in the EH, where
x = is is a continuous coordinate. The space-dependent Fermi ve-
locity then reads[92]

vF(x) = 2𝓁
∑
p

(−1)p(2p + 1)hi−p,i+p+1 (56)

where the alternating factor is due to qFs = 𝜋∕2 at half filling. In-
serting (52), the resulting double infinite sum (56) can be carried
out exactly and delivers vF(x) = 2𝜋 x (𝓁 − x)∕𝓁, which is identical
to the weight function in the CFT result (9).
Hence, the functionmultiplying the energy density in the con-

tinuum treatment has now the interpretation of a local Fermi ve-
locity (instead of a local inverse temperature) that follows from
the lattice EH via (56). Remarkably, this relation can be general-
ized to arbitrary fillings and one obtains the exact same analytical
result for vF(x).

[92] The formula (56) can also be used in numerical
calculations for chains of finite length or at finite temperatures[92]

(see Figure 5), as well as for disjoint segments,[36] perfectly re-
producing the corresponding CFT results.[28,33] Furthermore, the
continuum limit of the EH for an interval in the harmonic chain
(46) can be dealt with along similar lines of thought. This yields
again the renormalized couplings as weighted sums over the di-
agonals of the lattice EH, perfectly reproducing the CFT result in
the massless limit.[93] In contrast, in the massive case one expe-
riences convergence issues with the sums,[77] which might indi-
cate that the EH becomes nonlocal even in the continuum limit,
as suggested by a perturbative treatment in the CFT context.[36]

5. Entanglement Hamiltonians on the Lattice
Beyond Exactly Soluble Models

The insight from integrable lattice systems is remarkable: the
functional form of BW is exactly recovered for massive theories
on the half chain, albeit with a prefactor that depends on themass
term. For gapless theories on the interval, one shall handle with
more care: however, there is typically a large overlap between the
exact and BW guessed Hamiltonian.

These works have stimulated the study of generic lattice
Bisognano–Wichmann (LBW) entanglement Hamiltonians, to
understand whether the latter have predictive power. In this sec-
tion, we will review the current status of this search. Instead
of following a historical perspective (which shall start with Li
and Haldane work on topological phases), we prefer to start
with critical 1D theories, that bridge more naturally to the pre-
vious section, as well as with the CFT predictions in Section 2.3.
We will then cover massive phases in 1D (including symmetry-
protected topological phases), and dimensions larger than one.
Before continuing, it is worthmentioning that, from the perspec-
tive of state characterization, entanglement Hamiltonians have
also been discussed in the context of representation of tensor net-
work states.[10] This research line, which has been proved very
insightful on its own, is quite distinct from the state characteri-
zation of generic Hamiltonian eigenstates that we discuss here,
so we refer the reader to specific reviews in the field for a detailed
discussion—see, in particular, Ref. [94].

5.1. Bisognano–Wichmann Theorem on the Lattice

As most field theory results, the Bisognano–Wichmann theorem
can be adapted to the lattice via space discretization. This proce-
dure is particularly delicate however, as one is dealing with what
is a very complicated operator (the logarithm of the RDM, cap-
turing arbitrary correlation functions), whose definition presents
challenges close to the boundary. We review here a formulation
of such discretization following Ref. [95], that is convenient for
both 1D and 2D systems.
For the sake of simplicity, we consider a square lattice, with a

bipartition as shown in Figure 6. We are interested in character-
izing the ground state wave function of a Hamiltonian that reads
as

H = Γ
∑

x,y,𝛿=±1

[
h(x,y),(x+𝛿,y) + h(x,y),(x,y+𝛿)

]
+ Θ

∑
x,y

l(x,y) (57)
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Figure 6. Graphical representation of the 2D lattice with partitions A and
B, and corresponding notations of the distance from the boundary in units
of the lattice spacing: nearest-neighbor terms along the vertical (y) di-
rection, and local terms have distance n − 1∕2, while nearest-neighbor
terms along the horizontal (x) direction have distance n. Reproduced with
permission.[95] Copyright 2018, American Physical Society.

where the first two terms represent nearest-neighbor contribu-
tions along the x and y directions, respectively, and the last term
is on-site.
Discretizing at first order in the lattice spacing, the BW theo-

rem leads to the following lattice BW EH:

A,BW = 𝛽EH

∑
x,y,𝛿=±1

(
Γxh(x,y),(x+𝛿,y) + Γyh(x,y),(x,y+𝛿)

)
+
∑
x,y

Θx,yl(x,y)

(58)

where the inhomogeneous couplings and on-site terms depend
on the distance from the boundary separating subsystem A and
B (see Figure 6) according to the geometry of the original sys-
tem, and the inverse entanglement temperature 𝛽EH includes
both constants and the characteristic velocity on the lattice (that
corresponds to the speed of sound for critical theories).

5.1.1. Half-Plane Lattice BW EH

For the case of a system dynamics that is governed by a generic,
relativistic field theory (either massive or not), the BW theorem
suggest the following dependence of the EH couplings:

Γx = xΓ

Γy =
(
x − 1

2

)
Γ

Θ(x,y) =
(
x − 1

2

)
Θ (59)

Note that there is an important point to be emphasized, that is,
what is the corresponding distance from the boundaries of the
various terms (a feature also encountered in the case of the Ising
half chain (42) in the previous section). The rule chosen here is as
follows: for local terms, we took as distance from the boundary
their shortest Euclidean distance. For instance, in the 1D Ising
case for hn, this corresponds to n − 1∕2. For terms defined on

bonds (such as kinetic energy and nearest-neighbor spin cou-
plings), one instead utilizes as a distance from the boundary the
shortest Euclidean distance from the center of the bond (see Fig-
ure 6). While strictly speaking applicable to the infinite half plane
only, the formulas above are expected to work equally well for
other kinds of partitions with a single interface and no angles—
such as half partitions of infinite cylinders. Finally, we note that
the same discretization is obtained as a formulation of the lattice
Unruh effect.[96]

5.1.2. Finite Partition in a Finite Chain

The formulas above, while very generic, are strictly speaking ap-
plicable solely to the case of an infinite partition in an infinite
system. For the case of a (1 + 1)-d conformal field theory, it is
possible to adapt to the lattice the conformal extensions discussed
in Section 2.3. In particular, for a periodic chain of length L, the
half-partition case reads

Γx = L
2𝜋

sin
(2𝜋x

L

)
Γ

Θx = L
2𝜋

sin
(2𝜋
L

(
x − 1

2

))
Θ (60)

while for the open chain

Γx = L
𝜋
sin

(
𝜋x
L

)
Γ

Θx = L
𝜋
sin

(
𝜋

L

(
x − 1

2

))
Θ (61)

To connect the above equations to the CFT expressions in Equa-
tions (10) and (11), the corresponding inverse entanglement tem-
perature shall satisfy 𝛽EH = 2𝜋

v
, where v is the speed of sound of

the lattice model. Note that v depends on the model parameters
and may differ from the maximal group velocity. For instance,
in case of free fermions discussed in Section 4, v is simply the
Fermi velocity and thus depends on the filling. In principle, the
CFT predictions can also be lattice regularized at finite tempera-
ture in the same manner. The main questions are then how well
such lattice regularizations approximate the exact EH, which can
be investigated numerically.

5.2. Numerical Investigations of Lattice Bisognano–Wichmann
Entanglement Hamiltonians in 1D Systems

Differently from the direct evaluation of the lattice entangle-
ment Hamiltonian available for certain integrable models,[76,97]

for non-integrable systems, as well as for interacting systems un-
der arbitrary boundary conditions, investigations of the lattice
BW theorem as formulated in the previous paragraphs are typ-
ically carried out in an indirect manner. The reason is that a di-
rect extraction of the terms in the EH is a computationally cum-
bersome operation, that, to date, can only be performed utiliz-
ing a specific ansatz for the couplings. At the exact level, this
is typically feasible only on relatively small system sizes. Ap-
proximate numerical schemes have been devised, utilizing ei-
ther parent-Hamiltonian-type methods,[98] or quantum Monte
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Figure 7. Relative difference between the lattice BW EH, 𝜌A,BW, and the microscopic RDM 𝜌A, for a finite partition A of length 𝓁 in the Ising model at
the critical point. Left panel (interval in a infinite chain): difference between nth moments of the RDM. Right panel (interval in a finite chain): decay of
different distances (F: Uhlmann fidelity; Dn: normalized n-distances) between the lattice BW EH and the exact EH. Red lines are proportional to 𝓁−2:
the agreement with the fit is extremely good, so that most points are actually beneath the fit line. Reproduced under the terms of the Creative Commons
CC-BY license.[101]

Carlo sampling.[99] We will comment on those at the end of the
next subsection.
The indirect route to study EH of interacting systems relies

on validating a posteriori the lattice BW EH. In fact, what one
is really checking is whether, for the ground state of a given
model Hamiltonian, the true EH and the lattice BW EH have the
same properties up to a given threshold error. Various types of
tests have been devised for this purpose. The most immediate
choice is to directly compare their spectra and their eigenstates;
more “coarse-grained” tests include entropies (in this context,
construed as moments of the distribution of the entanglement
spectrum) and expectation values of order parameters and cor-
relation functions. In some cases, it is also possible to compare
the operator distance(s) between the EH and the lattice BW EH:
those are by far the strictest tests. In the following, we present
a few, selected examples that illustrate potentials and challenges
of these various approaches. We will denote with 𝜌A the sys-
tem RDM, and with 𝜌A,BW the one obtained from the lattice
BW EH.

5.2.1. Ising Models: Finite-Volumes and Long-Range Interactions

We have seen in the previous section that the EH of the Ising
model away from its critical point, for the half-chain partition in
an infinite chain, is exactly given via the CTM. At the critical point
and for finite partition sizes, an exact solution is not available.
In Ref. [95, 100, 101], a systematic comparison between the lat-

tice BW EH and the real EH was performed, at the level of both
eigenvalues, eigenvectors, and full RDM. In Figure 7, some of the
properties of the RDM are considered, for partition sizes 𝓁 em-
bedded in an infinite chain (left), or finite periodic chain (right)
of length L = 4𝓁. The left panel shows how different moments
of the entanglement spectrum distribution (i.e., the traces of the
RDM to a given power) become closer and closer as the partition
size is increased. This signals that the entanglement spectrum
of the lattice BW EH is approaching the same distribution of the
real ES.

In the right panel, we show the scaling of several operator
distances between the real EH, and the lattice BW one, from
Ref. [101]. In particular, Dn are generalized Schatten distances

Dn =
1
21∕n

||𝜌A,BW − 𝜌A||n (62)

D = D1 is the trace distance, and the triangles are related to the

Uhlmann fidelity F = tr
√√

𝜌A,BW𝜌A
√
𝜌A,BW. All distances scale

systematically to zero in the thermodynamic limit. This signals
the fact that, while at finite size there are discrepancies between
the real and lattice BWEH, the corresponding RDMs converge to
the same operator in the limit of large enough partitions. Similar
results have been obtained for XY spin chains.
These types of accurate verification can only be performed for

quadratic Hamiltonians: it is, for instance, not feasible for the
(experimentally relevant) case of long-range Ising models. Still,
the latter entanglement spectra have been shown to be accurately
reproduced by the lattice BW EH, at least in cases where long-
range interactions decay as dipolar or van der Waals cases.[102]

5.2.2. Potts Models

For generic quantum systems, different ways of comparing 𝜌A
and 𝜌A,BW have been introduced. One practical method for nu-
merical simulations is to compare their eigendecompositions,
both in terms of spectrum and vectors. As far as the former is
concerned, the following ratios are typically employed[102]

𝜅𝛼 =
𝜖𝛼 − 𝜖0
𝜖1 − 𝜖0

(63)

where 𝜖𝛼 are the entanglement eigenenergies in increasing order.
Such ratios have the practical advantage of being insensitive to
the definition of entanglement temperature, as well as to additive
constants in A. In Figure 8, first two columns, we show such
ratios corresponding to 𝜌A (black line) and 𝜌A,BW (red dots) for the
case of the 1D three-state Potts model. For both OBC and PBC,
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Figure 8. Three-state Potts model. Left panels (two left-most panels in each row): comparison between the entanglement spectra of the microscopic
model (black lines) and the ones obtained from the lattice BW EH (red dots). Right panels (two right-most panels in each row): overlaps between
entanglement eigenvectors. Reproduced with permission.[95] Copyright 2018, American Physical Society.

as well as at (g = 1.0) or away from (g = 1.4) the critical point,
the lattice BW EH is able to accurately predict the full low-lying
spectrum down to values smaller than 10−6 even for the modest
system sizes considered here (the partition A is of length L∕2).
Note that the several degeneracies present outside of the critical
point (bottom row) are captured at the percent level.
Eigenvectors can also be compared one-by-one, at least for

small system sizes where a full diagonalization of the lattice BW
EH can be performed. In the right panels of Figure 8, we show
such comparison for a system of size L = 14, where the quantity
plotted is

M𝛼,𝛼′ = |⟨𝜓A;𝛼|𝜓A, BW;𝛼′⟩| (64)

Deviations from zero outside of the diagonal are smaller than
10−3, while degeneracies in the spectrum appear as finite terms
just next to the diagonals (both for g = 1.0, 1.4). Overall, the
agreement is excellent even at such small sizes.

5.2.3. Other Critical Chains

The analysis above has been performed for a broad variety of
critical points and phases, including Heisenberg chains, spin-1
bilinear-biquadratic, XX and XY models, and Hubbard models.
More recent works have also discussed different partitions, as
well as ladder systems.[103] Overall, the results support the picture
that is also suggested by the exactly soluble models discussed in
the previous sections: when not exact, the lattice BW EH often
provides a very accurate description of the real EH, both in terms
of its generic properties (e.g., locality and types of terms) and of
its spectral properties (eigenvalues and eigenvectors) as long as
the low-energy field theory is Lorentz invariant.

5.3. Entanglement Hamiltonian of Topological Matter and the
Li–Haldane Conjecture

As mentioned in the Introduction, the structure of the EH for
massive phases in condensed matter systems was motivated by

the investigation of the connection between entanglement and
topological phases. This connection was first formulated in Ref.
[17] in the context of fractional quantum Hall states. In particu-
lar, it was conjectured that the low-lying entanglement spectrum
of a connected partition features the same properties of the edge
modes of the theory corresponding to the given state. This ob-
servation was backed up by numerical simulations, and has later
been verified for a series of other situations in both 1D and 2D
systems. For a review, see Ref. [7].
As far as the entanglement Hamiltonian is concerned, the Li–

Haldane conjecture strongly suggests that the corresponding EH
is dominated, at low energies, by the edge Hamiltonian. This re-
sult is verymuch consistent with what one would expect from the
BW theorem: indeed, this argument was proposed in Ref. [104]
as a proof of the connection between edge mode spectra, and en-
tanglement spectra in half-infinite systems. In 1D systems, a fur-
ther insight can be gathered by directly studying the perturbed
CFT: in the case of a relevant perturbation, it has been shown
that the corresponding EH is given in terms of the chiral Vira-
sono operator—that, again, is consistent with BW theorem[105]

(this fact can be interpreted similarly to the case of CTM in the
context of integrable models). This fact has been confirmed on
the lattice on several models, including the Haldane and the Su–
Schrieffer–Heeger chain.[95,100,105]

5.4. Entanglement Hamiltonian of 2D Phases and Critical Points

The Li–Haldane conjecture motivated the study of the structure
of EH well beyond the 1D case—in particular, for 2D systems.
In those settings, considerably less is known, since there are no
available explicit expressions in general field theory for finite vol-
umes.
Direct tests of the accuracy of the lattice BW results in any di-

mension larger than one are extremely challenging for interact-
ing systems, as they often require the exact diagonalization of
the EH. However, it is possible to perform indirect tests based
on correlation functions, by performing quantum Monte Carlo
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Figure 9. Entanglement entropies of 2D lattice spin models obtained via metadynamics Monte Carlo sampling of the lattice Bisognano–Wichmann
entanglement Hamiltonian.[106] The left- and right-most panels show the scaling of bipartite entropy versus size in Heisenberg, XY, and Heisenberg-
bilayer models. The central panel singles out logarithmic corrections, whose coefficient is proportional to the number of Goldstone modes in a phase
that features spontaneous symmetry breaking of a continuous symmetry.[107] Reproduced with permission.[106] Copyright 2020, Institute of Physics.

(or, in principle, tensor network) simulations of the correspond-
ing model. The first examples in this direction have been the 2D
Heisenberg model and Heisenberg bilayer.[95,106] In both cases,
it was found that correlation functions obtained utilizing a “ther-
mal” sampling of the lattice BW EH asymptotically converge to
the value obtained by sampling the original Hamiltonian, sub-
stantiating the validity of the approach (even if a finite size scaling
theory on how this works is presently lacking).
Based on these insights, the lattice BW EHwas utilized to pre-

dict properties that are inaccessible otherwise. One example is
the von Neumann entropy, that cannot be computed in conven-
tional MC simulations, and whose computation for 2D models
with DMRG methods can only be carried out for cylinders of
limited width. The advantage of the EH based approach is that
the computation of the von Neumann entropy at T = 0 is cast as
a computation of the entropy at finite temperature, but with re-
spect to the EH. This can be conveniently carried out utilizing
metadynamics—for instance, with a Wang–Landau algorithm.
A sample of the results obtained via the aforementioned

method is displayed in Figure 9. The first and third panels show
the entanglement entropy of a partition of size L∕2 × L in a torus
of size L × 2L for the Heisenberg model (HM), XY model (XY),
and bilayer Heisenberg model at the critical point (panel on the
right). In the first two cases, the effective field theory describes
the spontaneous symmetry breaking of a global SO(3) and U(1)
symmetry, respectively, while the third case is captured at low en-
ergies by a O(3) sigma model. The results prove that, for these
models, the dominant contribution to entropy is linear.
A finer analysis can be performed for the case of spontaneous

symmetry breaking. For those ground states, it was predicted[107]

that the scaling of the entropy shall follow

S(L) = aL + b ln(L) + d, b = nb∕2 (65)

with a, d non-universal constants, and nb the number of Gold-
stone bosons describing the symmetry-breaking pattern. In the
central panel of Figure 9, we show a finite-entropy difference
that allows to isolate the logarithmic term by canceling out the
area law ones. A clear linear scaling (in ln L) is observed, and the
corresponding linear fit returns values of nb in agreement with
field theory predictions. We note that these results are well be-
yond what can be computed with state of the art tensor network
methods, since the values of the corresponding entanglement

entropies would require—for the case of matrix-product-state
wave functions—prohibitive bond dimensions. This demon-
strates how leveraging on the BW EH enables computational
methods that allows to make predictions in otherwise inacces-
sible regimes.

5.5. Entanglement Hamiltonians Out of Equilibrium

So far, we have solely treated equilibrium systems. Unfortunately,
extensions of the BW theorem for real time are not known.
The only exception is CFT, where it is possible, for certain
quench protocols, to identify the EH correspondent to a finite
partition.[28,29,108] Typically, such EH depend on the full stress-
energy tensor (not only on its energy density component, T00),
so their direct application to lattice models requires more cau-
tion. Still, some results exist for the harmonic and free-fermion
chains,[109] and we will see in the next section one working exam-
ple in the context of quantum spin chains.

6. Entanglement Hamiltonians in Experiments

We have introduced in the previous sections closed form for-
mulas for the entanglement Hamiltonian of lattice models. The
fact that the entanglement Hamiltonian can be expressed in a
form that is reminiscent of the original Hamiltonian allows us to
devise methods to probe the entanglement Hamiltonian exper-
imentally. Below we review recent theoretical and experimental
works that showed how to make use of the concept of entangle-
ment Hamiltonians in order to experimentally extract the entan-
glement properties of a many-body system.
We organize this section in three parts: In Section 6.1, we show

how one can use the physical implementation of the entangle-
ment Hamiltonian in a experiment as a scalable method to mea-
sure the entanglement spectrum. We then show in Section 6.2
how one can efficiently measure the entanglement Hamiltonian
based on local ansatz that are inspired from the BW theorem.
These two approaches are finally combined in Section 6.3. In ad-
dition, and in order to help the reader in comparing these meth-
ods, we provide in Table 1 a summary for each protocol of the
different experimental requirements, and of quantities that can
be measured.
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Table 1. Summary of methods for probing entanglement Hamiltonians. Ref. [116] combines Ref. [102] and Ref. [117] by considering a variational learning
procedure of the EH, where estimations of the EH that are iteratively updated are physically applied on the state 𝜌A.

Method States implemented Types of measurement Measured quantities

Quantum simulation of EHs[102] The eigenstates of  Spectroscopy Entanglement spectrum

EH tomography[117] |𝜓⟩ with reduced states 𝜌A Tomography on 𝜌A Entanglement Hamiltonian

Entanglement spectrum

Variational estimation of the EH[116] |𝜓⟩, with 𝜌A time evolved Time-evolved observables Entanglement Hamiltonian

with estimations of  Entanglement spectrum

Figure 10. Extraction of ES from quantum state tomography in a quantum computer.[115] a) Quantum circuit to prepare a symmetry-protected topo-
logical ground state with 8 qubits. The symbol H indicates the Hadamard gate, which is a single qubit gate. The double dot symbol refers to the two
qubit controlled-Z gate. b) Corresponding ES extracted via tomography, showing the fourfold ES degeneracy of the Haldane phase. Quantum simulation
and spectroscopy of entanglement Hamiltonians.[102] c,d) Implementations of entanglement Hamiltonians using interactions mediated with inhomo-
geneous laser beams in Rydberg and trapped ions platforms. e) Entanglement spectroscopy of the Haldane phase. The positions of the peaks signal the
eigenvalues of the entanglement Hamiltonian. Here, we consider 𝓁 = 8 and L = 100. f) Normalized entanglement spectra obtained for a large subsystem
of 𝓁 = 40 lattice sites. a, b) Reproduced with permission. Copyright 2018, American Physical Society.[115] c–f) Reproduced with permission. Copyright
2018, Springer.[102]

6.1. Implementation of Entanglement Hamiltonians

The first motivation behind the approach of quantum simula-
tion of entanglement Hamiltonians presented in Ref. [102] is
the measurement of entanglement spectra (ES). The question
of the experimental access to the ES is a long-standing chal-
lenge for quantum simulation. Measuring the ES allows us,
for instance, to understand the structure of symmetry-protected
topological phases,[110] or more generally to test the Li–Haldane
conjecture.[17,111] The measurement of the ES can also be used to
extract the entanglement entropies that quantify the presence of
entanglement in correlated quantum systems.[6]

In the standard scenario of quantum simulation,[112] a quan-
tum state of interest |𝜓⟩ is realized based on the physical im-
plementation of the Hamiltonian H of a lattice model. This im-

plementation can be based on ultracold atoms, ions, or super-
conducting circuits realizing a quantum computer, etc. For in-
stance, we can be interested in the entanglement properties of
the ground state |𝜓0⟩ ofH, and we would like to probe the RDM
𝜌A = TrS−A(|𝜓0⟩ ⟨𝜓0|) of the subsystem A. Having access to the
ES, the eigenvalues of 𝜌A, is notoriously difficult in quantum sim-
ulation or quantum computing. One either needs to measure the
full density matrix 𝜌A via quantum state tomography, which re-
quires exponentially many measurements.[113] Alternatively, one
can use interferometric methods that have the drawback of re-
quiring a large number of multiple copies of the system.[114] We
show for illustration in Figure 10a,b, a measurement of the ES
performed in a quantum computer,[115] and obtained via quan-
tum state tomography. In Figure 10a, the quantum circuit to cre-
ate the ground state of a symmetry-protected topological phase
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with L = 8 is represented. Quantum state tomography is then re-
alized on a RDM of 𝓁 = 4 qubits, which gives the ES shown in
Figure 10b.
Beyond small qubit sizes, full state tomography is no longer

an option due to the exponential cost in terms of measurements.
In order to access easily ES for large systems, it was proposed
in Ref. [102] to physically implement the entanglement Hamil-
tonian  in an experiment. Instead of preparing the ground
state |𝜓0⟩ via the implementation of H, as in the “traditional”
scenario of quantum simulation, one prepares the eigenstates|𝜓̃𝛼⟩ of the entanglement Hamiltonian . As shown below,
such quantum simulation of the entanglement Hamiltonian
can be used in particular to extract, in a scalable way, the
entanglement spectrum using, well established, spectroscopy
techniques.

6.1.1. Implementing the Entanglement Hamiltonian

The idea behind Ref. [102] is that the BW theorem provides
an experimentally friendly method to implement entangle-
ment Hamiltonians. In particular, the lattice version of the
BW theorem Equation (58) gives an expression of the entan-
glement Hamiltonian  in terms of particles operators (spins,
bosons/fermions), which we can relate in the context of an
experiment to the particles of the system (cold atoms, etc). Also,
the locality of copes well with the local character of the interac-
tions that can be implemented between atoms, ions, etc. Finally,
as these interactions are often mediated using tunable controls,
such as external lasers, we can easily engineer inhomogeneous
terms following the prescription of the BW theorem. This is il-
lustrated in Figure 10c,d for Rydberg and trapped ions quantum
technologies implementing the entanglement Hamiltonian of
quantum Ising models. Using cold atoms placed in optical lat-
tices, the EH can be engineered via laser-assisted tunneling,[102]

or other types of inhomogeneous optical forces.[118]

6.1.2. Entanglement Hamiltonian Spectroscopy

Once the EH is implemented in an experiment, one can explore
entanglement properties, in a scalable way, and using the stan-
dard tools of quantum simulation. In particular, in order to re-
veal the ES experimentally, one can first prepare the ground state|𝜓̃0⟩ with energy 𝜖0 of . The spectroscopy of is then realized
by applying a weak perturbation generated by a time-dependent
Hamiltonian h(t) = h sin(𝜈t). When the frequency of the pertur-
bation approaches an entanglement “transition,” 𝜈 ≈ 𝜖𝛼 − 𝜖0, the
corresponding eigenstate |𝜓̃𝛼⟩ is resonantly excited, and we ob-
serve a response of the system that can be detected bymonitoring
the dynamics of certain observables. In Figure 10e, this is illus-
trated for the case of the entanglement spectroscopy of the spin-
1 Haldane phase.[110] Here, the value of the first entanglement
transition vanishes in the thermodynamic limit, corresponding
to the presence of topological degeneracies in the entanglement
spectrum, see Figure 10f for a subsystem of 𝓁 = 40 sites. This
means that, by monitoring the closure of the entanglement gap
in such an experiment, we can reveal the topological nature of
the Haldane phase. Utilizing similar ideas, it has been proposed

in Ref. [106] that also moments of the ES distribution—such as
the von Neumann entropy—can be measured.

6.2. Measurements of Entanglement Hamiltonians

As described above, under the assumptions of the BW theorem,
we can reveal entanglement properties by physically implement-
ing the EH . In certain situations however, for example, away
from equilibrium, the BW theorem does not strictly apply. There-
fore we may wonder whether an experiment is able to measure
the entanglement Hamiltonian, and in particular check the valid-
ity of the BW theorem. Here, in contrast to Section 6.1, we have
in mind again the “traditional” scenario of quantum simulation
where an arbitrary state |𝜓⟩ with RDMs 𝜌A is physically realized,
cf., Table. 1. The goal is to measure the corresponding entangle-
ment Hamiltonian.
As the EH  is the matrix log of the density matrix 𝜌A, the

measurement of  is formally equivalent to quantum state to-
mography, and thus require in principle exponentially many
measurements.[113] In Ref. [117], it was however shown that one
can use the concept of entanglement Hamiltonians to perform
quantum state tomography more efficiently.
The entanglementHamiltonian tomography (EHT) protocol is

shown in Figure 11a. The system is subject to various measure-
ments, which provide an estimation of the densitymatrix 𝜌A. This
estimation is typically inaccurate because it was made from too
few measurements compared to the requirements of tomogra-
phy. However, this “poor” density matrix estimation is then fitted
to an ansatz 𝜌A ∝ e− that is based on a local EH , that is, in-
spired from the result of the BW theorem. As this ansatz is made
of a polynomial number of fitting terms in system size, very few
measurements are indeed necessary to obtain a faithful recon-
struction of the density matrix.
Interestingly, the process of using experimental measure-

ments to reconstruct the entanglement Hamiltonian can be real-
ized in the framework of randomizedmeasurements that provide
estimations of density matrices[120,121] (among other quantities,
see below). In Ref. [117], this was used to measure entanglement
Hamiltonians and spectra, based on existing randomized mea-
surements experimental data from Ref. [119]. In Ref. [122], it was
also proposed to use the method Ref. [117] (as well as the one
Ref. [116] presented in the next section) to experimentally study
the Li–Haldane conjecture. The corresponding experimental re-
constructing of the ES is shown in Figure 11b. Here the system
under study was a trapped ion spin chain that was evolved via the
long-range XY Hamiltonian.
Remarkably, the efficiency of EHT only relies on the fact that

the EH is local. In this case, the density matrix can be interpreted
as a Gibbs state of a local Hamiltonian (the EH), which, as shown
rigorously in Ref [123], can be indeed “learned” from few mea-
surements. Importantly, the method presented in Ref. [117] can
be used to prove the locality of the EH, and in particular for
ground states to verify the lattice version of the BW theorem.
Using a randomized measurement protocol for fidelity measure-
ments ref. [124] as subroutine, one can check that the EH is in-
deed faithfully estimated. If necessary, additional terms can also
be included to “enrich” the EH and to provide a better fit to the
experimental data.
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Figure 11. Measurement of entanglement Hamiltonians. a) Protocol for EHT ref. [117] based on fitting estimations of the density matrix with an ansatz
based on a local EH. b) Experimental reconstruction from EHT of the ES from the randomized measurements data of Ref. [119]. a) Reproduced with
permission. Copyright 2021, Springer.[117] b) Reproduced with permisson. Copyright 2021, American Physical Society.[116]

Figure 12. Measurement of entanglement Hamiltonians. a) Quantum variational learning of the entanglement Hamiltonian.[116] This is based on a
minimization procedure using as input a measurement of certain observables, and as outputs the variables that parameterize the EH. b) Numerical
illustration of the protocol, where the local terms of the EH are reconstructed at the end of the minimization procedure. Figure published in Ref. [116].

6.3. Combined Implementations and Measurements of
Entanglement Hamiltonians

The protocol[102] physically implements the EH  according
to the prescription of the BW theorem. Instead , the protocol
Ref. [117] measures the EH via a tomography of the density ma-
trix 𝜌A, and can in particular signal deviations from the BW theo-
rem. Recently, the advantages of these two approaches have been
combined in a new protocol presented in Ref. [116]. In this ap-
proach, one iteratively measures the EH, and implements it on
the quantum device in order to perform the entanglement spec-
troscopy. As shown in Figure 12a, the idea is to run an iterative
algorithm, where at each step n: i) we first realize a quantum
state |𝜓⟩, ii) we apply on a subsystem 𝜌A time evolution with
an estimation [n] =

∑
i i[n] of the EH, which is parameter-

ized with a polynomial number of local terms {i[n]}. Note that
such parameterization also occurs in the context of Hamiltonian
learning,[125–128] iii) we measure the response of the system, and

assess how the estimation [n] of the unknown EH can be im-
proved, see below. The sequence (i–ii–iii) is then repeated, until
the algorithm converges. At this point, we obtain a faithful esti-
mation of the EH, which can be then used for entanglement spec-
troscopy.
The procedure to update the estimation of the EH from amea-

surement, which is the crucial step (iii) of the protocol, builds on
the following observation: If the initial state 𝜌A has been time
evolved from , the final state must remain unchanged, that
is, 𝜌A(t) = e−it𝜌Ae

it = 𝜌A, because 𝜌A and  commute. There-
fore, we can translate the problem of finding into a minimiza-
tion problem. The cost function to be minimized is defined as
n(t) = |⟨On(t)⟩ − ⟨On(0)⟩|, where ⟨On(t)⟩ = Tr(Oe−i[n]t𝜌Ae

−i[n]t)
and O is a well chosen observable. The variables to be adjusted
are the local terms {j}. Suchminimization procedure can be ex-
ecuted on a classical computer, using as input the experimental
measurements of the cost function m=0,…,n(t), and as outputs the
variables {i[n + 1]} that parameterize the new EH candidate to
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be tested on the experiment. A numerical example of reconstruc-
tion of local terms parameterizing the EH is shown in Figure 12b.

6.4. Summary of the Experimental Section and Comparisons with
Other Methods

We have presented experimental protocols that take advantage
of the concept of entanglement Hamiltonians to probe entangle-
ment properties of many-body systems. These probing methods
are scalable in the sense that one requires a number of measure-
ments that scales polynomially in system size. This is much less
than the number of measurements required for state tomogra-
phy, which typically scale as r2D for density matrices 𝜌A of rank r
and dimension D.[113] As a direct consequence, while the ES was
previously measured based on tomography[115] on moderate sys-
tem sizes of 4 qubits, the protocols presented above show how to
measure the ES in much larger systems.
Having access to the ES and EH also give access to any en-

tanglement property, such as entanglement entropies. Compared
to alternative methods based on implementing multiple copies
to measure Rényi entropies,[129–132] negativities[133] (and also the
ES[114]), the protocols presented above involve single instances
of the quantum states and appear thus as more experimentally
friendly. Finally, protocols based on measuring statistical correla-
tions between randomizedmeasurements have been also devised
to measure entanglement entropies,[119,134–138] and entanglement
negativities.[139,140] These protocols have the advantage of not
making assumptions on the state, and of not requiring multi-
ple copies. However, they require, in experiments with N qubits,
an exponential number of measurements 2𝛼N , with a modest ex-
ponent 𝛼 ≤ 1 compared to tomography. As described above, ran-
domized measurement protocols can also be combined with EH
tomography.[117]

7. Conclusions and Outlook

The characterization of quantum correlations in quantummany-
body systems is of paramount importance to deepen our un-
derstanding of physical phenomena, with direct applications to
quantum technologies. In this review, we have summarized how
the entanglement Hamiltonian constitutes an extremely power-
ful tool to carry out such characterization. Our presentation has
followed the three parallel lines that have characterized its study:
quantum field theory, integrable systems, and topological matter.
Those three lines—that have had very little overlaps for almost
30 years—have been mutually intersecting over the last decade,
providing deep insights on the structure of equilibrium state of
matter. We have tried to emphasize as much as possible such in-
tersections, and in particular, the pivotal role played by exact re-
sults in both axiomatic quantum field theory and integrable sys-
tems along these developments.
The overarching message that this review summarizes is that,

for most physical states of interest to many-body theory, the en-
tanglement structure of bipartitions simplifies dramatically, and
is in fact captured by local (inhomogeneous) operators, featur-
ing only few-body terms, similarly to conventional Hamiltonian
dynamics. Such a structure gives direct access to both a physi-
cal interpretation of entanglement (via, e.g., Unruh effect), and

paves the way to powerful applications in quantum information
processing, includingmethods tomeasure entanglement spectra
and even perform quantum state tomography based on the sim-
plified structure of the entanglement Hamiltonian—methods
that have already been demonstrated on experimental data.
There are a number of open questions in the field. A first set of

questions is related to the structure of the entanglement Hamil-
tonian in different setups from the ones described here. One im-
portant example is, what is the structure of entanglement Hamil-
tonians out of equilibrium: here, the present understanding is
limited to specific quench protocols in conformal field theory, and
a few numerical examples. Deeper insights on the entanglement
structure after quench may help shedding light on the origin of
the so-called entanglement barrier, and on the evolution of oper-
ator entanglement along thermalization, just to name two appli-
cations.
Another field where little is known is the case of disconnected

partitions: while it is known that entropies of such partitions
are more informative than the ones of connected partitions for
specific cases,[141–143] very little is known about the correspond-
ing EH, except for free field theories (see Section 2.5). Beyond
numerical studies, it would be very intriguing to see whether it
is possible to at least partly address such questions in the con-
text of axiomatic quantum field theory: exact results such as the
Bisognano–Wichmann theorem have proven pivotal so far, and
one expects similar impact on the cases above. This could also
help shed light onmixed state entanglement in those settings.[144]

Another set of questions concerns applications that leverage on
the known (or assumed) structure of entanglement Hamiltoni-
ans to empower tools in quantum information processing. While
it is challenging to speculate on future applications, the success-
ful example of tomographic reconstruction methods (one, if not
the most, challenging characterization of quantum states) is def-
initely a strong basis to build future applications on.
Until recently, the study of entanglement Hamiltonians had

followed separate paths in different branches of mathematics
and (theoretical) physics. Now that links between these fields
have been established, we expect an even faster and more ef-
ficient crossfertilization to take place, aimed at characterizing
quantum correlations in many-body systems from an operato-
rial viewpoint.
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