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GENERALIZED APPELL POLYNOMIALS AND FUETER-BARGMANN
TRANSFORMS IN THE POLYANALYTIC SETTING

ANTONINO DE MARTINO, KAMAL DIKI

ABSTRACT. This paper deals with some special integral transforms in the setting of quater-
nionic valued slice polyanalytic functions. In particular, using the polyanalytic Fueter
mappings it is possible to construct a new family of polynomials which are called the
generalized Appell polynomials. Furthermore, the range of the polyanalytic Fueter map-
pings on two different polyanalytic Fock spaces is characterized. Finally, we study the
polyanalytic Fueter-Bargmann transforms.
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1. INTRODUCTION

This paper proposes a generalization to the polyanalytic setting of both Appell polynomi-
als and the Bargmann-Fock-Fueter transform, studied in [10] [11]] and [17] respectively. A
fundamental tool to perform the computations is the polyanalytic Fueter map, introduced
in [3]. One of the main differences with respect to the classic Fueter theorem, see [24],
is that in the polyanalytic setting there are two Fueter mappings. The first map, denoted
by Cp+1, maps slice polyanalytic functions of order n + 1 to Fueter regular functions
of order n + 1. The second one, denoted by 7,1, maps slice polyanalytic functions of
order n + 1 to Fueter regular ones. We note that there exists a relation between these
two polyanalytic Fueter maps that can be expressed in terms of a suitable power of the
Cauchy-Fueter operator, see [3].

In Section 3 we introduce a new family of polynomials in the quaternionic setting

(11) Mk,s(quq) = 95]8@5(‘]@)7 k= 07 ey T S 2 07

where Qs(q,q) = ijo %qs’jﬁj and x¢ is the real part of the quaternion ¢ € H.
These polynomials are obtained by applying the polyanalytic Fueter map C,,+1 to a slice
polyanalytic function of order n + 1, based on the series expansion theorem. One of the

main properties of these polynomials is the following

=Dl =)

where D is the hypercomplex derivate. The previous formula, when n = 0, leads to the
classical Appell property for the Clifford Appell polynomials in the quaternionic setting

5(95((]5 Q)) = 2Sstl(q7 Q)v

see [[10, 11l [I7]. However, when we apply the second polyanalytic Fueter map 7,41, we

do not have any suggestions about new family of polynomials. This is due to the fact that

the second polyanalytic Fueter map has a range included in the space of Fueter regular
1
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functions. In [22]], by using some results proved in [21]], is provided a generalization of
the polynomials defined in formula (I1)) to the Clifford Algebra in the odd dimensions.
In Section 4 we investigate the polyanalytic Fueter-Bargmann transforms. Firstly, we
study a characterization of the quaternionic true polyanalytic Fock space . (H), see
[20], when the Fueter map C,, 1 is applied. After, we define the C- polyanalytic Fueter-
Bargmann transform as

1 1
Bg-’_ = Cn_;,_l o .Bn+ ,

where B""! is the quaternionic true polyanalytic Bargmann transform defined in [20].
By using the fact that it is possible to write the kernel of the quaternionic true polyana-
lytic Bargmann transform as a generating function of the quaternionic Hermite polyno-
mials (see [32]), an explicit integral formula for Bngl is showed. Besides, some important
properties for the C- polyanalytic Fueter-Bargmann transform, such as the unitary and
isometric properties are showed. In the second part of Section 4 the polyanalytic Fueter
map T, +1 is applied. In this case, most of the results are obtained by using the connection
between the maps Cp, 41 and 7,,41.

Finally, in Section 5 the results proved in the previous section are discussed for the quater-

nionic polyanalytic Fock space F, é\ﬁ;; (H), studied in [2}[20].

2. PRELIMINARY RESULTS

We revise different notions and results about quaternions and related function theories.
The non-commutative field of quaternions is defined to be

H={q= 120+ x1i+ 22j + 23k : x,21,22,75 € R},
where the imaginary units satisfy the multiplication rules
?=j2=k>=—-1 and ij=—ji=~Fk, jk=—kj=1i ki=—ik=]j.
On H the conjugate and the modulus of ¢ are defined respectively by

, § =xi+ 22 + a3k

2y

q=x9—

and

gl = V@@ = \/73 + % + 23 + 3.
We note that the quaternionic conjugation satisfy the property pg = gp for any p, g € H.
Moreover, the unit sphere

{g =215+ x2j + a3k : 23+ 22 +22 =1}
coincides with the set of all imaginary units given by
S={qeH:¢=-1}.

Any quaternion g € H \ R can be written in a unique way as ¢ = x + Iy for some real
numbers x and y > 0, and imaginary unit I € S. For every given I € S, we define
C; = R 4+ RI. It is isomorphic to the complex plane C so that it can be considered as
a complex plane in H passing through 0, 1 and I. Their union is the whole space of
quaternions

H= UCr= U (R+RI).
IeS I1eS

Let B denotes the quaternionic unit ball and By its intersection with the complex plane
Cy for a given I € S. Then, we recall



Definition 2.1. Let U C H be an open set and let f : U — H be a function of class C*.
We say that f is (left) Fueter regular (or regular for short) on U if

.0 .0 0
Df(q) := (——i—za—xl +38—x2+k8—a:3) flg) =0, VgeUl.

The right quaternionic vector space of Fueter regular functions will be denoted by FR (U ).

We recall that a slice domain (or s-domain) U on H is a domain that intersect the real line
and for which Uy = U N Cy is a domain of Cy for every I € S. Moreover, if for every
q =z + Iy € ), the whole sphere x + 4S := {x + Jy; J € S} is contained in {2, we say
that Q is an axially symmetric slice domain.

Definition 2.2. Let U be an axially symmetric set in H. A quaternionic valued func-
tion f : U C H — H is called a slice function if it is of the form f(x + yI) =
a(z,y) + 18(z,y), where a(x,y) and B(x,y) are quaternionic-valued functions such
that a(z, —y) = a(z,y), Bz, —y) = —B(z, y).

In [26] the theory of slice hyperholomorphic functions was introduced based on the fol-
lowing notion:

Definition 2.3. Let f : ) — Hbea C! slice function on a given domain 2 C H. Then,
f is said to be (left) slice hyperholomorphic function if, for every I € S, the restriction f;
to C; = R+ IR, with variable ¢ = = + Iy, is holomorphic on Q; := QN Cy, that is it has
continuous partial derivatives with respect to  and y and the function 9; f : Q; — H
defined by

= 1/0 0
Iy) == | — +1— I
orf(z + Iy) 2<8$+ 6y)f1(x+y)
vanishes identically on ;. The set of such kind of functions will be denoted by SR(£2).

Definition 2.4. The slice derivative of a slice regular function f is defined as:

e A

The right quaternion vector space of slice hyperholomorphic functions is endowed with
the natural topology of uniform convergence on compact sets. In particular, we recall the
following series expansion from [[15] Cor. 4.2.3].

Theorem 2.5. Let f be a slice hyperholomorphic function on an axially symmetirc s-domain
U. Then for any real point py in U, the function f can be represented by power series

—+o0

Fl@) =" (a—po)"am

m=0

on the ball B(pg, R) = {q € H;|q — po| < R} where R = R,,, is the largest positive real
number such that B(py, R) is contained in U.

These two quaternionic function theories can be related using a fundamental result in
quaternionic analysis which is the Fueter mapping theorem. We recall briefly this result
here



Theorem 2.6 (Fueter mapping theorem, [24]). Let U be an axially symmetric set in H and
let f : U C H — H be a slice regular function of the form f(z+yl) = a(z,y)+15(z,y)
as in Definition[2.2 and satisfying the Cauchy-Riemann system. Then, the function

Fao ) = A (a(aco, )+ B, |q-1>)

is Fueter regular.

In the late of 1950s, Sce extended this theorem to the Clifford setting in the case of odd
dimensions see [[16}31]], Qian proved in [29] that the theorem of Sce holds in the case of
even dimensions. We refer to [[12} [30] for several extensions.

Remark 2.7. We denote the Fueter mapping by

T:SRWU) - FRWU), f—7(f)=F.
We note that one can extend the classical theory of holomorphic functions to higher order
using the notion of polyanalytic functions, see [6]. Moreover, in the last years the notion
of slice hyperholomorphic functions was extended also to this polyanalytic setting, see
[A1 2Bl [7]. We briefly recall this notion here and related results that will be needed in the
sequel

Definition 2.8. Let () be an axially symmetric open set in H and let f : & — Hoa
slice function of class C"*!. For each I € S, let Q; = QN C; and let f; = f|91 be the
restriction of f to €);. The restriction f; is called (left) polyanalytic of order n + 1 if it
satisfies on €1 the equation

nt1 1 /(9 9o\

ly) = — | =— + 1+ Iy) =0.
fle+1y) = ooy (3:0 + ay> fi(x + Iy)
The function f is called left slice polyanalytic of order n + 1, if for all I € S, fr is left

polyanalytic of order n+1 on ;. The right quaternionic vector space of slice polyanalytic
functions of order n + 1 will be denoted by SP,,+1(U).

ar

Note that slice regular functions are a special case of the definition of slice polyanalytic
functions with n = 0. Several results of these functions were studied and extended. In
particular, we note that the following decomposition holds true

Proposition 2.9 (polyanalytic-decomposition). A slice function f : ) — H defined on
an axially symmetric slice domain is slice polyanalytic of order n + 1 if and only if there
exist fo, ..., fn. some unique slice hyperholomorphic functions on Q) such that we have the
following decomposition:

flq) = qufk(Q); Vg € Q.
k=0

We revise also the polyanalytic Fueter regular functions (see [8, 9]).

Definition 2.10. Let U C H be an open set and let f : U — H be a function of class
C"t1. We say that f is (left) polyanalytic Fueter regular (or polyanalytic-regular for short)
of ordern + 1 on U if

B B B o\
n+1 R - y - —
D f(q) = <—6$0 + 2—8:101 +]6x2 + k@xg) f(q) 0, Vq eU.

The right quaternionic vector space of polyanalytic Fueter regular functions will be de-

noted by FR,41(U).



Remark 2.11. We note that two Fueter mapping theorems were proved in the polyanalytic
setting, see [3]. This will allow to introduce the so-called polyanalytic Fueter mappings
Cpn+1 and 7,41 which will be studied and investigated in the next sections.

An important system of quaternionic polynomials that will be needed in the sequel are the
so-called quaternionic Appell polynomials. This system was considered in the litterature
from different points of view, for more details see [10,[11][17] and the references therein.
Such quaternionic Appell polynomials can be defined by the following relation

k
&1 Qule,0) = YT} 7. qeH k=0,
7=0
where
k' (2)k—;(1); 2k —j+1
(2.2) rh_ R @) 2(k—j+1)

TOBk (k=9 (B+1D(k+2)
and (a), = a(a+1)...(a + n — 1) is the Pochhammer symbol.

Remark 2.12. Notice that the polynomials (Qx)r>0 given by (2.) are Fueter regular on
H. Moreover, they form an Appell system with respect to the hypercomplex derivative

D 1/ 0 0 0 0
<6—$0 — za—xl - ja—xg - k(?—xg) i.e.,, forall £ > 1 we have the Appell property

272

3) DQ0,3) = ki 1(.2)

In [2] the authors introduced the quaternionic polyanalytic Fock space defined for a given
I €Stobe

ﬁg;;(H) ={fe€SPn1(H): c |f1(Q)|2€_2WIqI2d/\I(Q) < oo}, N >0.
I

In 3] Prop. 4.1] and [3| Prop. 4.2] is showed that the polyanalytic Fock space is a quater-
nionic reproducing kernel Hilbert space which does not depend on the choice of I € S.
Thus, from now we will denote the quaternionic polyanalytic Fock space by F. é\;;@i ((H).

Now, we give the definition of the quaternionic true polyanalytic (QTP) Fock space.
Definition 2.13. A function f : H — H belongs to the QTP Fock space F. (H) if and
only if

) [ 1) () < .

i) ’Iﬁére exists a slice regular function H such that

1

fl=1r (%)nn!82ﬂ|q|23?(€,2,,\q\2H(q)).

Another important space in this context is the quaternionic Hilber space L?(R;dx) =
L?(R, H), consisting of all the square integrable H-valued functions with respect to

(2.4) (0, 0) L2(Rsda) ::/RW@@)CM-

The real weighted Hermite functions

v 2 df 2
(2.5) RY(z) = (—=1)*e2® s (67” )
5



form an orthogonal basis of L?(RR; dz), with norm given explicitly by

V|2 k. k m\1/2
(2.6) B2 e ey = 25VF R (;) .
Now, we recall the QTP Bargmann transform which was introduced in [7], and more

results on this can be found on [20]. Let ¢ : H — R, then

n n 1 s 2 7 — T 2
(B"'o)(q) = (-1) 7(2@%!62 907 (e 14" Bug(q)]
27) — i ml2n)m) / e @) b2Vt (m —t) o()dt,
R V2

where Bup(q) = 2% [, e~ (@ o) +rv2az (1) iy and H,, are the weighted Hermite
polynomials defined as

L

w3

]

d'ﬂ

(2.8) H>™(y) = (—1)"(32”2d—ne_z’”’2 =n!
Yy

(=1) (4my)" 2

= jln—25)!

where |.| denotes the integer part.

In the polyanalytic setting it is possible to define a quaternionic Bargmann transform

for a vector valued function @ = (¢o, ..., on). We will consider that a function g =
(©0, .-, o) belongs to L2(R, HN*+1) if and only if

N

||%5||%2(R,HN+1) = Z ||<Pj||2L2(R,H) < oo.
=0

Definition 2.14. Let 3 = (o, ..., o) be a vector-valued function in L?(R, HN*1). The
quaternionic full-polyanalytic Bargmann (QFP) transform is defined as

N
(2.9) BF(a) =D B p;(9),

§=0
where B/t1¢;(q) is the QTP Bargmann transform, defined in (2.7).

A very important tool in this context are the so-called quaternionic Hermite polynomials,
see [123] 28] 32]

(210)  Hr,(0,0) = @or(-)me o (gre W), mop e,
Remark 2.15. For any p > 0, we have
Hg7(a,9) = (2m)Pq
and
H{3(q,7) = (2m)"'qq" — (2m)"p”.
These polynomials enjoy the following orthogonality relation, see [20, Appendix A]

S B mlpl(2m)™ TP
ew [ ELGoE, a0 = P
I
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3. THE ACTION OF THE POLYANALYTIC FUETER MAPPINGS

In this section we apply the polyanalytic Fueter maps to a slice polyanalytic function of
order n + 1. This has been done in [17]] for the classic Fueter map. In particular, this
suggests to consider a new type of polynomials.

3.1. The action of the map C,, ;1 on g“¢?. Let Q be an s-domain that contains the origin
and f € SP,+1(Q) be a slice polyanalytic function of order n + 1 on 2. We note that by
polyanalytic decomposition we have

=Y T file), g€,
k=0

with fi, € SR(Q). Then, using the series expansion theorem for slice hyperholomorphic
functions we have fi(q) = Z;io ¢’ g, ; with {ag jto<k<n,j>0 C H. Thus, we obtain
the series expansion given by

(3.1) fl)= 2> "7"d o
k=0 j=0

We note that the polynomials (7"¢7) ;>0 with 0 < k < n form the building block of our
theory.

Definition 3.1. [3] Thm. 3.12] Let {2 be an axially symmetric slice domain and f €
SPr+1(92) with a polyanalytic decomposition given by f = Z 7" fr, where f), €

=0
SR (). Then, we consider the polyanalytic Fueter map Cy, 11 : SPn+1 Q) — FR,+1(2),
which is defined by

n

Cr1( Z xOAfk for any g € Q.

Proposition 3.2 (Linearity of the map C,,41). Forany f,g € SPp4+1(Q2) and A € H, we
have

Crp1(f +9M(9) = Cnta()(@) + Crpa(9) (@A
Proof. Let f,g € SPp+1(). We know by polyanalytic decomposition that we have

q) = qufk( and ¢(q Zq gx(q) with fr, gr € SR(Q), forany k =0,...,n

In particu_lar, we note that
(f +9M(@) =D _ T (fr(@) + ge(@)N).
k=0

Therefore

n

Corr(F +9N(@) = D eb AUk + 56N (@)

k=0

I
M=

T ASe(g) + > w5 Agr(g)A
‘ -

nt1(F)(@) + Cnpa(9) (@) A

I
3



Finally, we obtain

Cn+l(f + g)\) = Cn-l—l(f) + Cn-‘rl (g))\
Thus, it turns out that the map C,,41 is H-linear. (]

We apply the map C,, 41 to the expansion B1) and get

(3.2) Cos1(f) =D Co1(@¢ ) ;.

k=0 j=0

So, we need to compute the action of the map C,,; 1 on G°¢’ with k = 0,...,nand j > 0.
Thus, we have the following result

Theorem 3.3. Letn > 0 be fixed. Then, for any 0 < k < n we have
0 if 7=0,1
—2(j — 1)ja§Qj—2(eq) if j=2
Proof. For any 0 < k < n, we set fx(q) := ¢’. Thus, we have
Crt1(@° ") = Cosa (@ 1)
= 25 A(fi)(a)
= a5 A(¢).

(3.3) Cri1(@°q7) = {

We know by the proof of [17, Prop 4.2] that for j = 0,1 we have C,, 1 1(7") = Cn11(7%¢) =
0 and for any j > 2, we get

Co1(@¢) = 2§ A(¢)
= —2(j — 1)jzEQ;_2(q,7).

As a consequence, we note that for any s > 0 we have

Cr1(@¢°T?) = 2§ A(g°F?)
=—2(s +1)(s + 2)2§Qs(¢, 7),

where Qs(q, q) are defined in @1).
This suggests to consider a new family of polynomials that we call generalized Appell
polyanalytic polynomials and which are given by

(3.4) Mys(0.9) == 25Qs(q,7), k=0,..,n, s>0.

Our aim is to find a sort of Appell property for the polynomials My, s(¢,q). In order to
do this, we will first need a preliminary result

Lemma 3.4. Foranys > j, we have

D (Qu(0,q)) = zf(sf—’j)!czs_j(q, 9, VgeH.

8



Proof. We prove the statement by induction. First, for j = 1 we have

ﬁ(QS(Qaq)) = 28@571(q7 Q) = stl(qva)a

s!
2(5 -1

this holds true by formula 2.3). Now, we suppose the result holds for j > 1 and let us
prove it for j + 1. Indeed, we have

D' (Qu(¢,0) = DD (Qu(a,2))
_5< Qs i(a q))
_zm( NQs—j-1(2:9)
:2Q5_jxjij_1ﬂms—jx%ﬂ;m%m
:2j+1ﬁ625 -1(2,)-

Theorem 3.5. Letn > 0 fixed, 0 < k < mn and s > k + 1. Then we have

k+1
—k+1 _ J k+1 k!s! ‘ o
(3.5) D (Mk,s(Q7 q)) = j§:1 2 ( j ) (—] — 1)!(8 — j)!MJ—l,s—J (qu Q)'

Proof. We note that the function a:’g is real valued. Thus, we can use the Leibniz rule for
the operator D combined with Lemma[3.4land get

—k+1, ~ A k4 1\=k+1—j, pm=i _
CRRETXRIED S G AT LN
=0

k+1 kE+1 k! s o )
- Z ( )TMIIS 1—k+jg, ; _j)!Qs—j(q,q)

k+1 k+1 k! sl . )

ZQJ( ) j—l)!(s—j)!xb 'Qsi(0,0)

Mok R s! _
= Z < . ) j — 1) mMjfl,sfj(qaq)'

Corollary 3.6. Foranyn > 0 fixed and s > n + 1, we have
n+1
—n+t1 _ n+1 nls! _
D n,s\q> 27 T VY] i—1,s—54,9)-
Mol =3 (") o M0

Proof. It is enough to take & = n in Theorem[3.5] d
9



Remark 3.7. We note that the result proved in Corollary[3.6]is an extension of the classical
Appell property for the generalized Appell polyanalytic polynomials M, 5(q, 7). Indeed
for n = 0 in Corollary B.6land by the observation that Mg s(¢, 7) = Qs(q,q) we get

D(Qs(q,9)) = QMMO,SA(%@) =25Qs-1(q,q), s=1.

Remark 3.8. The polynomials M, s are Fueter polyanalytic of order n + 1.

s!
1

Remark 3.9. We can write the action of the map C,, 1 on §*¢’ in the following way when
Jj=2,
Con(@'¢) = =20 = 1)j6Q5-2(¢:0)
(3.6) = —2(j = D)jMuj—2(q,0)-
Theorem 3.10. Let () be an axially symmetric slice domain. We have that f € Cp41(SPr+1(Q))

if and only if we have the expansion

n oo

(3.7) F@) =D Mia(@.DBrs:  {Brstockn, >0 C H.

k=0 s=0
Proof. Let f € Cpp1(SPrn+1(£2)). Then, there exist a function g € SP,+1(f2) such that

f=Cnt1(9).

Thus, we know that we can write an expansion of g as

n (o)
9(q) = Z Za’“qjak,j, {ak,sFosken, j>0 C H.
k=0 j=0

In particular, this implies that we have

(3.8) @)= Cor (@) ;-

k=0 j5=0

Therefore, using formula (3.6) we obtain

fla)= =2 (5~ DiMuj-2(a. Do
k=0 j=2
=2 Z Z(S +1)(5 +2)Mp s(q, )k, s 42-
k=0 s=0

Now, we set
Br,s := —2(s+ 1)(s + 2)ak 542,

and obtain
n o0

f(Q) = Z ZMk,s(qv Q)Bks

k=0 s=0

Remark 3.11. Now, we can observe that the map

CnJrl : SPnJrl(Q) — .FRn+1(Q)

10
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o0

can be introduced such that for any f(q Z Z q° oy, s we have
k=0

n oo

Cn-l—l(f) (q) = Z Z Mk,s(Q7 Q)Bk,su

k=0 s=0
with
Br,s = —2(s+ 1)(s + 2)ak, s 12
3.2. The action of the polyanalytic Fueter map 7,1 on §"*¢’. We start by recalling
the definition of the maps 7,1, see [3l Thm. 3.7].

Tn+1 8Pn+1(ﬂ) — ]:R(Q)

=SSPy, — Tlf)=AV(£)().

k=0 j=0
where

- 3
VD@ = 5 (Q)+m%;xe% @  qeO\E

This operator is a global operator with nonconstant coefficients, and it was studied in [[13]
14127]]. We will need also the following formula that puts in relation the two polyanalytic-
Fueter mappings 7,,+1 and C,, 41, respectively, see .

Theorem 3.12. [3, Thm 3.13] Let f : @ — H be a slice polyanalytic function of order
n + 1 on an axially symmetric slice domain. Then we have

69 D"Ci1(N@) = et (@), Va€ 0.

Proposition 3.13. The map 7,41 is H-linear i.e.
Tnt1(f + 9A(D) = Tt (F)(@) + Tt (9) (9N,
where f,g € SPp1+1(Q2) and A € H.
Proof. From formula (3.9), the linearity of C,, 1 (see Proposition[32) and D™ we get
Tnr1(f+9M(0) = 2"D"Cota(f +9M)(9)
2" D" Cot1(f)(@) + Crta(9)A|(a)
= 2'[D"Co1(f)(@) + D"Crta(9)(@)A-

Using another time formula (3.9) we obtain

Tot1(f + gA) (@) = Tns1(F)(@) + Tnr1(9) (@A

From the series expansion (3.I) we have

Tur() = 3D (@¢)an.

k=0 ;=0
This is the motivation for the following
Theorem 3.14. For any fixedn > 0 and 0 < k < n we have
s 0 i i =0,1
(3.10) T (@°¢7) = { i’ _ f ]

—2"tnli(j - 1)Qj—2(q,q) if j>2.
11



Proof. First of all we recall that if a function f is written using the polyanalytic decom-
position

fla) = Zn: 7" fr(q),
k=0

then
V™ f(q) = 2"nlfn(q),

where f,,(q) is the last term of the polyanalytic decomposition, see [3].
Now, we set f;(q) := ¢’. By the previous property of the operator V" we have

V™ (7" fi(q)) = 2"nlf;(q) = 2"nl¢’.

Therefore for j > 2 we have

AV (7" f;(q))
2"nlAg
—2"H (G — 1)Q;—2(q, 9).

Since Aq® = Aq = 0 for the cases j = 0 and j = 1 we have

Tn+1 (qkqj)

Tnt1(7) = Tns1(7"q) = 0.
O

Remark 3.15. If we put n = 0 in Theorem[3.3]and Theorem [B.14lwe get [17| Thm. 3.2].

Remark 3.16. In this case the formula for 7,, 4 1 (7%¢?) does not give any suggestions about
new generalized Appell polyanalytic polynomials, as it happens for the computations of
Cn+1 (cj’C ¢ ), see Theorem[3.3] However, this behaviour is natural because 7,11 maps slice
polyanalytic functions of order n + 1 in the space of Fueter regular functions, which is a
well-known space. On the other side, the map C,,; maps slice polyanalytic functions of
order n + 1 in the space of polyanalytic Fueter regular functions of order n + 1, which
is a different space with respect to the classical one and for this reason new kind of poly-
nomials appear.

Theorem 3.17. Let ) be an axially symmetric slice domain. Then, a function f belongs to

Tn+1 (SPn+1(Q)) if and only if

f(q) = Z QS(Q= Q)Bk,s-i-%

s=0
where B 542 1= — ZZ:O 27 nl(s 4+ 2) (s + 1)ag, st2-
Proof. Let us assume that f € 7,41 (SPr+1(R2)). Then there exists a function g €
SPr+1(£2) such that
f@) = n41(9)(a).

From the same arguments to obtain formula (3) we can write the function g(g) in the
following way

n oo
9(9) => > " dan;.
k=0 j—0
12



Then by Theorem [3.14 we get

flo) = D) man(@dd)ax,

k=0 j=0
= 2"y N 0 - DQj-a(g, Do
k=0 j=2
= 2"l N (s +2)(s + 1)Qu(q, D)auk,era
k=0 s=0

= ZQS(qvq)ﬁk,s+27
s=0

where Sy s42 == — > 1, 27l (s 4+ 2)(s + 1)ag, st2- O

Remark 3.18. The main difference between Theorem[B.17]and the results proved in [3,[4] is
that the coefficients of the sereis are a sum. On the other side, the only point in common
is the presence of the generalized Appell polynomials Q(q, q).

The relation between the two polyanalytic Fueter mappings Cy, 1 and 7,41 (see formula

(3.9)) gives us the following result

Proposition 3.19. For any fixedn > 0 and j > 2 we have

nlQ;2(q,q) if k=n

(3.11) D" (My,j-2(q,7)) = {0 if 0<k<n.

Proof. We start by applying the relation (3.9) to ¢°¢’ and so we obtain
(3.12) Tnt1(7q) = 2"D"Cria (T"9).
Now, we focus only on k = n. By Theorem[3.14land Theorem[3.3] for j > 2, we have
Tas1(7 ) = 2"l (5 — 1)Qj-2(g, ),
Cot1(7"¢’) = —2(j — 1) Q;-2(g, 9)-
By putting these relations in (3.12) we obtain
=2""nlj(j - DQj-2(q,9) = —2"2(j — 1)jD" (25Q;-2(¢, 7)) -
After some simplifications we get
D" (z5Qj-2(q,7)) = n!Qj-2(q, 7).

By the definition of generalized Appell polyanalytic polynomials and taking into account
the fact that k = n we get

(3.13) D" (Mg j-2(q,9)) = nlQ;j—2(q, q)-
Now, it remains to prove that
(3.14) D" (Mij—2(¢.9) =0, YO<k<n.

We prove it by induction on n.
For n = 1 (which means k = 0) we have

D (MO,j—2(Q7 Q)) =D (Qj-?((L Q)) =0.
We can justify the last equality from the fact that the generalized Appell polynomials are

Fueter regular functions.
13



We suppose that (3.14) is true for n and we want to prove it for n + 1. Therefore we want
to show that

Dn+1 (Mk.,j72(q7 (j)) = 07 v 0 S k S n.

We observe that by the inductive hypothesis D™ (My, j_2(q,§)) = Oforall0 < k < n,
thus we have

D" (M j-2(q,7)) = DD" (Myj-2(q,7)) = 0.

To end the proof we have only to consider the case k = n, this means that we have to
show

D" (My,j-2(g, 7)) = 0.

From (3.13) and the fact that the generalized Appell polyanalytic polynomials are Fueter
regular we obtain

Dn+1 (Mn_,j72(q7 q)) = DD" (Mn7j72(Qa Q))
D (n'Q;—2(q,q))
= 0.

4. THE TRUE POLYANALYTIC FUETER BARGMANN TRANSFORMS

As done in [5]], the slice hyeprholomorphic Fock space is characterized in terms of power
series, in the same spirit, here, we want to characterize the QTP Fock space denoted
by FI'(H), see Definition To this end, we need to recall the quaternionic Hermite
polynomials Hﬁ’; (q,q) (see (ZI0)) that form an orthogonal basis of F (H), see [32].

Indeed, for any f € F,I'(H) we have

Z %@, @)y, {aj}tjzo C H.

Proposition 4.1. A function of the form f(q Z 7:(q,q)cvj belongs to the space

FI(H) if and only if
Z(27T)jj!|aj|2 < 0.

Jj=0

Proof. Let us consider f € F,/ (H) this means that

Z H27r

14



Thus, by setting dyu(q) := e~ 2719° dA(¢) and using the orthogonality of the quaternionic
Hermite polynomials (see (2.11)) we obtain

/C > Hi (@, D)oy (Z Hﬁyq,q)%) dpi(q)

j=0 s=0

17112+

}E: j/ a; H2™ (g, @) H27 (g, @)ersdpa(q)

7,5=0
- Y [ G .

7,5=0

2m)nti

ZZE:aﬁuﬁ”) 5;.5005

7,5=0

1(27)" ,

=0 (27T) Z(27T)Jj!|o¢j|2 < 0.

J=0

This means that we can write the space F 1 (H) in the following way

oo

FIH)={ f= ZH%TO[J, Z(27T)jj!|aj|2<oo

=0

4.1. The map C,,41 applied to the QTP Bargmann transform. We start by studying
the action of the map C,,+1 on the quaternionic Hermite polynomials. Indeed, we first
prove the following result which will be very important for the sequel

Proposition 4.2. For any fixedn,j > 0, it holds that

S 27.‘.)77.75

(G —s—2)!

Cn+l (H’,%,_](q7 )) 27T n"]lz S' n — S

otherwise
Cos1 (H25(9,0) =0 if j<n+2.

Proof. We note that it is possible to write the quaternionic Hermite polynomials as follows

27T)n s )
sz- 2 | T
w0 @) = () ”Z T nG

Now, we observe that applying the polyanalytic Fueter mapping C,,+1 and using Remark
we get

CnJrl(qn_sqj_s) = _2(] — 85— 1)(] - S)Mnfs,j7572(q7 (j)
15
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By linearity of the map C,,; we obtain

Cot1 (H” J(q’ )) (27) n! Z sl(n )_ S)('2(7JT) )IC"Jrl(qniquis)

—s—1)(5—s)2m)"" _
271' n' Z :9]' 7’L — S)'(] S)' Mnfs-,j7572(% q)

. (1) —s—=1)(F —s)2m)"* _
- g TS ST e s =g Maea-aalesd)

—2(27’1’)7’”,' go S|(7(1__1?Ss)j|'(§27_r):__82)| Mn—s,j—s—?(qu Cj)

O

We denote by A,, 11 (H) the range of the polyanalytic Fueter mapping C,,11 on the QTP
Fock space. Indeed, we have

(41) An i1 () := {Cns1(f), f € Fy (H)}.
We prove the following characterization of the previous space
Theorem 4.3. Letn > 0 fixed, it holds that

- n-—s 2 S n—s
n+1 {ZZMn s,h+n—s q Q)ﬁh Sy Z [((f;:)thnJrQ)] 2(5(2_['_(71_’_2))] |B |2 }7

h=0 s=0 s=0

where {ﬁh,s}hZO, 0<s<n C H.
Proof. Let g € A, 11 (H), then then there exists a function f € F.I (H) such that we have

(4.2) 9(q) = Crs1 (f)(a).
We note that by using Proposition [4.3] we have that

q) = Z Hn,j (qu Cj)aja {O‘j}jZO CH
=0

and
o0

1115 = D @) jlay]? < co.

j=0
Then, by Proposition [£.2] we have that

sgl(2m)" s B
! E E .
—2n/! S| (=) —s—2) ,/\/ln,syj,sfz(q7 q)a;

s=0 j=n+2

oy @M ot n 2

slin—s)l(h+n—s)! n—s,htn—s(qs Q) Qn+nt2

s=0 h=0
o

- Z Z M"*SvhJF"*S(q’ q)ﬂh,s;

h=0 s=0

16



where we have set
2n!(2m) 2 (1) (h 4+ n + 2)!(2m)"

Bh,s = S'(n—S) (h—l—n—s)' Ahtn+2-
By developing the calculations we get
h+TL—S (S')2[(7’L—S) ] 2n o h+n+2
ZZ 27T h+n+2— 25(h+n+2) |ﬁ | ZZ 27T (h+n+2)'|0(h+n+2|
h=0 s=0 5=0 h=0
=4nl(n+ 1)127)* Y " 2m)" "2 (h + 0+ 2) s nga)?
h=0
= fll7Fr < oo
Therefore

Sy e <

= 27T h+n—+2 2s(h+n+2)

On the other hand, if we consider a function of the following form

Z H F)/Jv

Jj=n+2
where we have set

o slln =9l —s—2)! ‘
V= 2n!(2m)i (—1)5(4)!(2m)n—s Bi—n—2,s,

Then, we get g = Cp,41(h) since for 0 < s < n, we have

D (1) (h s + 212 R mn s I ]
Z S'(TL — S) (h Tn— S) Mn—s,h-i—n—s(Qu Q) - 2n!cn+1 (Hn,h+n+2(q7 Q))

ji>n+2.

s=0

Furthermore, we note that for any fixed index 0 < s < n we have

By = 3 @ity
j=n+2
i (2m) 20 4+ n + 2)!(s!)? [(n—s)!]2(€+n—s!)2|ﬁ 2
l,s| -
2 pos 271' 2€+2n+4( )2(11 s)[(é +n+ 2)!]2 ’
B (sH?[(n — > (6 +n —s!)]?
~ 4(n )2(27T)"+2 "S)Z €+s+2) 10 o<
Hence, we have g = Cy,41(h) with h € F, (H), this shows that h € A,,1 (H). O

Definition 4.4. Let f,g € A, 1(H) be such that f = ZZMH—SJH‘H—S((LQ)O‘}L,S

h=0 s=0
oo n
and g = Z Z M5 h+n—s(q, Q) Bh,s. Then, we define their inner product as
h=0 s=0
oo n
[(h+n = P[0 — )P —
< n+1(]]{[) : ZZ ﬁh,sah,&

(2m)h+nt2=25(h 4 n + 2)!

17
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The associated norm is given by

[(h -+ = 5)2(s)?[(n — )1
2 2
||f|| < An+1 hz(); 27T h+n+2— 25(h+n+2) |ah,s| .

Remark 4.5. If we take n = 0 in the space characterized by Theorem [4.3] we obtain the
space A(H) studied in [17]. Indeed, if n = 0 we obtain

A (H) = {Z Mo (q, @) B0, (Bno)r>o C H, Z

h=0

G Tl < OO}

This observation holds since My 1(q, §) = Qn(q, ) and

- hlh! > Rl
2m)i(h+2)(h + 1)kl h; @m)(h+2)(h+ 1)

h=0 (
Thus, we get that
A (H) = A(H).

In the next result, we write the kernel of the QTP Bargmann transform as a generating
function of the quaternionic Hermite polynomials.

Proposition 4.6. Letn > 0 fixed. Then, for any q¢ € H and x € R, we have

[e’e] 27.. 27 = o
Z Z Hj(@d) 2 (2 ml(2m)")~ b ) $2m B ppon (q +q x) 7
< ||h ”||L2(R) [ H2% N 7 sy V2

where H2™ are the Hermite polynomials defined in formula (2.8).

Proof. We know that the QTP Bargmann transform maps L?(R, H) onto F1'(H). More-

over, it is well-known that the normalized Hermite function form an orthonormal basis of
L?(R,H). We note that the normalized quaternionic Hermite polynomials %
kT (i
form an orthonormal basis of the QTP Fock space 1 (H). Now, using a classical approach

used in [25] we know that

e 271 H2™ =
(4.3) K(q,ZC) — Z f;’fr (.CC) n, k(qu Q)
= 1R 2 ey (| 72 g

is the kernel function that leads to the following integral transform

/ K(g,2)f(2)de
R

On the other hand, we know by [20] that
@4)  K(gaz) =252 nl(2n)") Fe @ )2V 20w (m - :v) .
V2
Putting equal the expressions (@.3) and (@.4) we get the thesis. O

Remark 4.7. We note that if we put n = 0 in Proposition [4.6l we obtain the same result in
[18| Prop 4.1].

Now, we give the following
18



Definition 4.8 (C-polyanalytic Fueter Bargmann transform). We define Bg+1 : LE(R) —
Ay +1(H) as

(4.5) Bt = Cpyq 0 B"T
where B" ! is the QTP Bargmann transform, see (Z.7).
Corollary 4.9. The C-polyanalytic Fueter Bargmann transform B"Jrl is H-linear.

Proof. Itis adirect consequence of the linearity of the map C,, 1 (see Proposition3.2). [

Now, we have all what we need to write an expression of the C-polyanalytic Fueter
Bargmann transform

Theorem 4.10. The C-polyanalytic Fueter Bargmann transform can be realized using the
following commutative diagram

BEt: L3(R) ——> Ay (H)

B"+1\L Tcn+1

More precisely, for any ¢ € L%4(R) and g € H we have

B () = / B(q, 2)p(x)d,

R

where

n 3 ) hl+n+2( )Mnfj l+nfj(q Cj)
. P(g,x) := )221 Tn .
o e ZZ S @m0+ n— )l — )

and My,_j 14n—j are polynomials defined in (3.4).

Proof. According to Proposition [4.6l we know that we can write the kernel of the QTP
Bargmann transform as

o] 2 x H1217'r 7—
K(q, )_ZHhk() k(qQ)

2 T ez cey Moo gy

We develop the computations using the explicit expressions of || 12" || r2(r) and |[Hy k|| 77 m)
together with Proposition 4.2l we have

o 1) Cont (M2 0)
Cort (K@) = 3 o (11340.0)

k=n+2

= —2vnl(21)%2

1B N 22 ey [ H o i | 2

n

) i 1>J‘hi“<x>
&5, 2, 25 @i gtn— )k~ - 2!
— Va2 293 i . l+n+2( L) Mon—ji+n—j(q,9) '
1=0 j=0 73+ n =) n = j)!
This ends the proof. O
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Remark 4.11. If we put n = 0 in formula (4.6) we obtain

o

. 0 7— h27r
®(q,r) = —23 Z Qila Dhily(@) q') §+2(I), Y(g,x) € H x R.
pard k122

This is the same formula obtained in [17, Thm 4.14] up to a constant.

Now we study further properties of the transform Bg'H

result

. Firstly, we need the following

W (@)

Proposition 4.12. Let n > 0, we set 2" (z) = T e
ko2 )

. Then, we have

2

B (9" (q) = mH 5 (4, ).

Proof. We note that in [[18] Lemma 4.4] we have

(2m)%
N

Thus, using the definition of the QTP Bargmann transform we get

Br(¥i")(q) = V2

BT W) = (1" |Gy (¢ Ba0) @)

1 eQﬂ'\q\z n —2m|q|? ( )%
e (e
1 V2
N ETh

= (-1

—1)" (27T)ke27r|q|25;L (e*%IQIqu)

1 V2
— H27'r , —
@m)nnl /@n)kk! nk(4:0)
2
=/ =—————H?
Gy ok (@ @)-
This ends the proof. O

Remark 4.13. If we put n = 0 in Proposition we obtain the same result of [18| Lemma
44].

Proposition 4.14. For any fixed n > 0 we have

n 1)',/\/ln i, 2(q,@) .
Bg+1 ("/JI%W)(Q) 2 \/m27 =0 (27r)] j1(n— 7)kl(k —Jj q2l§' if k>n+2
O if k<n+42.
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Proof. We apply Proposition [4.2 and Proposition 412l to get

BE W4, D) = | e @y H;7e(a,9))
/ " )( 27-r)" J
! l . . 7
J:

3 . . —1)(2m)~7 _
=22 m(%)’” k! il (_ j))!((k _)j — 2)!/\/1”_]-,;@_]‘-2((1, a)

7=0
(—1)7
\/2 Yetnnlkl M —jk—j—2(q, q).
™ n Z TL— k—j— 2) (27T)JM Jik—j 2((] q)
O
Remark 4.15. If we put n = 0 in Proposition [£.14 we get
. —g3 v T it k>2
Bé( ]z )q) = 21 Qr—2(q,9) =
0 it £k=0,1
which is exactly the same result of [17| Prop. 4.18], up to a constant.
Definition 4.16. Let us consider the following subspace of L% (R)
@ {i"a, o € H},
k=n+2
where 9™ are the normalized Hermite functions.
Remark 4.17. Since 7™ is an orthogonal basis for LZ(R) it is clear that
#(R) =P {(vi"a, o € H}.
k=0
Proposition 4.18. Let ¢ € H". Then for any fixedn > 0 we have
Bgtlp = Z Z Mo jhtn—j(¢ Dan,j
h=0 j=0
where
ap ;= —2%\/(27T)h+2"+2n'(h+n+ 2)| (_1)jah+n+2 {Olh}h> CH
g ' @m)ijin— )ik +n— ) e

Proof. Let ¢ € H". By Definition we can write

Z 1/% Qg {ah}kzo C H.

k=n+2
21



By Proposition [£.14 we have

Bit'o(g)= Y BT Wi (@)ow

k=n-+2
3 n © (—1)‘]/\/1717]]67]*2((]5@)
Z&g;z (2m)i gl (n = )k —j —2)!
, n (=1 M j nin—s(q,7)
= -2 (2m)ht2nt2pl(h +n+ 2
g%;%%l I @myi i — )kt~ )
= ZZMn—j,h-i-n—j((LQ)ah;j’
h=0 j=0
[l

Proposition 4.19. For any fixed n > 0, the C-polyanalytic Fueter Bargmann transform
is a quaternionic right linear bounded surjective operator from L% (R) to A, 1 (H). This

means that
IBE* 0l apsamy < 2V2¢/ (0 + DI2T) 2|0l 2.y
Proof. By Proposition (4.18) we have that

o n
Bngl‘P = Z Z Mnfj,h+n*j (q7 (j)a;z,jv
h=0 j=0
with

3 1)jah n+2
. _9% h4+2n+2,1 (= +n+
ap, =2 \/(27T) n!(h+n+2)! G = N ht =)

From the definition of norm of the space A,, ;1 (H) (see Definition £.4) we get

| 2

SiE:Kh+n—ﬁ]UVKn—ﬁf

n+1 2
HBC <P|\An+1(H) (27T)h+n+2 2J(h+n+2)' |O‘h,j

h=0 j=0
oo

_ [+ = PG ((n = )
B 228(%wwwﬂ2wh+n+2y'

h=0 j=0
et
(2m)27[j! (n PR+ n— Rt

= 8nl(2m)" Z Z |t nta]?

§=0 h=0
n oo

= 8n!(2m)" Z Z |ove|?
7=04=n+2

n oo

< 8nl(2m)" ZZ 04g|2
§=0¢=0

= 8nl(n+1)2m)"l¢l7 @)
= 8(n+ )!(2m)" H‘PHL%(R)'

Oh4n+2



Proposition 4.20 (Isometry of Bg“). Letn > 0 fixed and assume that p, ¢y € H™. Then
we have

(4.7) (Be™ o, Be ™) 4, ay = 8(n + 1)N2m)" (0, Y)pn
In particular

IBE |, sr ) = 2V20/(n + D)1(27) 2 ||op |34

Proof. Let us consider
0 o0
S Wian, Y=Y $imaj,
k=n+2 k=n+2
with {a x>0 C Hand {&}, }x>0 C H By Proposition [£.18 we have
© n © n
Bito =33 M jnini(@ @b, BETY =" M jnin (0. 0B
h=0 j=0 h=0 j=0

where

N \/(27.‘.)h+2n+2n!(h +n+2)! o ((nl_)J;h(Jrhnfn 5

(=1)! Brins2
(2m)75!(n = )N (h +n — )
From the definition of the inner product of the space A,, 11 (H) (see Definition £.4) we get

B 5 = —2%\/(2m)r+2nt2nl(h 4 n 4 2)!

n

- L = PG (0 = )
n+1 n+1 _ /
<BC ©s BC 1/}>An+1(H) - Z JZ 27T h+n+2—2j (h Y+ 2) ﬂ;17j05h,j

_ Siz (h+n—)P3EY* (= ))*

oy @mhtraR=2i(h 4+ 2)!
(2m)" 2 2l (h 0+ 2)
@mZ[ji(n — )2[(h +n — 2 Hmr2ohtns

= 8n!(2m)" Z Z Bhtnt2Qh+n+2

7=0 h=0

= 8nl(2m)"(n+1) Z Brou

k=n-+2
= 8(n+DI2m)" (¢, Y)pn-

In particular when ¢ = 1) we obtain

IBET | sr ) = 2V20/(n + D)1(27) 2 ||op |34
0

Remark 4.21. If we put n = 0 in all the properties that we proved for Bg“: Proposition
[£.14] Proposition [4.19] Proposition [£.20] respectively; we get up to a constant [[17, Prop.
4.18], [17, Prop. 4.19] and [[17, Prop. 4.20], respectively.

23



We believe that it is also possible to define a C-polyanalytic Fueter Bargmann transform by
applying the polyanalytic Fueter mapping C,,+1 to the reproducing kernel of the QTP Fock
space, see [[20, Prop. 4.2]. In order to show how hard are the computations we show the
case n = 1. This case suggests that the formula that we are looking for puts in relation the
quaternionic generalized Appell polyanalytic polynomials and the quaternionic Hermite
polynomials.

Proposition 4.22. For any q,r € H, we denote by K5(q,r) the reproducing kernel of the
QTP Fock space, in the case n = 1, then we have

00 Ml , 00 -
Cz(Kz(q,r))——S(Z ra.d )h“‘” ZM(; Hf%g( ))-

h=0 h=0

Proof. Before to start we recall the definition of *-exponential

~ > o "q"f"
e.(2mar) = Y- LT

n=0
Then, by [20, Prop. 4.2] with n = 1 we have
1

Kalg.r) = 2e.(2mqr)+ (Z(—l)k (1)) mientaa—ar—ar+ mﬁ*)

k=0
= 2e,.(2mqF) * (1 — 27(qq — q7 — qr + 7r))
2e. (2mqr) — dme, (2mqF)|q|? + 47 (e, (2mqF) * qF] + 4r[e.(2mqF) * gr] +
—4re,(2mqF)|r|>.

Now, we observe that

ex(2mqr) xqf = 2 <Z W) * qF
_ <i (27T)nz;1+lrn> -

= qe*?272qf)17.

The same holds for the other member

e (2mqr) x gr = qe.(2mqr)r.
Hence, we can write the reproducing kernel K3 as the following polyanalytic decompo-
sition
(4.8) Ky(q,7) = 2e.(2nqF) — 4me.(2mqr)|r|* + 4dnqe. (2mqF)F

+q[dme, (2mqT)r — dmqe, (2mqT)].
Now, we apply the polyanalytic Fueter map Cs to obtain
(4.9) Co(Ka(q,7)) = 2A(e.(2mqr)) — 4w A (e (2mqr)|r|?) + AT A (qe. (2mqF)) 7

+amao[A (ex(2mqr)r) — A (ges (2mqr))].

By [[17, Prop. 4.2], up to a constant, we know that

271' h+QQh(q q) =h+2
h! '

(4.10) A (e.(2mqF)) = —4 Z
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Moreover,

(411) Alges(2ngF)] = 2§j (2m) éA M) !
=0

(2m)E(+ 1)0Q_1(q, )T
_42 o0 —1)!

(2m)" Y (h 4+ 2)Qp (g, @)
- —42 o .

h=0
Now, we split formula in two parts
A = 2A (e, (2mqr)) — 4nA (e, (2mqr)|7|?) + 4T A (ges (2mqF)) T,

B :=4wxg[A (e« (2mqT)r) — A (ge«(2mqT))],

thus
CQ(KQ)(Q,T) = A + B.
Firstly, we calculate B. By formula and formula we get
2 h+2 ~h+2 o 2 h+1 h 2 \=h+1

s 4m0< 42 AR LY i e (RR AR i )

h!
h=0

- [Z 0D D ()t _ (2427 + 2)7 1)

h!
h=0

- —82 M” q 2 L Upgzn (7).

Now, we calculate A.
) h+2 h+2 N—ht2),.(2
A ( 42 (27) Qh(q, qQr (2m)" "2 Qn(g, )|

+ 87 Z o +

h=
2 h+1 h 2 h+2
—871'2 7T ( + Qh q q )

= 8 li Q(;(T‘LQ) ((2m)h e +3 — 2m)h*3(h + 2+ 1)7 h+2)‘|

(27‘( hl 12,7;1+3(T7 7:)
h=0
Hence
Ca(Ka(q,7)) = A+B
= Min(q,Q)H 1h 2 > Mo n( Tron 7o =\
I izl
h=0 h=0

O

Remark 4.23. Since the computations are already hard for the case n = 1, we do not know
if it is possible to find a formula for all n. This would be investigated in a forthcoming
work.
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4.2. The map 7,41 applied to the QTP Bargmann transform. In this subsection we
want to investigate what happens if we apply the polyanalytic Fueter mapping 7,41 to
the QTP Bargmann B"*!. We will call this integral transforms 7- polyanalytic Fueter-
Bargmann transform.

First of all we want to study the range of this integral transform. Let us define the fol-
lowing space

(412) Ani1(H) = {mo1(F); f € F(H)}.
Before to give a characterization of this space. We need the following result

Proposition 4.24. Letn > 0 a fixed number. Then we have

T _ _2n+1(2ﬂ-)j+nn!j(j - 1)Q '*2((15 q_) ] Z n -+ 27
Tn+1 (H’Z,,j(quc,I)) = {O ’ j<n+2

Proof. By using the relation between the two polyanalytic Fueter maps, see [3| Thm. 3.13]
and Proposition 4.2l we have for j > n + 2

Tot1 (H5(q,7) = 2"D"Cpgr (HT5(q,7))
I O
(4.13) = =2"2(2m) nly! ; ] s 1Ty g 2)!D (Myp—s,j—s—2(q,7)) -

From Proposition 3.19] we know that
an (Mn—s,j—s—Q(qu Q)) = n!Qj—s—2(qu 67)7
if n — s = n, this means s = 0. Therefore
D" (Mn—s,j—s—2(Q7 (j)) = n!Qj—2(Q7 (j)

This implies that in the sum (@I3) we have only to take into account the case s = 0.
Therefore for j > n + 2 we get

_272(2m)0*" (n)2)!

Tn+1 (Hg?}(qafj)) = nl(j —2)! -Q;_2(q,q)
= =22 Ml - 1)Qj-2(q, @)
O
Now, we can characterize the space Xn.ﬂ (H).
Theorem 4.25. For any fixedn > 0, we have
Ani1(H) = {};J On+n(a:@)Bn, (Bn)nzo C H, };J htn iﬁ;:ﬁlihfm@ﬂh < OO} :

Proof. Let us assume that g € .ZnJrl (H), thus there exists a function f € F.! (H) such
that g(¢) = 7+1(f)(g). Since f € FI'(H) by Proposition 1] we have

fla) = ZHn,j(qvq)Qﬂ-o‘jv {ajtjz0 CH
=0

and
oo

15 @y = Z(27T)jj!|0<j|2 < o0
=0
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Now, by Proposition 24 we get

9(@) = Tapi(f ZTnJrl H, (¢, ) o

S e i - 19 (g ey
j=n+2

= =272y " @2m) (B4 n 4 2)(h 4+ 1) Qhin (g, i
h=0

= Z Qh+n(QaQ)ﬂha

h=0

where 3, := —2"+1(27)2"FUnl(h + n + 2)(h 4+ n + 1)(27)" @y 42. Moreover

o0

(h+n)! - (h+mn)!

hz:% (h+n+1)(h+n+2)2r)" 18I hz:%) (h+n+1)(h+n+2)(2n)"

gn+1 (27T)4(n+1) (n|)2 .

(h+n+1)%(h+n+2)%21)"" aniniol?

= 4o @)2 Y (h+n)l(h+n+ 1)(h+n+2)-
h=0

-(2m)" @42

oo

_ 4n+1(27_r)3n+2( ) Z(h+n+ 2) (277)h+2+n|04h+n+2 2
h=0

= 4" 2m)P R ()2 fll % gy < 0o

Therefore

oo

(h+n)
};O (h +n+ 1)(h—|— n+ 2)(27‘1’)}1 |Bh|2 < 0.

Now, we prove the other inclusion. Let us consider a function

Z H aka

k=n-+2

with ay, 1= — 2”‘*’1(25),67;3;712!(](571)]6' We get that g(q) = T+1(h)(q), since

Tn+1 (H§Tk+n+2(Q7 @)

2ntl ()b t2nt2pl(k +n 4+ 2)(k+n+1)°
27

Qk-‘rn((L Q) = -



Furthermore,

1Pl Fre = > @m) kol
k=n-+2
= DT+ 2 armel
=0
S (2m)" 2+ n + 2)!] B[
B 4t (2m)2(E+242) (p)2 (0 + n 4+ 1)2(0 4+ n + 2)?
_ - (£+n)! )
© 4nFl(pl)2(27)3n+2 ; (+n+1)(l+n+2)2m)" [Bel < oo.
Hence h € FZ(H) and g(q) = Tny1(h)(q). This means that g € A, (H). O

Definition 4.26. Letn > Obe afixed number. Let us consider f(q) = >~ Qn+n(q,7)Bn
and g(q) = Y12y Qn+n(q, §)n we define the inner product of Ay, 1 (H) as

- O (k+n)! _
907,00 = ];J GFn s DL n T D@k e

The associated norm is given by

2 R (k+n)! 2
1%, ) = kzzo (k+n+ 1)(k+n+2)(27r)k|ﬂk| '

Now, we can propose the following

Definition 4.27 (7- polyanalytic Fueter Bargmann transform). We define B?*! : L% (R)

Api1(H) as
B‘frlJrl ‘= Tp41 O BnJrl’
where B" ! is the QTP Bargmann transform defined in formula (Z.7).

Corollary 4.28. The 7- polyanalytic Fueter-Bargmann transform B** is H-linear.

Proof. This result follows by the linearity of the map 7,,41, see Proposition 3.13 g

It is possible to prove a relation between the 7- polyanalytic Fueter-Bargmann transform
and the C- polyanalytic Fueter-Bargmann transform.

Proposition 4.29. Let o € L%(R). Then, for any fixedn > 0 we have
Bty =2"D" (Bptty) .
Proof. The result follows from [3] Thm. 3.13], Definition [£.27]and Definition [4.8]
Bitlo =111 0 (B" ) = 2"D" (Cyr 0 B"H(p)) = 2"D™(BE ).
O

As the C- polyanalytic Fueter-Bargmann transform we can express the 7- polyanalytic
Fueter-Bargmann tranform in integral form.
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Theorem 4.30. For any fixed n > 0 it is possible to define the T- polyanalytic Fueter-
Bargmann through this diagram
BrH L3(R) —= Ay (H)
prtl Tﬂwl
Fp(H) — > 5Py (H)
Precisely, for any ¢ € L(R) and g € H we have

BrHp(g) = / O(g, 2)p(x) d,
where

n 3 = QkJrn(Qa )hiﬂ Q(x)
4.14 O(q,z) = —Vnlr?21 - tnt2
(4.14) (g,2) = —V/nlr ;) Xkt

Proof. By Proposition [4.29 we have that
B*o(q) = 2"D" (BEe(q)) -
From Theorem[4.10] we have that
B =2 [ D (B(g.0) pla)de, g€
R

This means that in order to prove statement it is enough to compute D™ (®(q, x)), where

n 3 th:n+2( )Mn Jl+n— j(q LY)
P(q,x) := )2 21 .
(6. zz;;) Il +n —j)(n — j)!

Firstly, we observe that by Proposition 3.19 for & > 0, we have that

0 if §> 0.

D" (Mn—jx(q,7) = {

This imply that when we apply the the operator D™ to ®(q, ) the only term that we have
to take into account in the second series is when j = 0, since the others members are all
zero. Now, we perform the computation

oo S (SR (D)D" (Mo pines (4,0))
D" (®(q, —Vnl(2m)% 21 kit J 2
(#la:2) ) kgg 255 @mp ik 41— ) — j)!

2 — (e, )hk1n+2(x)
P 25 (k + n)!

n
= —vnlr22

O

Remark 4.31. If we put n = 0 in (14) we obtain the same kernel of the integral transform
obtained in [17) Thm. 4.14], up to a constant.

Now, we prove some properties of the 7- poly Fueter-Bargmann transform .
First of all we recall the normalized Hermite functions

Izﬂ'(x) — hzﬂ(x)

13 I 22 (m)
where hi™ are defined in formula (Z.3).
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Proposition 4.32. For any fixed n > 0, the action of the T- poly Fueter-Bargmann trans-
form on the normalized Hermite function is the following

Bt (gamy () — | V22T @m)Frlkl 22D i > 42
P WE(9) .
0 if E<n+2.

Proof. From Proposition [4.291 we know that
B (") (@) = 2"D" (Be i) (a)-
Now, if & > n + 2, by Proposition [d.14 we get that

n+1 n+1 n JDn n jk*j*Q(qvq))
B (™) (q) = —V22m T [ (2m)k+ k'n'z @y n—j)(k—j—2)!'

By Proposition B.19 we have that

1Ok 2(q.q 70,
D" (Muji—j-2(4,0) = {n — if

0 if j > 0.
This means that in the summation survives only the term with j = 0. Hence, we get

BI i) = —vart (27T)k+"k!n!%

_\/52714-1 (27T)k+nk|nlg(kk%(g7)?)

O

Remark 4.33. If we put n = 0 in Proposition [£.32 we get the same result of [17, Prop.
4.18], up to a constant. Indeed, if £ > 2 we get

Qr—2(q,9)
(k—2)!

—2v2\/2m)kk(k — 1)\/(k — 2)! Q“qq

(2m)*k(k — 1)
—2v/2 ]

Now, using Definition [4.16] we have the following

BLW)(q) = —-2v3,/(2m)H

Qk—2(q7 Cj)

Proposition 4.34. Let ¢ € H". Then, for any fixed n > 0 we have

B () (q) = Z Qk+n(q, 7) Bk,

k=0

where

V22rtl J(2m)Er2t2npl(k + n + 2)!
(k+mn)!
Proof. By Definition [4.16 we can write

By = -

Ok tnt2, {on} k>0 C H.

S e @)ar,  {artrso CH
k=n+2
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Then by Proposition [4.32 we get

o0

Brfe)g) = Y BrTWET)(g)ox

k=n-+2

— _ Z \/§2n+1 (27T)k+”n'k' Qk72(q7 (j) o
k=n+2 (k —2)!

+ QkJrn (q LY)
— n+1 k+242n ?
= kg 0 V22 \/(27r) nl(k +n+2)! i+ n)! Qtn42

= Z Qi(q: 4)Br-
k=0

Theorem 4.35. The T-polyanalytic Bargmann transform is a surjective operator that satis-
fies the following unitary and isometric properties for p, 9 € H™

(B o, BIV) 5y = 47220200 Ol e

In particular

(4.15) 1B 4,y = V2220 Valpllen.

Proof. Let us consider
oo o0
E 2m § : 2 1
¥ = wk Ak, Q/J = 1/119 Qs
k=n+2 k=n-+2

with {ax}r>0 C H and {a}, }x>0 C H. From Proposition 434 we know that

B e) @) =Y Quinlq. @B and  BITW)(g) =Y Qkin(q: @),
k=0

k=0

where

V22rtl J(2m)Er2t2npl(k + n + 2)!
Br = — (k T n)! Ok+n+2,

V22r Tt J(2m)Er2R2npl(k +n + 2)!
Ve = — k +n)! Cktnt2
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Now, recalling the definition of the inner product .ZnJrl (H) (see Definition [£.26) we get

Bn+1 B"+1 —~ ( 7
(BX ", BT 1/)>An+1(H) ];)(k+n+2)(k+n+l)(2w)k7kﬁk
S (i) 422242 O+ +2)
N = (k+n+2)(k+n+1)@2m)* [(k+n)lP?
Q4o Vhpnt2

_ n+2 2(n+1),,) - (k+n)'
4M2(2m) "'];)(k+n+2)(k+n+1)(2w)k

2m)k(k+n+2)(k+n+1)(k+n)
' [+ )2 Ot 2Ok s2

= 4nt29(27)2(n )yl Z oy,
k=n-+2
= 4"22(27) 2 Dl (i, ) gyn.

In particular if 1) = ¢ we get formula (@.15). O

Corollary 4.36. TheT-poly Fueter-Bargmann transform is a quaternionic bounded operator
such that for any ¢ € L% (R), we have

1B2 L < VEZ (20 Vil ol oy
Proof. Since H" is a subspace of L% (R) we get that

lellaer < llell Lz

Therefore by applying this inequality to (4.15) we get the thesis. (]

Remark 4.37. If we put n = 0 in Proposition 432 Theorem [£.35] and Corollary £.36 we
get [17, Prop. 4.18], [17| Prop. 4.20] and [17, Prop. 4.19], respectively.

Also in this case it is possible to construct a T-polyanalytic Fueter Bargmann transform
by applying the Fueter poly map 7,41 to the quaternionic reproducing kernel of the QTP
Fock space K, 1. However, also in this case the computations are very hard. For this
reason we write only the case n = 1.

Proposition 4.38. For any q,r € H we denote by K3(q,r) the reproducing kernel of the
QTP Fock space, in the case n = 1, then we have

(4.16) 2 (Ka(q,r Z D2 (T 7).
Proof. From formula we have the polyanalytic decomposition of K5(q, r'). Recalling

the action of the global operator V, we get that

V (Ka(q,r)) = 4dnle.(2mqr)r — ge.(2mqT)].



Using similar computations as Proposition [4.22] we get

T2 (KQ((],T)) = AoV (KQ(qv 7‘))
= 47T[A (e*(2ﬂ'qf)7") — A (ge.(2mqr))]

= 82 H1272+2( T, 7).

O

Remark 4.39. 1t will be interesting to find a general expression for the formula (4.16) in
the case n > 2.

5. THE POLYANALYTIC FUETER BARGMANN TRANSFORMS

In this section we see how the results obtained for the QTP Fock space can be reformulated
for the quaternionic polyanalytic Fock space. In order to do this it is crucial the following

result, see [20, Thm. 3.4],
Theorem 5.1. Let N > 0. The quaternionic polyanalytic Fock space fé\;;i (H) is the direct
sum of QTP Fock spaces F(H),n =0, ..., N ie.

N
Fstee(H) = €D F7(H)
Remark 5.2. From the Theorem[5.dlit is clear that a function f € F, :]S\;::i( ) if and only if

N
(@) = fala), fo€ FE(H), n=0,..,N.
n=0

We will omit all proofs because by the previous remark they are similar to those ones
obtained in the previous section.

First of all we characterize the space Fy e ! (H). By putting the sum from n = 0 to N in
the proof of Proposition A1l we get the following

Proposition 5.3. Afunction of the form

Z Z HT(q, Dang  {omj}ognsn.zo C H,

n=0 j=0

belongs to the space ]-'gﬁ;i( ) if and only if

N oo
Z Z(?w)ﬁ"j!n”an)j 1> < o0.

n=0 j=0

5.1. Themap C,,; applied to the QFP Bargmann transform. Let us start by defining
the range of the polyanalytic Fueter mapping C,, 1 on the quaternionic polyanalytic Fock
space,

N
H) = @ An 1 (H)
n=0

where A,, 11 (H) is the space defined in formula @1).
We have the following characterization of the previous space
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Theorem 5.4. Let N > 0. Then we have

N oo n
= {Z Z Z Mnfs,thnfs(LL Q)Bn,h,sa

n=0 h=0 s=0
h+n—8)] (s)?[(n — )2 2
R

where { B, h,s fo<n<N,h>0,0<s<n C H.

Definition5.5. Let f, g € 2y (H) be such that f = Z 0 2 on0 2om o M s htn—s(q, @) nh s
and g = Z,J:[:(J Yoo > o Mu—shin—s(q, @) Bn,n,s- We define their inner product as

N 0o n
(f,9) An+1 H) [(h+7n = $)(s)?[(n — )1
<f7 g>91N(H) Z (n+ 1 ZOZZ TL+ 1 27T h+2n+2— 25(h—|—n+ 2) Bn,h,san,h,s
n h=0s

and the norm as

N Hf”2n+1 N> h+n—s)2(sH2[(n—s)!?
10 = 3 o e ~ 2 2 L o

n=0h=0 s=

Now, we can give the following

Definition 5.6 (C- full poly Fueter Bargmann transform). Let ¢ = (¢, ..., on) be a
vector-valued function in L?(R, HV+1). We define B¢ : L?(R, HV+1) — Ay (H) as

N
(5.1) Be(B)(g) == > Cni10 B on(q).

n=0

By using Theorem [4.10 we can write an expression of the C- full poly Fueter Bargmann
transform

Theorem 5.7. The C- full poly Fueter Bargmann transform can be written by using the
following commutative diagram

%C : LQ(R,HNJrl) —— Q[N(H)

.| v

SP 41 (H)

with B is the QFP Bargmann transform. More precisely, for any vector-valued function
= (0, .., pn) in L2 (R, HN*1) and q € H we have

Be (7)(q) = / BN (¢, 2)pn (),

where

@N(q,x) — _9o% iii (=1’ \/—(27")2h12}rrn+2( )My, l+n7j(q,(j)'

n=01=0 j=0 2+2n( 7)1 +n — j)i(n — j)!

In order to show an unitary and isometric property of the C- full poly Fueter Bargmann
transform we need the following
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Definition 5.8. Let us consider the following subspace of L?(R, HN*1)

Hn —@ @ {1/) a, a € HY,

n=0 k=n-42

where 127 are the components of a vector-valued function.

Proposition 5.9. Let us assume J, 1E € H . Then we have

—.

(BB, Be)ay @) = 8(F V)
In particular

1BcBlloy ) = 2V2)|B)l 20 -

5.2. The map 7,41 applied to the QFP Bargmann transform. Firstly, we study the
range of the polyanalytic Fueter mapping 7,,+1 on the quaternionic polyanalytic Fock
space,

N
H) = @ An 1 (H
n=0
where the space A,, 1 (H) is defined in @I2). This leads to the following result that
extends Theorem [4.2]
Theorem 5.10. It holds that

(h+ ) Bnnl”
{ZZQ}H" 400 ZZ Tl 0+ 1) (h+n+ 2)2n)2n OO}’

n=0 h=0 n=0 h=

where { S} n>0 C H.

The counterpart of Definition [£.2€] in this full polyanalytic setting can be presented as
follows

Definition 5.11. Let us consider f(q) = Zﬁ[:o > reo Qhtn(q: @) Bn,n and
9(q) = ij:o > re o Qntn(q, @)Yn,n- We define the inner product as

(f,9) A 41 (H) (k4 n)! o
(9 = gm 224%'k+n+1)(k:+n+2)(27r)k+2"7"’k6"’k'

The associated norm is
NI f]3

2 Ay, 1A 1 (H) (k—i—n)
”fHQlN Z 4n(2m)rn! Z Z 4rpl(k +n+ 1) (k +n + 2)(27)k+2n Bkl

Definition 5.12 (Full 7- poly Fueter-Bargmann transform). We define B, : L?(R, HV*+1) —
A (H) as

N

B, = g TN41 0 B"TL
n=0

We present different results in the full polyanalytic setting as follows
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Theorem 5.13. It is possible to define the full T- poly Fueter-Bargmann through this dia-
gram

B, . LX(R,HN*) A v (H)
o TN
~é\;:<r;i (HD) i SPN+1(H)
Precisely, for any @ = (¢o, ..., pn) € L2(R,HN*1) and g € H we have

B, (7)(q) = / O (g, 2)p(x) dz,

R
where

3 N> \/mﬂ% QkJrn (q Lj)hzﬂ- (:E)
(5.2) On(g,x) = =27 e
,; ,; 25 (k4 n)!

Theorem 5.14. Let &, z/_; be vector-valued function in H  then
<%T<ﬁa %TJ>Q~[N(H) = 32(271’)2<g5, 1/;>’HN'

In particular

(53) 1B @l ary = 1672 Bl
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