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Abstract

Purpose Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract
urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since
it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this
paper presents an automatic method based on convolutional neural networks (CNN).

Methods The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-
frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks (m1) and
Mask-RCNN (m5), which are fed with single still-frames 7(¢). The other two models (M7, M>) are modifications of the
former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. M1,
M, are fed with triplets of frames (/(t — 1), 1(¢), I(¢t + 1)) to produce the segmentation for 7(¢).

Results The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and
manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art
methods.

Conclusion The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model
to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility,
occasional bleeding, or specular reflections.

Keywords Deep learning - Ureteroscopy - Convolutional neural networks - Image segmentation - Upper tract urothelial
carcinoma (UTUC)
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Fig.1 Sample images in our
dataset showing: a the hue
variability of the surrounding
tissue as well as the shape and
location of the lumen (the
hollow lumen is highlighted in
green to show clearly the variety
of shapes in which it could
appear). b—e Samples of
artifacts (the lumen was not
highlighted to have a clear view
of the image artifacts)

(b) Noise

(d) Lumen narrowing

treatment. URS is used to inspect the tissue in the urinary sys-
tem, determine the presence and size of tumor [2] as well as
for biopsy of suspicious lesions [3]. The procedure is carried
out under the visual guidance of an endoscopic camera [4].

Navigation and diagnosis through the urinary tract are
highly dependent upon the operator expertise [5]. For this
reason, the current development of methods in computer-
assisted interventions (CAI) intends to support surgeons by
providing them with relevant information during the proce-
dure [6]. Additionally, within the endeavors of developing
new tools for robotic ureteroscopy, a navigation system
which relies on image information from the endoscopic cam-
era is also needed [7].

In this study, we focus on the segmentation of the ureter’s
lumen. In ureter-endoscopic images, the lumen appears most
likely as a tunnel or hole in the images with its center being
the region with the lowest illuminance inside the field of view
(FOV). Lumen segmentation presents some particular chal-
lenges such as the difficulty of defining the concrete boundary
of it, the narrowing of the ureter around the ureteropelvic
junction [4], and the appearance of image artifacts such as
blur, occlusions due to the appearance of floating debris or
bleeding. Some examples of these, present in our data, are
shown in Fig. 1.

In the CAI domain, deep learning (DL)-based methods
represent the state of the art for many image processing tasks,
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(a) Variations in the shape of the lumen,
and the hues of the surrounding tissue.

(¢) Blood occlusion

(€) Debris and bubbles

including segmentation. In [8], an eight-layer fully convolu-
tional network (FCN) is presented for semantic segmentation
of colonoscopy images for different classes, including lumen
in the colon, polyps and tools. In [9], a U-Net-like archi-
tecture based on residual blocks for lumen segmentation in
ureteroscopy images is proposed. However, these DL-based
approaches in the field of CAI only use single frames, which
dismisses the chance of obtaining extra information from
temporal features.

The exploitation of spatial-temporal information has
shown to obtain better performance than approaches that only
process single frames. In [10], a model based on 3D convolu-
tions is proposed for the task of tool detection and articulation
estimation, and in [11], a method for infants limb-pose esti-
mation in intensive care uses 3D convolutions to encode the
connectivity in the temporal direction.

Additionally, recent results in different biomedical image
segmentation challenges have shown the effectiveness of
DL ensemble models, such as in [12] where an ensemble
consisting of 4 UNet-like models and one Deeplabv3+ net-
work was proposed obtaining the second place in the 2019
SIIM-ACR pneumothorax challenge, and in [13] where an
ensemble which analyzed single-slices data 3D volumetric
data separately was presented, obtaining top performance in
the HVSMR 3D Cardiovascular MRI in Congenital Heart
Disease 2016 challenge dataset.
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Fig.2 Workflow of the
proposed ensemble for lumen
segmentation in ureteroscopic
videos. Blocks of 3 consecutive
frames I(t — 1), I(t), I(t + 1)
of size p x ¢ x n. (where p and

Conv 3D

Reshape to:
(p-2,9-2,n)

Zero padding Ml

Pa(t)

g refer to the spatial dimensions
and n. to the number of channels
of each individual frame) are fed
into the ensemble. Models M,
and M, (orange line) take these 1(2)
blocks as input, whereas models I(t+1)
m1 and my only take the central

frame (red line). Each of the

pi(t) predictions made by each

model is ensembled with the

function F(py) defined in Eq. 1

Input data

p2(t)

to perform the final output

Reshape to: M
Conv 3D ( p-2,q-2,ns) Zero padding 2

Pa(t)

ma

Inspired by both paradigms, our research hypothesis is
that the use of ensembles which use both single-frame and
consecutive-frames information could achieve a better gen-
eralization in data than models which uses only one of them.
For this purpose, we propose an ensemble model which uses
in parallel 4 convolutional neural networks which can exploit
the information contained in single-frame and continue-
frames, of ureteroscopy videos.

Proposed method

Asintroduced in [12,14], we considered the use of ensembles
to reach a better generalization of the model when testing it
on unseen data. The proposed ensemble of CNNs for ureter’s
lumen segmentation is depicted in Fig. 2.

Our ensemble is fed with three consecutive frames
[1(t — 1), 1(t), I(t + 1)] and produces the segmentation for
the frame /;. The ensemble is made of two pairs of branches.
One pair (the red one in Fig. 2) consists of U-Net with resid-
ual blocks (m1) and Mask-RCNN (m,), which process the
central frame ;. The other pair (orange path in Fig. 2) pro-
cesses the three frames with M| and M, which extend m
and m as explained in “Proposed method” Section.

It is important to notice that frames constituting the input
forany M are expected to have the minimal possible changes,
but still significant to provide extra information which could
not be obtained by other means. Some specific examples
in our case study include the appearance of debris crossing
rapidly the FOV, the sudden appearance or disappearance of
some image specularity, a slightly change in the illumination
or the position of the element we are interested to segment.

For this reason, we consider only three consecutive frames
I;_1, Iy, 1,41 as input for the model.

The core models m 1, m» on which our method is based are
two state-of-the-art architectures, for instance segmentation:

1. (m1): The U-Net implementation used in this work is
based on residual units as used in [9], instead of using
the classical convolutional blocks, and this is meant to
address the degradation as proposed in [15].

2. (m2): Is an implementation of Mask-RCNN [16] using
ResNet50 as backbone. Mask-RCNN is composed of
different stages. The first stage is composed of two
networks: a “backbone”, which performs the initial clas-
sification of the input given a pretrained network, and a
region proposal network. The second stage of the model
consists of different modules which include a network
that predicts the bounding boxes, an object classification
network and a FCN which generate the masks for each
Rol.

Since our implementation is made of different sets of mod-
els, the final output is determined using an ensemble function
F (pi(t)) defined as:

1 k
F(pi®) =2 pio) ey

where p; (t) corresponds to the prediction of each of the k = 4
models for a frame 1(¢).
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Conv 3D with
ni kernels size:
(3x3x3)

Ne

Reshape and
zero padding

Input to
model m

Fig. 3 The initial stage of the models M. The blocks of consecutive
frames I(t — 1), I(t), I(t + 1) of size p x g X n. (where p and q refer
to the spatial dimensions and n. to the number of channels (ch) of each
individual frame) pass through an initial 3D convolution with n; number
of kernels. The output of this step has a shape of size (1, p—2, ¢ —2, ny)
which is padding with zeros in the second and third dimensions to latter,
and then reshaped to fit as input for the m core-models

Extending the core models for handling multi-frame
information

For each core model m, an extension M is obtained by adapt-
ing the architecture for processing multi-frame information.

Let 7 be an ordered set of n elements / € N”-9-"< corre-
sponding to frames of a video, where p and g represent spatial
dimensions and n. the number of color channels (Fig. 3).
Starting from any core model (i), which takes as input ele-
ments from Z, we can define another segmentation model
(M) which receives multi-frame information from Z. Specifi-
cally, itreceives inputs of the form / € N">7-4-"c wherer = 3
represent the temporal dimension (number of frames). To this
aim, the core model m is extended by prepending an addi-
tional 3D convolution layer with ny kernels of size ( x 3 x 3).
The new layer produces an output H € N'-#=2:4=27% 50 that
feeding it into m is straightforward. The issue of having p —2
and g — 2 instead of p and ¢ after the 3D convolution is fixed
by padding the output with zeros in the two spatial dimen-
sions. A graphical representation of the process is shown in
Fig. 3.

Evaluation
Dataset

For this study, 11 videos from 6 patients undergoing
ureteroscopy procedures were collected. Videos from five
patients were used for training the model and tuning hyper-
parameters. Videos from the remaining patient, randomly
chosen, were kept aside and only used for evaluating the
performance. The videos were acquired from the European
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Institute of Oncology (IEO) at Milan, Italy, following the
ethical protocol approved by the IEO and in accordance with
the Helsinki Declaration.

The number of frames extracted and manually segmented
by video is shown in Table 1. Data augmentation was imple-
mented before starting the trainings. The operations used for
this purpose were rotations in intervals of 90°, horizontal and
vertical flipping and zooming in and out in a range of + 2%
the size of the original image.

Training setting

All the models were trained, once at time, at minimizing the
loss function based on the Dice similarity coefficient (Lpgc)
defined as:

2TP

— 5 o T on @
2TP 4 FN + FP

Lpsc =1

where true positive (TP) is the number of pixels that belong to
the lumen, which are correctly segmented, false positive (FP)
is the number of pixels miss-classified as lumen, and false
negative (FN) is the number of pixels which are classified as
part of lumen but actually they are not.

For the case of (m1), the hyperparameters learning rate
(Ir) and mini batch size (bs) were determined using a five-
fold cross-validation strategy with the data from patients 1,
2,3,4 and 6 in a grid search. The ranges in which this search
was performed were [r = {le—3, le—4, le—5, le—6} and
bs = {4,8,16}. The DSC was set as the evaluation met-
ric to determine the best model for each of the experiments.
Concerning the extensions M, the same strategy was used
to determine the number of kernels of the input 3D convo-
lutional layer. The remaining hyperparameters were set the
same as for mj.

In case of m», the same fivefold cross-validation strategy
was used. The hyperparameters tuned were: the backbone
(from the options ResNet50 and ResNet101 [15]) and the
value of minimal detection confidence in a range of 0.5-0.9
with differences of 0.1. To cover the range of different sizes
of masks in the training and validation dataset, the anchor
scales were set to the values of 32, 64, 128 and 160. In this
case, the number of filters in the initial 3D convolutional
layer was set to a value of 3 which is the only one that could
match the predefined input-size, after reshaping, of ResNet
backbone.

For each core models and their respective extensions, once
the hyperparameters values were chosen, an additional train-
ing process was carried out using these values in order to
obtain the final model. The training was performed using all
the annotated frames obtained from the previously mentioned
5 patients, 60% of the frames were used for training and 40%
for validation. The results obtained in this step were the ones
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Table 1 Information about the

Patient no.
dataset collected

Video no.

No. of annotated frames Image size (pixels)

Video 1
Video 2
Video 3
Video 4
Video 5
Video 6
Video 7
Video 8
Video 9
Video 10
Video 11
Total -

A NN AW = =

21 356 x 256
240 256 x 266
462 296 x 277
234 296 x 277
51 296 x 277
201 296 x 277
366 256 x 262
387 256 x 262
234 256 x 262
117 256 x 262
360 256 x 262
2673 -

The video marked in bold indicates the patient-case that was used for testing

used to calculate the ensemble results the function defined in
Eq. 1.

The networks were implemented using Zensorflow and
Keras frameworks in Python 3.6 trained on a NVIDIA
GeForce RTX 280 GPU.

Performance metrics

The performance metrics chosen were DSC, precision (Prec)
and recall (Rec), defined as:

DSC =1 — Lpsc 3)
TP
Prec = ———— 4
TP + FP
TP
Rec = —— 5)
TP 4+ FN

Ablation study and comparison with state of the art

First, the performance of the proposed method was compared
with the one presented in [9], where the same U-Net based
on residual blocks architecture was used. Then, as ablation
study, four versions of the ensemble model were tested:

1. (m1,my): only single-frame information was considered
in the ensemble;

2. (M1,M>): only multi-frame information was considered
in the ensemble;

3. (m1,My), (mo,M>5): each of the core models and its
respective extension were considered in the ensemble,
separately.

In these cases, the ensemble function was computed using the
values of the predictions of each of the models. The Kruskal—

Wallis test on the DSC was used to determine the statistical
significance between the different single models tested.

Results

The box plots of the Prec, Rec and the DSC are shown in
Fig. 4. Results of the ablation study are shown in Table 2.
The proposed method achieved a DSC value of 0.80 which
is 8% better than m using single frames (p < 0.01) and 3%
than m trained as well with single frames (p < 0.05). When
using single-frame information, my performs 5% better than
m1. However, the result is the opposite using multi-frame
information. The ensembles of single-frame models (m1, m>)
perform 7% better with respect to ensembles of models
exploiting multi-frame information (M7, M>). In the case
of spatiotemporal-based models, U-Net based on residual
blocks (M) performs 3% better than the one based on Mask-
RCNN (M>). This might be due to the constraint of fitting
the output of the 3D convolution into the layers of the back-
bone of Mask-RCNN. The same limitation might explain
the similar behavior when it comes to the comparison of the
ensembles composed only of U-Net based in residual blocks
models and Mask-RCNN-based models, where the former
one performs 4% better than the second one. The only model
which achieves a better performance than the proposed one in
any metric is U-Net based on residual blocks with the Rec,
obtaining a value 0.04 better than the model we proposed.
Visual examples of the achieved results are shown in Fig. 5
and in the video attached to this paper. Here, the first 2 rows
show frames in which the lumen appears clearly and there
is no presence of major image artifacts. As observable, each
single model underestimates the ground-truth mask. How-
ever, their ensemble gives a better approximation. The next 2
rows show cases in which some kind of occlusions (such as

@ Springer
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Fig.4 Box plots of the *kk *kk *kk
precision (Prec), recall (Rec) " |* 1 *.[* | *'_|
and the Dice similarity M e lrl M x|
coefficient (DSC) for the models F o 3 M s | M
tested. m1 (yellow): ResUNet I ] [ | | 1
with single image frames, 057 057 062 054 065 09 071 075 077 086 072 073 077 07 08
my (green): ResUNet using L0

consecutive temporal frames,
M (brown): Mask-RCNN with
single image frames, M> (pink):
Mask-RCNN using consecutive
temporal frames, and the
proposed ensemble method

0.8

(blue) formed by all the 06 = o
previous models. The asterisks ®
represent the significant
difference between the different y "
architectures in terms of the %41 K $
Kruskal-Wallis sign rank test . N
(*p < 0.05, **p < 0.01, 5 p
*#**p < 0.001) 024 : ®
: t
5
004 — $ i L + + ? + + % +
Prec Rec DSC
Table2 Average Dice F(¥) DSC  Prec Rec Quantitative evaluation, together with a visual inspection of
similarity coefficient (DSC), the obtained segmentations, highlights the advantage of using
?ﬁ;ﬁf;gii?ﬁ?j;fﬁ:ﬂ (Rec)  (mi,my) 078 065 071  engembles, confirming our research hypotheses. This is par-
ensembles were formed only by: (M1 M2) 071055 0.57 ticularly appreciable in the presence of occlusions such as
1. spatial models (m{, my); 2. (My,my) 072 056 0.66 blood or dust covering the FOV (Fig. 5 rows 5-6). In those
spatial-temporal (M}, M>), 3. (My,my) 0.68 051 063  cases, single-frame-based models tended to include non-

ResUnet with both spatial and
temporal inputs (M1, m1) and 4.
Mask-RCNN with the same
setup (Mo, m»)

F () refers to the ensemble func-
tion used (Eq. 1), and the compo-
nents used to form the ensemble
are stated between the parenthe-
sis

blood or debris) is covering most of the FOV. In those cases,
single-frame models (m) give better results than its counter-
parts handling temporal information (M). Finally, the last 2
rows of the image contain samples showing minor occlusions
(such as small pieces of debris crossing the FOV) and images
where the lumen is not on focus.

The average inference time was also calculated. Results
for m; and M are 26.34+3.7 ms and 31.54+4.7 ms, respec-
tively. In case of m, and M>, the average inference times are
29.7£2.1 ms and 34.7+6.2 ms, respectively. In the case of
the ensemble, the average inference time was 129.646.7 ms
when running the models consecutively.

Discussion

The proposed method achieved satisfactory results, outper-
forming existing approaches for lumen segmentation [9].

@ Springer

lumen regions in the predicted segmentation. An opposite
behavior was observed when using only multi-frame-based
models, which tended to predict smaller regions with respect
to the ground-truth and which is also noticeable in the general
performances carried during the ablation studies (Table 2).
The ensemble of all of them resulted, instead, in a predicted
mask closer to the ground-truth and exemplifies why the use
of it in general turns into better performances. It was also
observed that the proposed ensemble method was able to cor-
rectly manage undesirable false positives appearing in single
models. This is due the fact that those false positives did
not appear in all the models at the same regions; therefore,
the use of ensembles eliminates them from the final result.
This is of great importance in the clinical practice, given that
false positive classifications during endoluminal inspection
might result in a range of complications of the surgical oper-
ation, including tools colliding with tissues [17], incorrect
path planning [18], among others.

Despite the positive results achieved by the proposed
approach, some limitations are worth to be mentioned. Com-
putational time required for inference is one of those. In terms
of inference time, the proposed model requires 4 times more
than previous implementations. However, it is important to
state that when it comes to applications of minimal inva-
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Fig.5 Samples of segmentation
with the different models test.
The colors in the overlay images
represent the following for each
pixel. True positive (TP):
yellow, false positive (FP): pink,
false negative (FN): blue, true
negative (TN): black. The first
two rows depict images where
the lumen is clear with the
respective segmentation from
each model. Rows 3—4 show
cases in which some kind of
occlusion appears. Finally, the
rows 5-6 depict cases in which
the lumen is contracted, and/or
there is debris crossing the FOV

ground
truth

‘J"

| 37"

~f lelal-]n
s olal-]e
> fela]- ] ok
~f ela]-]o8
~f Jelal-]n
~f Jela]-]n

sive surgery, accuracy may be preferred over speed to avoid
any complication, such as perforations of the ureter [5]. Fur-
thermore, such time could be improved by taking advantage
of distributed parallel setups. A final issue is related to the
scarcity of public available and annotated data, necessary
to train and benchmark, which is a well-known problem in
the literature. However, this can be overcome in future as
new public repositories containing spatial-temporal data are
released. Regarding the effectiveness, we consider it as the
metric defined for DL systems proposed in [19] which takes
into account the product of data quality, robustness and infor-
mation gain, and we can assert the proposed model is more
effective than previous implementations since: (1) the data
quality produced with it is better in terms of the mean DSC,
Prec and Rec values; (2) the method is more robust against
the appearance of artifacts as shown in Fig. 5 and the addi-
tional videos attached; and 3) the information gain is higher
since the lumen area is delineated better. The disclosed cost-
effectiveness of this method for its clinical application such
as the one presented in [20] for diabetic retinopathy screen-
ing is beyond the scope of this paper. However, a rough
estimation should consider 1) the economical cost of the
GPU model used to train the networks presented in this work
(NVIDIA RTX 2080); 2) the current cost that requires to per-
form ureteroscopy procedures, according to national health

3

M: Proposed

system of each country; and 3) the rate in which this method
could reduce complications and thus reduce hospitalization
time or the requirement of further interventions.

Conclusion

In this paper, we introduced a novel ensemble method for
ureter’s lumen segmentation. Two core models based on U-
Net and Mask-RCNN were exploited and extended, in order
to capture both single-frame and multi-frame information.
Experiments showed that the proposed ensemble method
outperforms previous approaches for the same tasks [9], by
achieving an increment of 7% in terms of DSC. In the future,
evident extensions of the present work will be investigated,
including better methods to fit spatial-temporal data into
models which were pre-trained in single image datasets (such
as Mask-RCNN). Furthermore, we will investigate methods
for decreasing the inference time, thus allowing real-time
applications.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-021-02376-
3.
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