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GENERALIZED APPELL POLYNOMIALS AND FUETER-BARGMANN

TRANSFORMS IN THE POLYANALYTIC SETTING

ANTONINO DE MARTINO, KAMAL DIKI

Abstract. �ispaper dealswith some special integral transforms in the se�ing of quater-

nionic valued slice polyanalytic functions. In particular, using the polyanalytic Fueter

mappings it is possible to construct a new family of polynomials which are called the

generalized Appell polynomials. Furthermore, the range of the polyanalytic Fueter map-

pings on two different polyanalytic Fock spaces is characterized. Finally, we study the

polyanalytic Fueter-Bargmann transforms.
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1. Introduction

�is paper proposes a generalization to the polyanalytic se�ing of both Appell polynomi-

als and the Bargmann-Fock-Fueter transform, studied in [10, 11] and [17] respectively. A

fundamental tool to perform the computations is the polyanalytic Fueter map, introduced

in [3]. One of the main differences with respect to the classic Fueter theorem, see [24],

is that in the polyanalytic se�ing there are two Fueter mappings. �e first map, denoted

by Cn+1, maps slice polyanalytic functions of order n + 1 to Fueter regular functions

of order n + 1. �e second one, denoted by τn+1, maps slice polyanalytic functions of

order n + 1 to Fueter regular ones. We note that there exists a relation between these

two polyanalytic Fueter maps that can be expressed in terms of a suitable power of the

Cauchy-Fueter operator, see [3].

In Section 3 we introduce a new family of polynomials in the quaternionic se�ing

(1.1) Mk,s(q, q) := xk0Qs(q, q), k = 0, ..., n, s ≥ 0,

whereQs(q, q) =
∑s

j=0
2(s−j+1)
(s+1)(s+2)q

s−jqj and x0 is the real part of the quaternion q ∈ H.

�ese polynomials are obtained by applying the polyanalytic Fueter map Cn+1 to a slice

polyanalytic function of order n+ 1, based on the series expansion theorem. One of the

main properties of these polynomials is the following

Dn+1
(Mn,s(q, q)) =

n+1∑

j=1

2j
(
n+ 1

j

)
n!s!

(j − 1)!(s− j)!
Mj−1,s−j(q, q), s ≥ n+ 1,

where D is the hypercomplex derivate. �e previous formula, when n = 0, leads to the

classical Appell property for the Clifford Appell polynomials in the quaternionic se�ing

D(Qs(q, q̄)) = 2sQs−1(q, q̄),

see [10, 11, 17]. However, when we apply the second polyanalytic Fueter map τn+1, we

do not have any suggestions about new family of polynomials. �is is due to the fact that

the second polyanalytic Fueter map has a range included in the space of Fueter regular
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functions. In [22], by using some results proved in [21], is provided a generalization of

the polynomials defined in formula (1.1) to the Clifford Algebra in the odd dimensions.

In Section 4 we investigate the polyanalytic Fueter-Bargmann transforms. Firstly, we

study a characterization of the quaternionic true polyanalytic Fock space FT
n (H), see

[20], when the Fueter map Cn+1 is applied. A�er, we define the C- polyanalytic Fueter-
Bargmann transform as

Bn+1
C := Cn+1 ◦Bn+1,

where Bn+1 is the quaternionic true polyanalytic Bargmann transform defined in [20].

By using the fact that it is possible to write the kernel of the quaternionic true polyana-

lytic Bargmann transform as a generating function of the quaternionic Hermite polyno-

mials (see [32]), an explicit integral formula forBn+1
C is showed. Besides, some important

properties for the C- polyanalytic Fueter-Bargmann transform, such as the unitary and

isometric properties are showed. In the second part of Section 4 the polyanalytic Fueter

map τn+1 is applied. In this case, most of the results are obtained by using the connection

between the maps Cn+1 and τn+1.

Finally, in Section 5 the results proved in the previous section are discussed for the quater-

nionic polyanalytic Fock space FN+1
Slice(H), studied in [2, 20].

2. Preliminary results

We revise different notions and results about quaternions and related function theories.

�e non-commutative field of quaternions is defined to be

H = {q = x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ R},
where the imaginary units satisfy the multiplication rules

i2 = j2 = k2 = −1 and ij = −ji = k, jk = −kj = i, ki = −ik = j.

On H the conjugate and the modulus of q are defined respectively by

q = x0 − ~q , ~q = x1i+ x2j + x3k

and

|q| =
√
qq =

√
x20 + x21 + x22 + x23.

We note that the quaternionic conjugation satisfy the property pq = q p for any p, q ∈ H.

Moreover, the unit sphere

{q = x1i+ x2j + x3k : x21 + x22 + x23 = 1}
coincides with the set of all imaginary units given by

S = {q ∈ H : q2 = −1}.
Any quaternion q ∈ H \ R can be wri�en in a unique way as q = x + Iy for some real

numbers x and y > 0, and imaginary unit I ∈ S. For every given I ∈ S, we define

CI = R + RI. It is isomorphic to the complex plane C so that it can be considered as

a complex plane in H passing through 0, 1 and I . �eir union is the whole space of

quaternions

H = ∪
I∈S

CI = ∪
I∈S

(R+ RI).

Let B denotes the quaternionic unit ball and BI its intersection with the complex plane

CI for a given I ∈ S. �en, we recall
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Definition 2.1. Let U ⊂ H be an open set and let f : U −→ H be a function of class C1.

We say that f is (le�) Fueter regular (or regular for short) on U if

Df(q) :=
(

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
f(q) = 0, ∀q ∈ U.

�eright quaternionic vector space of Fueter regular functionswill be denoted byFR(U).

We recall that a slice domain (or s-domain) U onH is a domain that intersect the real line

and for which UI = U ∩ CI is a domain of CI for every I ∈ S. Moreover, if for every

q = x+ Iy ∈ Ω, the whole sphere x+ yS := {x+ Jy; J ∈ S} is contained in Ω, we say
that Ω is an axially symmetric slice domain.

Definition 2.2. Let U be an axially symmetric set in H. A quaternionic valued func-

tion f : U ⊂ H −→ H is called a slice function if it is of the form f(x + yI) =
α(x, y) + Iβ(x, y), where α(x, y) and β(x, y) are quaternionic-valued functions such

that α(x,−y) = α(x, y), β(x,−y) = −β(x, y).

In [26] the theory of slice hyperholomorphic functions was introduced based on the fol-

lowing notion:

Definition 2.3. Let f : Ω −→ H be a C1 slice function on a given domain Ω ⊂ H. �en,

f is said to be (le�) slice hyperholomorphic function if, for every I ∈ S, the restriction fI
to CI = R+ IR, with variable q = x+ Iy, is holomorphic on ΩI := Ω∩CI , that is it has

continuous partial derivatives with respect to x and y and the function ∂If : ΩI −→ H

defined by

∂If(x+ Iy) :=
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ yI)

vanishes identically on ΩI . �e set of such kind of functions will be denoted by SR(Ω).

Definition 2.4. �e slice derivative of a slice regular function f is defined as:

∂S(f)(q) :=

{
∂I(f)(q) if q = x+ Iy, y 6= 0
∂
∂x (f)(x) if q = x is real.

�e right quaternion vector space of slice hyperholomorphic functions is endowed with

the natural topology of uniform convergence on compact sets. In particular, we recall the

following series expansion from [15, Cor. 4.2.3].

�eorem2.5. Let f be a slice hyperholomorphic function on an axially symmetirc s-domain

U . �en for any real point p0 in U , the function f can be represented by power series

f(q) =

+∞∑

m=0

(q − p0)
mam

on the ball B(p0, R) = {q ∈ H; |q − p0| < R} where R = Rp0 is the largest positive real

number such that B(p0, R) is contained in U .

�ese two quaternionic function theories can be related using a fundamental result in

quaternionic analysis which is the Fueter mapping theorem. We recall briefly this result

here
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�eorem 2.6 (Fueter mapping theorem, [24]). Let U be an axially symmetric set inH and

let f : U ⊂ H −→ H be a slice regular function of the form f(x+yI) = α(x, y)+Iβ(x, y)
as in Definition 2.2 and satisfying the Cauchy-Riemann system. �en, the function

∼
f(x0, |~q|) = ∆

(
α(x0, |~q|) +

~q

|~q|β(x0, |~q|)
)

is Fueter regular.

In the late of 1950s, Sce extended this theorem to the Clifford se�ing in the case of odd

dimensions see [16, 31], Qian proved in [29] that the theorem of Sce holds in the case of

even dimensions. We refer to [12, 30] for several extensions.

Remark 2.7. We denote the Fueter mapping by

τ : SR(U) → FR(U), f 7−→ τ(f) =
∼
f .

We note that one can extend the classical theory of holomorphic functions to higher order

using the notion of polyanalytic functions, see [6]. Moreover, in the last years the notion

of slice hyperholomorphic functions was extended also to this polyanalytic se�ing, see

[1, 2, 3, 7]. We briefly recall this notion here and related results that will be needed in the

sequel

Definition 2.8. Let Ω be an axially symmetric open set in H and let f : Ω −→ H a

slice function of class Cn+1. For each I ∈ S, let ΩI = Ω ∩ CI and let fI = f|ΩI
be the

restriction of f to ΩI . �e restriction fI is called (le�) polyanalytic of order n + 1 if it

satisfies on ΩI the equation

∂I
n+1

f(x+ Iy) :=
1

2n+1

(
∂

∂x
+ I

∂

∂y

)n+1

fI(x + Iy) = 0.

�e function f is called le� slice polyanalytic of order n + 1, if for all I ∈ S, fI is le�

polyanalytic of ordern+1 onΩI . �e right quaternionic vector space of slice polyanalytic

functions of order n+ 1 will be denoted by SPn+1(U).

Note that slice regular functions are a special case of the definition of slice polyanalytic

functions with n = 0. Several results of these functions were studied and extended. In

particular, we note that the following decomposition holds true

Proposition 2.9 (polyanalytic-decomposition). A slice function f : Ω −→ H defined on

an axially symmetric slice domain is slice polyanalytic of order n + 1 if and only if there

exist f0, ..., fn some unique slice hyperholomorphic functions on Ω such that we have the

following decomposition:

f(q) :=

n∑

k=0

qkfk(q); ∀q ∈ Ω.

We revise also the polyanalytic Fueter regular functions (see [8, 9]).

Definition 2.10. Let U ⊂ H be an open set and let f : U −→ H be a function of class

Cn+1. We say that f is (le�) polyanalytic Fueter regular (or polyanalytic-regular for short)

of order n+ 1 on U if

Dn+1f(q) :=

(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)n+1

f(q) = 0, ∀q ∈ U.

�e right quaternionic vector space of polyanalytic Fueter regular functions will be de-

noted by FRn+1(U).
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Remark 2.11. We note that two Fueter mapping theorems were proved in the polyanalytic

se�ing, see [3]. �is will allow to introduce the so-called polyanalytic Fueter mappings

Cn+1 and τn+1 which will be studied and investigated in the next sections.

An important system of quaternionic polynomials that will be needed in the sequel are the

so-called quaternionic Appell polynomials. �is system was considered in the li�erature

from different points of view, for more details see [10, 11, 17] and the references therein.

Such quaternionic Appell polynomials can be defined by the following relation

(2.1) Qk(q, q̄) =

k∑

j=0

T k
j q

k−jqj, q ∈ H, k ≥ 0,

where

(2.2) T k
j :=

k!

(3)k

(2)k−j(1)j
(k − j)!j!

=
2(k − j + 1)

(k + 1)(k + 2)

and (a)n = a(a+ 1)...(a+ n− 1) is the Pochhammer symbol.

Remark 2.12. Notice that the polynomials (Qk)k≥0 given by (2.1) are Fueter regular on

H. Moreover, they form an Appell system with respect to the hypercomplex derivative

D
2

:=
1

2

(
∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
− k

∂

∂x3

)
. i.e., for all k ≥ 1we have theAppell property

(2.3)
D
2
Qk(q, q) = kQk−1(q, q).

In [2] the authors introduced the quaternionic polyanalytic Fock space defined for a given

I ∈ S to be

F̃N+1
Slice(H) := {f ∈ SPN+1(H) :

∫

CI

|fI(q)|2e−2π|q|2dλI(q) <∞}, N ≥ 0.

In [3, Prop. 4.1] and [3, Prop. 4.2] is showed that the polyanalytic Fock space is a quater-

nionic reproducing kernel Hilbert space which does not depend on the choice of I ∈ S.

�us, from now we will denote the quaternionic polyanalytic Fock space by F̃N+1
Slice((H).

Now, we give the definition of the quaternionic true polyanalytic (QTP) Fock space.

Definition 2.13. A function f : H → H belongs to the QTP Fock space FT
n (H) if and

only if

i)

∫

CI

|fI(q)|2e−2π|q|2 dλI(q) <∞.

ii) �ere exists a slice regular function H such that

f(q) = (−1)n

√
1

(2π)nn!
e2π|q|

2

∂ns (e
−2π|q|2H(q)).

Another important space in this context is the quaternionic Hilber space L2(R; dx) =
L2(R,H), consisting of all the square integrable H-valued functions with respect to

〈ϕ, ψ〉L2(R;dx) :=

∫

R

ψ(x)ϕ(x)dx.(2.4)

�e real weighted Hermite functions

(2.5) hνk(x) := (−1)ke
ν
2 x

2 dk

dxk

(
e−νx2

)

5



form an orthogonal basis of L2(R; dx), with norm given explicitly by

(2.6) ‖hνk‖2L2(R;dx) = 2kνkk!
(π
ν

)1/2
.

Now, we recall the QTP Bargmann transform which was introduced in [7], and more

results on this can be found on [20]. Let ϕ : H → R, then

(Bn+1ϕ)(q) = (−1)n

√
1

(2π)nn!
e2π|q|

2

∂ns [e
−2π|q|2BHϕ(q)]

= 2
3
4 (2nn!(2π)n)−

1
2

∫

R

e−π(q2+t2)+2π
√
2qtHn

(
q + q̄√

2
− t

)
ϕ(t)dt,(2.7)

where BHϕ(q) = 2
3
4

∫
R
e−π(q2+x2)+ν

√
2qxϕ(x)dx and Hn are the weighted Hermite

polynomials defined as

(2.8) H2π
n (y) = (−1)ne2πy

2 dn

dyn
e−2πy2

= n!

⌊n
2 ⌋∑

j=0

(−1)j(4πy)n−2j

j!(n− 2j)!
,

where ⌊.⌋ denotes the integer part.
In the polyanalytic se�ing it is possible to define a quaternionic Bargmann transform

for a vector valued function ~ϕ = (ϕ0, ..., ϕN ). We will consider that a function ~ϕ =
(ϕ0, ..., ϕN ) belongs to L2(R,HN+1) if and only if

||~ϕ||2L2(R,HN+1) :=

N∑

j=0

||ϕj ||2L2(R,H) <∞.

Definition 2.14. Let ~ϕ = (ϕ0, ..., ϕN ) be a vector-valued function in L2(R,HN+1). �e

quaternionic full-polyanalytic Bargmann (QFP) transform is defined as

(2.9) B~ϕ(q) =

N∑

j=0

Bj+1ϕj(q),

where Bj+1ϕj(q) is the QTP Bargmann transform, defined in (2.7).

A very important tool in this context are the so-called quaternionic Hermite polynomials,

see [23, 28, 32]

(2.10) H2π
m,p(q, q̄) = (2π)p(−1)me2π|q|

2

∂ms (qpe−2π|q|2), m, p ∈ N.

Remark 2.15. For any p ≥ 0, we have

H2π
0,p(q, q) = (2π)pqp

and

H2π
1,p(q, q) = (2π)p+1qqp − (2π)ppqp.

�ese polynomials enjoy the following orthogonality relation, see [20, Appendix A]

(2.11)

∫

CI

H2π
m,p(q, q̄)H

2π
m′,p′(q, q̄)dλI(q) =

m!p!(2π)m+p

2
δm,m′δp,p′ .
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3. The action of the polyanalytic Fueter mappings

In this section we apply the polyanalytic Fueter maps to a slice polyanalytic function of

order n + 1. �is has been done in [17] for the classic Fueter map. In particular, this

suggests to consider a new type of polynomials.

3.1. �eaction of themap Cn+1 on q̄
kqj . LetΩ be an s-domain that contains the origin

and f ∈ SPn+1(Ω) be a slice polyanalytic function of order n+1 on Ω. We note that by

polyanalytic decomposition we have

f(q) =

n∑

k=0

qkfk(q), q ∈ Ω,

with fk ∈ SR(Ω). �en, using the series expansion theorem for slice hyperholomorphic

functions we have fk(q) =
∑∞

j=0 q
jαk,j with {αk,j}0≤k≤n,j≥0 ⊂ H. �us, we obtain

the series expansion given by

(3.1) f(q) =

n∑

k=0

∞∑

j=0

qkqjαk,j .

We note that the polynomials (qkqj)j≥0 with 0 ≤ k ≤ n form the building block of our

theory.

Definition 3.1. [3, �m. 3.12] Let Ω be an axially symmetric slice domain and f ∈

SPn+1(Ω) with a polyanalytic decomposition given by f =

n∑

k=0

qkfk , where fk ∈

SR(Ω). �en, we consider the polyanalytic Fuetermap Cn+1 : SPn+1(Ω) −→ FRn+1(Ω),
which is defined by

Cn+1(f)(q) :=

n∑

k=0

xk0∆fk(q), for any q ∈ Ω.

Proposition 3.2 (Linearity of the map Cn+1). For any f, g ∈ SPn+1(Ω) and λ ∈ H, we

have

Cn+1(f + gλ)(q) = Cn+1(f)(q) + Cn+1(g)(q)λ.

Proof. Let f, g ∈ SPn+1(Ω). We know by polyanalytic decomposition that we have

f(q) =

n∑

k=0

qkfk(q) and g(q) =

n∑

k=0

qkgk(q) with fk, gk ∈ SR(Ω), for any k = 0, ..., n.

In particular, we note that

(f + gλ)(q) =
n∑

k=0

qk(fk(q) + gk(q)λ).

�erefore

Cn+1(f + gλ)(q) =

n∑

k=0

xk0∆(fk + gkλ)(q)

=

n∑

k=0

xk0∆fk(q) +

n∑

k=0

xk0∆gk(q)λ

= Cn+1(f)(q) + Cn+1(g)(q)λ.

7



Finally, we obtain

Cn+1(f + gλ) = Cn+1(f) + Cn+1(g)λ.

�us, it turns out that the map Cn+1 is H-linear. �

We apply the map Cn+1 to the expansion (3.1) and get

(3.2) Cn+1(f) :=

n∑

k=0

∞∑

j=0

Cn+1(q
kqj)αk,j .

So, we need to compute the action of the map Cn+1 on q
kqj with k = 0, ..., n and j ≥ 0.

�us, we have the following result

�eorem 3.3. Let n ≥ 0 be fixed. �en, for any 0 ≤ k ≤ n we have

(3.3) Cn+1(q̄
kqj) =

{
0 if j = 0, 1

−2(j − 1)jxk0Qj−2(q, q) if j ≥ 2.

Proof. For any 0 ≤ k ≤ n, we set fk(q) := qj . �us, we have

Cn+1(q
kqj) = Cn+1(q

kfk)

= xk0∆(fk)(q)

= xk0∆(qj).

Weknowby the proof of [17, Prop 4.2] that for j = 0, 1we have Cn+1(q
k) = Cn+1(q

kq) =
0 and for any j ≥ 2, we get

Cn+1(q
kqj) = xk0∆(qj)

= −2(j − 1)jxk0Qj−2(q, q).

�

As a consequence, we note that for any s ≥ 0 we have

Cn+1(q
kqs+2) = xk0∆(qs+2)

= −2(s+ 1)(s+ 2)xk0Qs(q, q),

where Qs(q, q) are defined in (2.1).

�is suggests to consider a new family of polynomials that we call generalized Appell

polyanalytic polynomials and which are given by

(3.4) Mk,s(q, q) := xk0Qs(q, q), k = 0, ..., n, s ≥ 0.

Our aim is to find a sort of Appell property for the polynomials Mk,s(q, q). In order to

do this, we will first need a preliminary result

Lemma 3.4. For any s ≥ j, we have

Dj
(Qs(q, q̄)) = 2j

s!

(s− j)!
Qs−j(q, q̄), ∀q ∈ H.

8



Proof. We prove the statement by induction. First, for j = 1 we have

D (Qs(q, q)) = 2sQs−1(q, q̄) = 2
s!

(s− 1)!
Qs−1(q, q),

this holds true by formula (2.3). Now, we suppose the result holds for j ≥ 1 and let us

prove it for j + 1. Indeed, we have

Dj+1
(Qs(q, q̄)) = DDj

(Qs(q, q̄))

= D
(
2j

s!

(s− j)!
Qs−j(q, q̄)

)

= 2j
s!

(s− j)!
2(s− j)Qs−j−1(q, q̄)

= 2j
s!

(s− j)(s− j − 1)!
2(s− j)Qs−j−1(q, q̄)

= 2j+1 s!

(s− j − 1)!
Qs−j−1(q, q̄).

�

�eorem 3.5. Let n ≥ 0 fixed, 0 ≤ k ≤ n and s ≥ k + 1. �en we have

(3.5) Dk+1
(Mk,s(q, q)) =

k+1∑

j=1

2j
(
k + 1

j

)
k!s!

(j − 1)!(s− j)!
Mj−1,s−j(q, q).

Proof. We note that the function xk0 is real valued. �us, we can use the Leibniz rule for

the operator D combined with Lemma 3.4 and get

Dk+1
(xk0Qs(q, q̄)) =

k+1∑

j=0

(
k + 1

j

)
Dk+1−j

(xk0)D
j
Qs(q, q̄)

=
k+1∑

j=1

(
k + 1

j

)
k!

(k − 1− k + j)!
x
k−1−k+j
0 2j

s!

(s− j)!
Qs−j(q, q̄)

=

k+1∑

j=1

2j
(
k + 1

j

)
k!

(j − 1)!

s!

(s− j)!
x
j−1
0 Qs−j(q, q̄)

=

k+1∑

j=1

2j
(
k + 1

j

)
k!

(j − 1)!

s!

(s− j)!
Mj−1,s−j(q, q̄).

�

Corollary 3.6. For any n ≥ 0 fixed and s ≥ n+ 1, we have

Dn+1
(Mn,s(q, q)) =

n+1∑

j=1

2j
(
n+ 1

j

)
n!s!

(j − 1)!(s− j)!
Mj−1,s−j(q, q).

Proof. It is enough to take k = n in �eorem 3.5. �

9



Remark 3.7. We note that the result proved in Corollary 3.6 is an extension of the classical

Appell property for the generalized Appell polyanalytic polynomialsMk,s(q, q̄). Indeed
for n = 0 in Corollary 3.6 and by the observation that M0,s(q, q̄) = Qs(q, q̄) we get

D(Qs(q, q̄)) = 2
s!

(s− 1)!
M0,s−1(q, q) = 2sQs−1(q, q̄), s ≥ 1.

Remark 3.8. �e polynomialsMk,s are Fueter polyanalytic of order n+ 1.

Remark 3.9. We can write the action of the map Cn+1 on q
kqj in the following way when

j ≥ 2,

Cn+1(q
kqj) = −2(j − 1)jxk0Qj−2(q, q̄)

= −2(j − 1)jMk,j−2(q, q̄).(3.6)

�eorem3.10. LetΩ be an axially symmetric slice domain. We have that f ∈ Cn+1(SPn+1(Ω))
if and only if we have the expansion

(3.7) f(q) =
n∑

k=0

∞∑

s=0

Mk,s(q, q̄)βk,s, {βk,s}0≤k≤n, s≥0 ⊂ H.

Proof. Let f ∈ Cn+1(SPn+1(Ω)). �en, there exist a function g ∈ SPn+1(Ω) such that

f = Cn+1(g).

�us, we know that we can write an expansion of g as

g(q) =

n∑

k=0

∞∑

j=0

qkqjαk,j , {αk,s}0≤k≤n, j≥0 ⊂ H.

In particular, this implies that we have

(3.8) f(q) =

n∑

k=0

∞∑

j=0

Cn+1(q̄
kqj)αk,j .

�erefore, using formula (3.6) we obtain

f(q) = −2

n∑

k=0

∞∑

j=2

(j − 1)jMk,j−2(q, q̄)αk,j

= −2

n∑

k=0

∞∑

s=0

(s+ 1)(s+ 2)Mk,s(q, q̄)αk,s+2.

Now, we set

βk,s := −2(s+ 1)(s+ 2)αk,s+2,

and obtain

f(q) =

n∑

k=0

∞∑

s=0

Mk,s(q, q̄)βk,s.

�

Remark 3.11. Now, we can observe that the map

Cn+1 : SPn+1(Ω) −→ FRn+1(Ω)
10



can be introduced such that for any f(q) =

n∑

k=0

∞∑

s=0

qkqsαk,s we have

Cn+1(f)(q) =

n∑

k=0

∞∑

s=0

Mk,s(q, q̄)βk,s,

with

βk,s := −2(s+ 1)(s+ 2)αk,s+2.

3.2. �e action of the polyanalytic Fueter map τn+1 on q̄kqj . We start by recalling

the definition of the maps τn+1, see [3, �m. 3.7].

τn+1 : SPn+1(Ω) −→ FR(Ω)

f(q) =

n∑

k=0

∞∑

j=0

q̄kqjαkj 7−→ τn(f) = ∆V n(f)(q),

where

V (f)(q) =
∂

∂x0
f(q) +

~q

|~q|2
3∑

ℓ=1

xℓ
∂

∂xℓ
f(q) q ∈ Ω \ R.

�is operator is a global operator with nonconstant coefficients, and it was studied in [13,

14, 27]. Wewill need also the following formula that puts in relation the two polyanalytic-

Fueter mappings τn+1 and Cn+1, respectively, see .

�eorem 3.12. [3, �m 3.13] Let f : Ω −→ H be a slice polyanalytic function of order

n+ 1 on an axially symmetric slice domain. �en we have

(3.9) DnCn+1(f)(q) =
1

2n
τn+1(f)(q), ∀q ∈ Ω.

Proposition 3.13. �e map τn+1 is H-linear i.e.

τn+1(f + gλ)(q) = τn+1(f)(q) + τn+1(g)(q)λ,

where f, g ∈ SPn+1(Ω) and λ ∈ H.

Proof. From formula (3.9), the linearity of Cn+1 (see Proposition 3.2) and Dn we get

τn+1(f + gλ)(q) = 2nDnCn+1(f + gλ)(q)

= 2nDn[Cn+1(f)(q) + Cn+1(g)λ](q)

= 2n[DnCn+1(f)(q) +DnCn+1(g)(q)λ].

Using another time formula (3.9) we obtain

τn+1(f + gλ)(q) = τn+1(f)(q) + τn+1(g)(q)λ.

�

From the series expansion (3.1) we have

τn+1(f) =

n∑

k=0

∞∑

j=0

τn+1(q̄
kqj)αk,j .

�is is the motivation for the following

�eorem 3.14. For any fixed n ≥ 0 and 0 ≤ k ≤ n we have

(3.10) τn+1(q̄
kqj) =

{
0 if j = 0, 1

−2n+1n!j(j − 1)Qj−2(q, q̄) if j ≥ 2.

11



Proof. First of all we recall that if a function f is wri�en using the polyanalytic decom-

position

f(q) =

n∑

k=0

q̄kfk(q),

then

V nf(q) = 2nn!fn(q),

where fn(q) is the last term of the polyanalytic decomposition, see [3].

Now, we set fj(q) := qj . By the previous property of the operator V n we have

V n
(
q̄kfj(q)

)
= 2nn!fj(q) = 2nn!qj .

�erefore for j ≥ 2 we have

τn+1(q̄
kqj) = ∆V n

(
q̄kfj(q)

)

= 2nn!∆qj

= −2n+1n!(j − 1)jQj−2(q, q̄).

Since ∆q0 = ∆q = 0 for the cases j = 0 and j = 1 we have

τn+1(q̄
k) = τn+1(q̄

kq) = 0.

�

Remark 3.15. If we put n = 0 in �eorem 3.3 and �eorem 3.14 we get [17, �m. 3.2].

Remark 3.16. In this case the formula for τn+1(q̄
kqj) does not give any suggestions about

new generalized Appell polyanalytic polynomials, as it happens for the computations of

Cn+1(q̄
kqj), see�eorem 3.3. However, this behaviour is natural because τn+1 maps slice

polyanalytic functions of order n+ 1 in the space of Fueter regular functions, which is a

well-known space. On the other side, the map Cn+1 maps slice polyanalytic functions of

order n + 1 in the space of polyanalytic Fueter regular functions of order n + 1, which
is a different space with respect to the classical one and for this reason new kind of poly-

nomials appear.

�eorem 3.17. Let Ω be an axially symmetric slice domain. �en, a function f belongs to

τn+1 (SPn+1(Ω)) if and only if

f(q) =
∞∑

s=0

Qs(q, q̄)βk,s+2,

where βk,s+2 := −
∑n

k=0 2
n+1n!(s+ 2)(s+ 1)αk,s+2.

Proof. Let us assume that f ∈ τn+1 (SPn+1(Ω)). �en there exists a function g ∈
SPn+1(Ω) such that

f(q) = τn+1(g)(q).

From the same arguments to obtain formula (3.1) we can write the function g(q) in the

following way

g(q) =

n∑

k=0

∞∑

j=0

q̄kqjαk,j .

12



�en by �eorem 3.14 we get

f(q) =

n∑

k=0

∞∑

j=0

τn+1(q̄
kqj)αk,j

= −2n+1n!

n∑

k=0

∞∑

j=2

j(j − 1)Qj−2(q, q̄)αk,j

= −2n+1n!

n∑

k=0

∞∑

s=0

(s+ 2)(s+ 1)Qs(q, q̄)αk,s+2

=
∞∑

s=0

Qs(q, q̄)βk,s+2,

where βk,s+2 := −∑n
k=0 2

n+1n!(s+ 2)(s+ 1)αk,s+2. �

Remark 3.18. �emain difference between�eorem 3.17 and the results proved in [3, 4] is

that the coefficients of the sereis are a sum. On the other side, the only point in common

is the presence of the generalized Appell polynomialsQs(q, q̄).

�e relation between the two polyanalytic Fueter mappings Cn+1 and τn+1 (see formula

(3.9)) gives us the following result

Proposition 3.19. For any fixed n ≥ 0 and j ≥ 2 we have

(3.11) Dn(Mk,j−2(q, q̄)) =

{
n!Qj−2(q, q̄) if k = n

0 if 0 ≤ k < n.

Proof. We start by applying the relation (3.9) to q̄kqj and so we obtain

(3.12) τn+1(q̄
kqj) = 2nDnCn+1(q̄

kqj).

Now, we focus only on k = n. By �eorem 3.14 and �eorem 3.3, for j ≥ 2, we have

τn+1(q̄
nqj) = −2n+1n!j(j − 1)Qj−2(q, q̄),

Cn+1(q̄
nqj) = −2(j − 1)jxn0Qj−2(q, q̄).

By pu�ing these relations in (3.12) we obtain

−2n+1n!j(j − 1)Qj−2(q, q̄) = −2n2(j − 1)jDn (xn0Qj−2(q, q̄)) .

A�er some simplifications we get

Dn (xn0Qj−2(q, q̄)) = n!Qj−2(q, q̄).

By the definition of generalized Appell polyanalytic polynomials and taking into account

the fact that k = n we get

(3.13) Dn (Mk,j−2(q, q̄)) = n!Qj−2(q, q̄).

Now, it remains to prove that

(3.14) Dn (Mk,j−2(q, q̄)) = 0, ∀0 ≤ k < n.

We prove it by induction on n.

For n = 1 (which means k = 0) we have

D (M0,j−2(q, q̄)) = D (Qj−2(q, q̄)) = 0.

We can justify the last equality from the fact that the generalized Appell polynomials are

Fueter regular functions.
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We suppose that (3.14) is true for n and we want to prove it for n+1. �erefore we want

to show that

Dn+1 (Mk,j−2(q, q̄)) = 0, ∀ 0 ≤ k ≤ n.

We observe that by the inductive hypothesis Dn (Mk,j−2(q, q̄)) = 0 for all 0 ≤ k < n,

thus we have

Dn+1 (Mk,j−2(q, q̄)) = DDn (Mk,j−2(q, q̄)) = 0.

To end the proof we have only to consider the case k = n, this means that we have to

show

Dn+1 (Mn,j−2(q, q̄)) = 0.

From (3.13) and the fact that the generalized Appell polyanalytic polynomials are Fueter

regular we obtain

Dn+1 (Mn,j−2(q, q̄)) = DDn (Mn,j−2(q, q̄))

= D (n!Qj−2(q, q̄))

= 0.

�

4. The true polyanalytic Fueter Bargmann transforms

As done in [5], the slice hyeprholomorphic Fock space is characterized in terms of power

series, in the same spirit, here, we want to characterize the QTP Fock space denoted

by FT
n (H), see Definition 2.13. To this end, we need to recall the quaternionic Hermite

polynomials H2π
n,j(q, q̄) (see (2.10)) that form an orthogonal basis of FT

n (H), see [32].

Indeed, for any f ∈ FT
n (H) we have

f(q) =

∞∑

j=0

H2π
n,j(q, q̄)αj , {αj}j≥0 ⊂ H.

Proposition 4.1. A function of the form f(q) =

∞∑

j=0

H2π
n,j(q, q̄)αj belongs to the space

FT
n (H) if and only if

∞∑

j=0

(2π)jj!|αj |2 <∞.

Proof. Let us consider f ∈ FT
n (H) this means that

f(q) =

∞∑

j=0

H2π
n,j(q, q̄)αj .
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�us, by se�ing dµ(q) := e−2π|q|2dA(q) and using the orthogonality of the quaternionic
Hermite polynomials (see (2.11)) we obtain

||f ||2FT
n
=

∫

CI




∞∑

j=0

H2π
n,j(q, q̄)αj



( ∞∑

s=0

H2π
n,s(q, q̄)αs

)
dµ(q)

=

∞∑

j,s=0

∫

CI

αjH
2π
n,j(q, q̄)H

2π
n,s(q, q̄)αsdµ(q)

=

∞∑

j,s=0

αj

∫

CI

H2π
n,j(q, q̄)H

2π
n,s(q, q̄)dµ(q)αs

=

∞∑

j,s=0

αjn!j!
(2π)n+j

2
δj,sαs

=
n!(2π)n

2

∞∑

j=0

(2π)jj!|αj |2 <∞.

�

�is means that we can write the space FT
n (H) in the following way

FT
n (H) =




f =

∞∑

j=0

H2π
n,jαj ,

∞∑

j=0

(2π)jj!|αj |2 <∞




 .

4.1. �e map Cn+1 applied to the QTP Bargmann transform. We start by studying

the action of the map Cn+1 on the quaternionic Hermite polynomials. Indeed, we first

prove the following result which will be very important for the sequel

Proposition 4.2. For any fixed n, j ≥ 0, it holds that

Cn+1

(
H2π

n,j(q, q̄)
)
= −2(2π)jn!j!

n∑

s=0

(−1)s(2π)n−s

s!(n− s)!(j − s− 2)!
Mn−s,j−s−2(q, q̄), if j ≥ n+2,

otherwise

Cn+1

(
H2π

n,j(q, q̄)
)
= 0 if j < n+ 2.

Proof. Wenote that it is possible towrite the quaternionic Hermite polynomials as follows

H2π
n,j(q, q̄) = (2π)jn!

n∑

s=0

(−1)s
j!(2π)n−s

s!(n− s)!(j − s)!
q̄n−sqj−s.

Now, we observe that applying the polyanalytic Fueter mapping Cn+1 and using Remark

3.9 we get

Cn+1(q̄
n−sqj−s) = −2(j − s− 1)(j − s)Mn−s,j−s−2(q, q̄).

15



By linearity of the map Cn+1 we obtain

Cn+1

(
H2π

n,j(q, q̄)
)
= (2π)jn!

n∑

s=0

(−1)sj!(2π)n−s

s!(n− s)!(j − s)!
Cn+1(q̄

n−sqj−s)

= −2(2π)jn!

n∑

s=0

(−1)sj!(j − s− 1)(j − s)(2π)n−s

s!(n− s)!(j − s)!
Mn−s,j−s−2(q, q̄)

= −2(2π)jn!

n∑

s=0

(−1)sj!(j − s− 1)(j − s)(2π)n−s

s!(n− s)!(j − s)(j − s− 1)(j − s− 2)!
Mn−s,j−s−2(q, q̄)

= −2(2π)jn!

n∑

s=0

(−1)sj!(2π)n−s

s!(n− s)!(j − s− 2)!
Mn−s,j−s−2(q, q̄).

�

We denote by An+1(H) the range of the polyanalytic Fueter mapping Cn+1 on the QTP

Fock space. Indeed, we have

(4.1) An+1(H) := {Cn+1(f), f ∈ FT
n (H)}.

We prove the following characterization of the previous space

�eorem 4.3. Let n ≥ 0 fixed, it holds that

An+1(H) =

{ ∞∑

h=0

n∑

s=0

Mn−s,h+n−s(q, q̄)βh,s,

n∑

s=0

[(h+ n− s)]2(s!)2[(n− s)!]2

(2π)h+n+2−2s(h+ n+ 2)!
|βh,s|2 <∞

}
,

where {βh,s}h≥0, 0≤s≤n ⊂ H.

Proof. Let g ∈ An+1(H), then then there exists a function f ∈ FT
n (H) such that we have

(4.2) g(q) = Cn+1(f)(q).

We note that by using Proposition 4.1 we have that

f(q) =

∞∑

j=0

Hn,j(q, q̄)αj , {αj}j≥0 ⊂ H

and

||f ||2FT
n
=

∞∑

j=0

(2π)jj!|αj |2 <∞.

�en, by Proposition 4.2 we have that

g(q) = −2n!

n∑

s=0

∞∑

j=n+2

(2π)j(−1)sj!(2π)n−s

s!(n− s)!(j − s− 2)!
Mn−s,j−s−2(q, q̄)αj

= −2n!

n∑

s=0

∞∑

h=0

(2π)h+n+2(−1)s(h+ n+ 2)!(2π)n−s

s!(n− s)!(h+ n− s)!
Mn−s,h+n−s(q, q̄)αh+n+2

=

∞∑

h=0

n∑

s=0

Mn−s,h+n−s(q, q̄)βh,s,

16



where we have set

βh,s := −2n!(2π)h+n+2(−1)s(h+ n+ 2)!(2π)n−s

s!(n− s)!(h+ n− s)!
αh+n+2.

By developing the calculations we get

∞∑

h=0

n∑

s=0

[(h+ n− s)]2(s!)2[(n− s)!]2

(2π)h+n+2−2s(h+ n+ 2)!
|βh,s|2 =4(n!)2(2π)2n

n∑

s=0

∞∑

h=0

(2π)h+n+2(h+ n+ 2)!|αh+n+2|2

=4n!(n+ 1)!(2π)2n
∞∑

h=0

(2π)h+n+2(h+ n+ 2)!|αh+n+2|2

= ‖f‖2FT
n
<∞.

�erefore
∞∑

h=0

n∑

s=0

[(h+ n− s)]2(s!)2[(n− s)!]2

(2π)h+n+2−2s(h+ n+ 2)!
|βh,s|2 <∞.

On the other hand, if we consider a function of the following form

h(q) =

∞∑

j=n+2

H2π
n,j(q, q̄)γj ,

where we have set

γj = − s!(n− s)!(j − s− 2)!

2n!(2π)j(−1)s(j)!(2π)n−s
βj−n−2,s, j ≥ n+ 2.

�en, we get g = Cn+1(h) since for 0 ≤ s ≤ n, we have

n∑

s=0

(−1)s(h+ s+ 2)!(2π)h+n+2(2π)n−s

s!(n− s)!(h+ n− s)!
Mn−s,h+n−s(q, q̄) = − 1

2n!
Cn+1(H

2π
n,h+n+2(q, q̄)).

Furthermore, we note that for any fixed index 0 ≤ s ≤ n we have

||h||2FT
n
=

∞∑

j=n+2

(2π)jj!|γj |2

=
1

4(n!)2

∞∑

ℓ=0

(2π)ℓ+n+2(ℓ+ n+ 2)!(s!)2[(n− s)!]2(ℓ + n− s!)2

(2π)2ℓ+2n+4(2π)2(n−s)[(ℓ+ n+ 2)!]2
|βℓ,s|2.

=
(s!)2[(n− s)!]2

4(n!)2(2π)n+2(2π)2(n−s)

∞∑

ℓ=0

[(ℓ+ n− s!)]2

(2π)ℓ(ℓ+ s+ 2)!
|βℓ,s|2 <∞.

Hence, we have g = Cn+1(h) with h ∈ FT
n (H), this shows that h ∈ An+1(H). �

Definition 4.4. Let f, g ∈ An+1(H) be such that f =

∞∑

h=0

n∑

s=0

Mn−s,h+n−s(q, q̄)αh,s

and g =
∞∑

h=0

n∑

s=0

Mn−s,h+n−s(q, q̄)βh,s. �en, we define their inner product as

〈f, g〉An+1(H)
:=

∞∑

h=0

n∑

s=0

[(h+ n− s)]2(s!)2[(n− s)!]2

(2π)h+n+2−2s(h+ n+ 2)!
βh,sαh,s.
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�e associated norm is given by

||f ||2 = 〈f, f〉An+1(H) =

∞∑

h=0

n∑

s=0

[(h+ n− s)]2(s!)2[(n− s)!]2

(2π)h+n+2−2s(h+ n+ 2)!
|αh,s|2.

Remark 4.5. If we take n = 0 in the space characterized by �eorem 4.3 we obtain the

space A(H) studied in [17]. Indeed, if n = 0 we obtain

A1(H) =

{ ∞∑

h=0

M0,h(q, q̄)βh,0, (βh,0)h≥0 ⊂ H,

∞∑

h=0

(h!)2

(2π)h(h+ 2)!
|βh,0|2 <∞

}
.

�is observation holds since M0,h(q, q̄) = Qh(q, q̄) and

∞∑

h=0

h!h!

(2π)h(h+ 2)(h+ 1)h!
=

∞∑

h=0

h!

(2π)h(h+ 2)(h+ 1)
.

�us, we get that

A1(H) = A(H).

In the next result, we write the kernel of the QTP Bargmann transform as a generating

function of the quaternionic Hermite polynomials.

Proposition 4.6. Let n ≥ 0 fixed. �en, for any q ∈ H and x ∈ R, we have

∞∑

k=0

h2πk (x)

||h2πk ||L2
H
(R)

H2π
n,k(q, q̄)

||H2π
n,k||FT

n (H)

= 2
3
4 (2nn!(2π)n)−

1
2 e−π(q2+x2)+2π

√
2qxH2π

n

(
q + q̄√

2
− x

)
,

where H2π
n are the Hermite polynomials defined in formula (2.8).

Proof. We know that the QTP Bargmann transform maps L2(R,H) onto FT
n (H). More-

over, it is well-known that the normalized Hermite function form an orthonormal basis of

L2(R,H). We note that the normalized quaternionic Hermite polynomials
H2π

n,k(q,q̄)

‖H2π
n,k

‖
FT
n (H)

form an orthonormal basis of the QTP Fock spaceFT
n (H). Now, using a classical approach

used in [25] we know that

(4.3) K(q, x) :=
∞∑

k=0

h2πk (x)

||h2πk ||L2
H
(R)

H2π
n,k(q, q̄)

||H2π
n,k||FT

n (H)

is the kernel function that leads to the following integral transform
∫

R

K(q, x)f(x)dx.

On the other hand, we know by [20] that

(4.4) K(q, x) = 2
3
4 (2nn!(2π)n)−

1
2 e−π(q2+x2)+2π

√
2qxHn

(
q + q̄√

2
− x

)
.

Pu�ing equal the expressions (4.3) and (4.4) we get the thesis. �

Remark 4.7. We note that if we put n = 0 in Proposition 4.6 we obtain the same result in

[18, Prop 4.1].

Now, we give the following
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Definition4.8 (C-polyanalytic Fueter Bargmann transform). WedefineBn+1
C : L2

H
(R) →

An+1(H) as

(4.5) Bn+1
C := Cn+1 ◦Bn+1,

where Bn+1 is the QTP Bargmann transform, see (2.7).

Corollary 4.9. �e C-polyanalytic Fueter Bargmann transform Bn+1
C is H-linear.

Proof. It is a direct consequence of the linearity of themap Cn+1 (see Proposition 3.2). �

Now, we have all what we need to write an expression of the C-polyanalytic Fueter

Bargmann transform

�eorem 4.10. �e C-polyanalytic Fueter Bargmann transform can be realized using the

following commutative diagram

Bn+1
C : L2

H
(R) //

Bn+1

��

An+1(H)

Fn
T (H)

Id
// SPn+1(H)

Cn+1

OO

More precisely, for any ϕ ∈ L2
H
(R) and q ∈ H we have

Bn+1
C [ϕ](q) =

∫

R

Φ(q, x)ϕ(x)dx,

where

(4.6) Φ(q, x) := −
√
n!(2π)

n
2 2

3
4

∞∑

l=0

n∑

j=0

(−1)jh2πl+n+2(x)Mn−j,l+n−j(q, q̄)

2
l+n
2 (2π)jj!(l + n− j)!(n− j)!

.

andMn−j,l+n−j are polynomials defined in (3.4).

Proof. According to Proposition 4.6 we know that we can write the kernel of the QTP

Bargmann transform as

K(q, x) =

∞∑

k=0

h2πk (x)

||h2πk ||L2
H
(R)

H2π
n,k(q, q̄)

‖Hn,k(q, q̄)‖FT
n (H)

.

Wedevelop the computations using the explicit expressions of ||h2πk ||L2
H
(R) and ||Hn,k||FT

n (H)

together with Proposition 4.2 we have

Cn+1 (K(q, x)) =

∞∑

k=n+2

h2πk (x) Cn+1

(
H2π

n,k(q, q̄)
)

‖h2πk ‖L2
H
(R)‖Hn,k‖FT

n (H)

= −2
√
n!(2π)

n
2 2

3
4

n∑

j=0

∞∑

k=n+2

(−1)jh2πk (x)

2
k
2 (2π)jj!(n− j)!(k − j − 2)!

Mn−j,k−j−2(q, q̄)

= −
√
n!(2π)

n
2 2

3
4

∞∑

l=0

n∑

j=0

(−1)jh2πl+n+2(x)Mn−j,l+n−j(q, q̄)

2
l+n
2 (2π)jj!(l + n− j)!(n− j)!

.

�is ends the proof. �
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Remark 4.11. If we put n = 0 in formula (4.6) we obtain

Φ(q, x) = −2
3
4

∞∑

k=0

Qk(q, q̄)h
2π
k+2(x)

k!2
k
2

, ∀(q, x) ∈ H× R.

�is is the same formula obtained in [17, �m 4.14] up to a constant.

Now we study further properties of the transform Bn+1
C . Firstly, we need the following

result

Proposition 4.12. Let n ≥ 0, we set ψ2π
k (x) =

h2π
k (x)

||h2π
k

||
L2
H
(R)

. �en, we have

Bn+1(ψ2π
k )(q) =

√
2

(2π)n+kn!k!
H2π

n,k(q, q̄).

Proof. We note that in [18, Lemma 4.4] we have

BH(ψ
2π
k )(q) =

√
2
(2π)

k
2

√
k!

qk.

�us, using the definition of the QTP Bargmann transform we get

Bn+1(ψ2π
k )(q) = (−1)n

√
1

(2π)nn!
e2π|q|

2

∂ns

(
e−2π|q|2BH(ψ

2π
k )(q)

)

= (−1)n

√
1

(2π)nn!
e2π|q|

2

∂ns

(
e−2π|q|2√2

(2π)
k
2

√
k!

qk

)

=

√
1

(2π)nn!

√
2√

(2π)kk!
(−1)n(2π)ke2π|q|

2

∂ns

(
e−2π|q|2qk

)

=

√
1

(2π)nn!

√
2√

(2π)kk!
H2π

n,k(q, q̄)

=

√
2

(2π)k+nn!k!
H2π

n,k(q, q̄).

�is ends the proof. �

Remark 4.13. If we put n = 0 in Proposition 4.12 we obtain the same result of [18, Lemma

4,4].

Proposition 4.14. For any fixed n ≥ 0 we have

Bn+1
C (ψ2π

k )(q) =

{
−2

3
2

√
(2π)k+nn!k!

∑n
j=0

(−1)jMn−j,k−j−2(q,q̄)
(2π)jj!(n−j)!(k−j−2)! if k ≥ n+ 2

0, if k < n+ 2.
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Proof. We apply Proposition 4.2 and Proposition 4.12 to get

Bn+1
C (ψ2π

k )(q, q̄) =

√
2

(2π)k+nn!k!
Cn+1(H

2π
n,k(q, q̄))

= −
√

2

(2π)k+nn!k!
(2(2π)kn!k!)

n∑

j=0

(−1)j(2π)n−j

j!(n− j)!(k − j − 2)!
Mn−j,k−j−2(q, q̄)

= −2
3
2

√
1

(2π)k+nn!k!
(2π)k+nn!k!

n∑

j=0

(−1)j(2π)−j

j!(n− j)!(k − j − 2)!
Mn−j,k−j−2(q, q̄)

= −2
3
2

√
(2π)k+nn!k!

n∑

j=0

(−1)j

j!(n− j)!(k − j − 2)!(2π)j
Mn−j,k−j−2(q, q̄).

�

Remark 4.15. If we put n = 0 in Proposition 4.14 we get

B1
C(ψ

2π
k )(q) =

{
−2

3
2

√
(2π)kk!

(k−2)! Qk−2(q, q̄) if k ≥ 2

0 if k = 0, 1

which is exactly the same result of [17, Prop. 4.18], up to a constant.

Definition 4.16. Let us consider the following subspace of L2
H
(R)

Hn :=

∞⊕

k=n+2

{ψ2π
k α, α ∈ H},

where ψ2π
k are the normalized Hermite functions.

Remark 4.17. Since ψ2π
k is an orthogonal basis for L2

H
(R) it is clear that

L2
H(R) =

∞⊕

k=0

{ψ2π
k α, α ∈ H}.

Proposition 4.18. Let ϕ ∈ Hn. �en for any fixed n ≥ 0 we have

Bn+1
C ϕ =

∞∑

h=0

n∑

j=0

Mn−j,h+n−j(q, q̄)αh,j

where

αh,j := −2
3
2

√
(2π)h+2n+2n!(h+ n+ 2)!

(−1)jαh+n+2

(2π)jj!(n− j)!(h+ n− j)!
, {αh}h≥0 ⊂ H.

Proof. Let ϕ ∈ Hn. By Definition 4.16 we can write

ϕ =

∞∑

k=n+2

ψ2π
k αk, {αh}k≥0 ⊂ H.
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By Proposition 4.14 we have

Bn+1
C ϕ(q)=

∞∑

k=n+2

Bn+1
C (ψ2π

k )(q)αk

= −2
3
2

n∑

j=0

∞∑

k=n+2

√
(2π)k+nn!k!

(−1)jMn−j,k−j−2(q, q̄)

(2π)jj!(n− j)!(k − j − 2)!
αk

= −2
3
2

∞∑

h=0

n∑

j=0

√
(2π)h+2n+2n!(h+ n+ 2)!

(−1)jMn−j,h+n−j(q, q̄)

(2π)jj!(n− j)!(h+ n− j)!
αh+n+2

:=
∞∑

h=0

n∑

j=0

Mn−j,h+n−j(q, q̄)αh,j ,

�

Proposition 4.19. For any fixed n ≥ 0, the C-polyanalytic Fueter Bargmann transform

is a quaternionic right linear bounded surjective operator from L2
H
(R) to An+1(H). �is

means that

‖Bn+1
C ϕ‖An+1(H) ≤ 2

√
2
√
(n+ 1)!(2π)

n
2 ‖ϕ‖L2

H
(R).

Proof. By Proposition (4.18) we have that

Bn+1
C ϕ =

∞∑

h=0

n∑

j=0

Mn−j,h+n−j(q, q̄)α
′
h,j ,

with

α′
h,j := −2

3
2

√
(2π)h+2n+2n!(h+ n+ 2)!

(−1)jαh+n+2

(2π)jj!(n− j)!(h+ n− j)!
.

From the definition of norm of the space An+1(H) (see Definition 4.4) we get

‖Bn+1
C ϕ‖2An+1(H) =

∞∑

h=0

n∑

j=0

[(h+ n− j)]2(j!)2((n− j)!)2

(2π)h+n+2−2j(h+ n+ 2)!
|α′

h,j |2

=

∞∑

h=0

n∑

j=0

8
[(h+ n− j)]2(j!)2((n− j)!)2

(2π)h+n+2−2j(h+ n+ 2)!
·

· (2π)h+2n+2n!(h+ n+ 2)!

(2π)2j [j!(n− j)!]2[(h+ n− j)!]2
|αh+n+2|2

= 8n!(2π)n
n∑

j=0

∞∑

h=0

|αh+n+2|2

= 8n!(2π)n
n∑

j=0

∞∑

ℓ=n+2

|αℓ|2

≤ 8n!(2π)n
n∑

j=0

∞∑

ℓ=0

|αℓ|2

= 8n!(n+ 1)(2π)n‖ϕ‖2L2
H
(R)

= 8(n+ 1)!(2π)n‖ϕ‖2L2
H
(R).

�
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Proposition 4.20 (Isometry of Bn+1
C ). Let n ≥ 0 fixed and assume that ϕ, ψ ∈ Hn. �en

we have

(4.7) 〈Bn+1
C ϕ,Bn+1

C ψ〉An+1(H) = 8(n+ 1)!(2π)n〈ϕ, ψ〉Hn .

In particular

‖Bn+1
C ϕ‖An+1(H) = 2

√
2
√
(n+ 1)!(2π)

n
2 ‖ϕ‖Hn .

Proof. Let us consider

ϕ =

∞∑

k=n+2

ψ2π
k αk, ψ =

∞∑

k=n+2

ψ2π
k α′

k,

with {αk}k≥0 ⊂ H and {α′
k}k≥0 ⊂ H By Proposition 4.18 we have

Bn+1
C ϕ =

∞∑

h=0

n∑

j=0

Mn−j,h+n−j(q, q̄)α
′
h,j , Bn+1

C ψ =

∞∑

h=0

n∑

j=0

Mn−j,h+n−j(q, q̄)β
′
h,j ,

where

α′
h,j := −2

3
2

√
(2π)h+2n+2n!(h+ n+ 2)!

(−1)jαh+n+2

(2π)jj!(n− j)!(h+ n− j)!
,

β′
h,j := −2

3
2

√
(2π)h+2n+2n!(h+ n+ 2)!

(−1)jβh+n+2

(2π)jj!(n− j)!(h+ n− j)!
.

From the definition of the inner product of the spaceAn+1(H) (see Definition 4.4) we get

〈Bn+1
C ϕ,Bn+1

C ψ〉An+1(H) =

∞∑

h=0

n∑

j=0

[(h+ n− j)]2(j!)2((n− j)!)2

(2π)h+n+2−2j(h+ n+ 2)!
β′
h,jα

′
h,j

= 8
∞∑

h=0

n∑

j=0

[(h+ n− j)]2(j!)2((n− j)!)2

(2π)h+n+2−2j(h+ n+ 2)!
·

· (2π)h+2n+2n!(h+ n+ 2)!

(2π)2j [j!(n− j)!]2[(h+ n− j)]2
βh+n+2αh+n+2

= 8n!(2π)n
n∑

j=0

∞∑

h=0

βh+n+2αh+n+2

= 8n!(2π)n(n+ 1)

∞∑

k=n+2

βkαk

= 8(n+ 1)!(2π)n〈ϕ, ψ〉Hn .

In particular when ϕ = ψ we obtain

‖Bn+1
C ϕ‖An+1(H) = 2

√
2
√
(n+ 1)!(2π)

n
2 ‖ϕ‖Hn .

�

Remark 4.21. If we put n = 0 in all the properties that we proved for Bn+1
C : Proposition

4.14, Proposition 4.19, Proposition 4.20, respectively; we get up to a constant [17, Prop.

4.18], [17, Prop. 4.19] and [17, Prop. 4.20], respectively.
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Webelieve that it is also possible to define a C-polyanalytic Fueter Bargmann transform by

applying the polyanalytic Fuetermapping Cn+1 to the reproducing kernel of theQTP Fock

space, see [20, Prop. 4.2]. In order to show how hard are the computations we show the

case n = 1. �is case suggests that the formula that we are looking for puts in relation the

quaternionic generalized Appell polyanalytic polynomials and the quaternionic Hermite

polynomials.

Proposition 4.22. For any q, r ∈ H, we denote by K2(q, r) the reproducing kernel of the
QTP Fock space, in the case n = 1, then we have

C2(K2(q, r)) = −8

( ∞∑

h=0

M1,h(q, q̄)H2π
1,h+2(r, r̄)

h!
−

∞∑

h=0

M0,h(q, q̄)

(2π)h!
H2π

1,h+3(r, r̄)

)
.

Proof. Before to start we recall the definition of *-exponential

e∗(2πqr̄) =
∞∑

n=0

(2π)nqnr̄n

n!

�en, by [20, Prop. 4.2] with n = 1 we have

K2(q, r) = 2e∗(2πqr̄) ∗
(

1∑

k=0

(−1)k
(

1

1− k

)
1

k!
[2π(qq̄ − qr̄ − q̄r + r̄r)]k∗

)

= 2e∗(2πqr̄) ∗ (1− 2π(q̄q − qr̄ − q̄r + r̄r))

= 2e∗(2πqr̄)− 4πe∗(2πqr̄)|q|2 + 4π[e∗(2πqr̄) ∗ qr̄] + 4π[e∗(2πqr̄) ∗ q̄r] +
−4πe∗(2πqr̄)|r|2.

Now, we observe that

e∗(2πqr̄) ∗ qr̄ = 2

( ∞∑

n=0

(2π)nqnr̄n

n!

)
∗ qr̄

= 2

( ∞∑

n=0

(2π)nqn+1r̄n

n!

)
r̄

= qe∗(2πqr̄)r̄.

�e same holds for the other member

e∗(2πqr̄) ∗ q̄r = q̄e∗(2πqr̄)r.

Hence, we can write the reproducing kernelK2 as the following polyanalytic decompo-

sition

K2(q, r) = 2e∗(2πqr̄)− 4πe∗(2πqr̄)|r|2 + 4πqe∗(2πqr̄)r̄(4.8)

+q̄[4πe∗(2πqr̄)r − 4πqe∗(2πqr̄)].

Now, we apply the polyanalytic Fueter map C2 to obtain

C2(K2(q, r)) = 2∆ (e∗(2πqr̄))− 4π∆
(
e∗(2πqr̄)|r|2

)
+ 4π∆(qe∗(2πqr̄)) r̄(4.9)

+4πx0[∆ (e∗(2πqr̄)r) −∆(qe∗(2πqr̄))].

By [17, Prop. 4.2], up to a constant, we know that

(4.10) ∆(e∗(2πqr̄)) = −4

∞∑

h=0

(2π)h+2Qh(q, q̄)r̄
h+2

h!
.
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Moreover,

∆[qe∗(2πqr̄)] = 2

∞∑

ℓ=0

(2π)ℓ∆(qℓ+1)r̄ℓ

ℓ!
(4.11)

= −4
∞∑

ℓ=1

(2π)ℓ(ℓ+ 1)ℓQℓ−1(q, q̄)r̄
ℓ

ℓ(ℓ− 1)!

= −4

∞∑

h=0

(2π)h+1(h+ 2)Qh(q, q̄)r̄
h+1

h!
.

Now, we split formula (4.9) in two parts

A := 2∆ (e∗(2πqr̄))− 4π∆
(
e∗(2πqr̄)|r|2

)
+ 4π∆(qe∗(2πqr̄)) r̄,

B := 4πx0[∆ (e∗(2πqr̄)r) −∆(qe∗(2πqr̄))],

thus

C2(K2)(q, r) = A+B.

Firstly, we calculate B. By formula (4.10) and formula (4.11) we get

B = 4πx0

(
−4

∞∑

h=0

(2π)h+2Qh(q, q̄)r̄
h+2

h!
· r + 4

∞∑

h=0

(2π)h+1(h+ 2)Qh(q, q̄)r̄
h+1

h!

)

= −8

[ ∞∑

h=0

x0Qh(q, q̄)

h!

(
(2π)h+3rr̄h+2 − (2π)h+2(h+ 2)r̄h+1

)
]

= −8

∞∑

h=0

M1,h(q, q̄)

h!
H2π

1,h+2(r, r̄).

Now, we calculate A.

A = 2

(
−4

∞∑

h=0

(2π)h+2Qh(q, q̄)r̄
h+2

h!
+ 8π

∞∑

h=0

(2π)h+2Qh(q, q̄)r̄
h+2|r|2

h!
+

−8π
∞∑

h=0

(2π)h+1(h+ 2)Qh(q, q̄)r̄
h+2

h!

)

= 8

[ ∞∑

h=0

Qh(q, q̄)

(2π)h!

(
(2π)h+4rr̄h+3 − (2π)h+3(h+ 2 + 1)r̄h+2

)
]

= 8

∞∑

h=0

M0,h(q, q̄)

(2π)h!
H2π

1,h+3(r, r̄).

Hence

C2(K2(q, r)) = A+B

= −8

( ∞∑

h=0

M1,h(q, q̄)H2π
1,h+2(r, r̄)

h!
−

∞∑

h=0

M0,h(q, q̄)

(2π)h!
H2π

1,h+3(r, r̄)

)
.

�

Remark 4.23. Since the computations are already hard for the case n = 1, we do not know
if it is possible to find a formula for all n. �is would be investigated in a forthcoming

work.
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4.2. �e map τn+1 applied to the QTP Bargmann transform. In this subsection we

want to investigate what happens if we apply the polyanalytic Fueter mapping τn+1 to

the QTP Bargmann Bn+1. We will call this integral transforms τ - polyanalytic Fueter-

Bargmann transform.

First of all we want to study the range of this integral transform. Let us define the fol-

lowing space

(4.12) Ãn+1(H) :=
{
τn+1(f); f ∈ FT

n (H)
}
.

Before to give a characterization of this space. We need the following result

Proposition 4.24. Let n ≥ 0 a fixed number. �en we have

τn+1

(
H2π

n,j(q, q̄)
)
=

{
−2n+1(2π)j+nn!j(j − 1)Qj−2(q, q̄) j ≥ n+ 2,

0 j < n+ 2.
.

Proof. By using the relation between the two polyanalytic Fueter maps, see [3, �m. 3.13]

and Proposition 4.2 we have for j ≥ n+ 2

τn+1

(
H2π

n,j(q, q̄)
)

= 2nDnCn+1

(
H2π

n,j(q, q̄)
)

= −2n2(2π)jn!j!

n∑

s=0

(−1)s(2π)n−s

s!(n− s)!(j − s− 2)!
Dn (Mn−s,j−s−2(q, q̄)) .(4.13)

From Proposition 3.19 we know that

Dn (Mn−s,j−s−2(q, q̄)) = n!Qj−s−2(q, q̄),

if n− s = n, this means s = 0. �erefore

Dn (Mn−s,j−s−2(q, q̄)) = n!Qj−2(q, q̄).

�is implies that in the sum (4.13) we have only to take into account the case s = 0.
�erefore for j ≥ n+ 2 we get

τn+1

(
H2π

n,j(q, q̄)
)

= −2n2(2π)j+n(n!)2j!

n!(j − 2)!
Qj−2(q, q̄)

= −2n+1(2π)j+nn!j(j − 1)Qj−2(q, q̄).

�

Now, we can characterize the space Ãn+1(H).

�eorem 4.25. For any fixed n ≥ 0, we have

Ãn+1(H) =

{ ∞∑

h=0

Qh+n(q, q̄)βh, (βh)h≥0 ⊂ H,

∞∑

h=0

(h+ n)!|βh|2
(h+ n+ 1)(h+ n+ 2)(2π)h

<∞
}
.

Proof. Let us assume that g ∈ Ãn+1(H), thus there exists a function f ∈ FT
n (H) such

that g(q) = τn+1(f)(q). Since f ∈ FT
n (H) by Proposition 4.1 we have

f(q) =

∞∑

j=0

Hn,j(q, q̄)
2παj , {αj}j≥0 ⊂ H

and

‖f‖2FT
n (H) =

∞∑

j=0

(2π)jj!|αj |2 <∞.
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Now, by Proposition 4.24 we get

g(q) = τn+1(f)(q) =

∞∑

j=0

τn+1 (Hn,j(q, q̄))αj

= −
∞∑

j=n+2

2n+1(2π)j+nn!j(j − 1)Qj−2(q, q̄)αj

= −2n+1(2π)2(n+1)n!

∞∑

h=0

(2π)h(h+ n+ 2)(h+ n+ 1)Qh+n(q, q̄)αh+n+2

=

∞∑

h=0

Qh+n(q, q̄)βh,

where βh := −2n+1(2π)2(n+1)n!(h+ n+ 2)(h+ n+ 1)(2π)hαh+n+2. Moreover

∞∑

h=0

(h+ n)!

(h+ n+ 1)(h+ n+ 2)(2π)h
|βh|2 =

∞∑

h=0

(h+ n)!

(h+ n+ 1)(h+ n+ 2)(2π)h
4n+1(2π)4(n+1)(n!)2 ·

·(h+ n+ 1)2(h+ n+ 2)2(2π)2h|αh+n+2|2

= 4n+1(2π)4(n+1)(n!)2
∞∑

h=0

(h+ n)!(h+ n+ 1)(h+ n+ 2) ·

·(2π)h|αh+n+2|2

= 4n+1(2π)3n+2(n!)2
∞∑

h=0

(h+ n+ 2)!(2π)h+2+n|αh+n+2|2

= 4n+1(2π)3n+2(n!)2‖f‖2FT
n (H) <∞.

�erefore

∞∑

h=0

(h+ n)!

(h+ n+ 1)(h+ n+ 2)(2π)h
|βh|2 <∞.

Now, we prove the other inclusion. Let us consider a function

h(q) =

∞∑

k=n+2

H2π
n,k(q, q̄)αk,

with αk := − βk−n−2

2n+1(2π)n+kn!(k−1)k
.We get that g(q) = τn+1(h)(q), since

Qk+n(q, q̄) = −
τn+1

(
H2π

n,k+n+2(q, q̄)
)

2n+1(2π)k+2n+2n!(k + n+ 2)(k + n+ 1)
.
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Furthermore,

‖h‖2FT
n (H) =

∞∑

k=n+2

(2π)kk!|αk|2

=

∞∑

ℓ=0

(2π)ℓ+n+2(ℓ + n+ 2)!|αℓ+n+2|2

=
∞∑

ℓ=0

(2π)ℓ+n+2(ℓ + n+ 2)!|βℓ|2
4n+1(2π)2(ℓ+2n+2)(n!)2(ℓ+ n+ 1)2(ℓ + n+ 2)2

=
1

4n+1(n!)2(2π)3n+2

∞∑

ℓ=0

(ℓ+ n)!

(ℓ+ n+ 1)(ℓ + n+ 2)(2π)ℓ
|βℓ|2 <∞.

Hence h ∈ FT
n (H) and g(q) = τn+1(h)(q). �is means that g ∈ Ãn+1(H). �

Definition4.26. Letn ≥ 0 be a fixed number. Let us consider f(q) =
∑∞

h=0 Qh+n(q, q̄)βh
and g(q) =

∑∞
h=0 Qh+n(q, q̄)γh we define the inner product of Ãn+1(H) as

〈f, g〉Ãn+1(H) =

∞∑

k=0

(k + n)!

(k + n+ 1)(k + n+ 2)(2π)k
γkβk.

�e associated norm is given by

‖f‖2Ãn+1(H)
=

∞∑

k=0

(k + n)!

(k + n+ 1)(k + n+ 2)(2π)k
|βk|2.

Now, we can propose the following

Definition4.27 (τ - polyanalytic Fueter Bargmann transform). WedefineBn+1
τ : L2

H
(R) 7→

Ãn+1(H) as

Bn+1
τ := τn+1 ◦Bn+1,

where Bn+1 is the QTP Bargmann transform defined in formula (2.7).

Corollary 4.28. �e τ - polyanalytic Fueter-Bargmann transform Bn+1
τ is H-linear.

Proof. �is result follows by the linearity of the map τn+1, see Proposition 3.13. �

It is possible to prove a relation between the τ - polyanalytic Fueter-Bargmann transform

and the C- polyanalytic Fueter-Bargmann transform.

Proposition 4.29. Let ϕ ∈ L2
H
(R). �en, for any fixed n ≥ 0 we have

Bn+1
τ ϕ = 2nDn

(
Bn+1

C ϕ
)
.

Proof. �e result follows from [3, �m. 3.13], Definition 4.27 and Definition 4.8

Bn+1
τ ϕ = τn+1 ◦ (Bn+1ϕ) = 2nDn

(
Cn+1 ◦Bn+1(ϕ)

)
= 2nDn(Bn+1

C ϕ).

�

As the C- polyanalytic Fueter-Bargmann transform we can express the τ - polyanalytic

Fueter-Bargmann tranform in integral form.
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�eorem 4.30. For any fixed n ≥ 0 it is possible to define the τ - polyanalytic Fueter-

Bargmann through this diagram

Bn+1
τ : L2

H
(R) //

Bn+1

��

Ãn+1(H)

Fn
T (H)

Id
// SPn+1(H)

τn+1

OO

Precisely, for any ϕ ∈ L2
H
(R) and q ∈ H we have

Bn+1
τ ϕ(q) =

∫

R

Θ(q, x)ϕ(x) dx,

where

(4.14) Θ(q, x) = −
√
n!π

n
2 2

3
4

∞∑

k=0

Qk+n(q, q̄)h
2π
k+n+2(x)

2
k
2 (k + n)!

.

Proof. By Proposition 4.29 we have that

Bn+1
τ ϕ(q) = 2nDn

(
Bn+1

C ϕ(q)
)
.

From�eorem 4.10 we have that

Bn+1
τ ϕ(q) = 2n

∫

R

Dn (Φ(q, x))ϕ(x)dx, q ∈ H.

�is means that in order to prove statement it is enough to computeDn (Φ(q, x)), where

Φ(q, x) := −
√
n!(2π)

n
2 2

3
4

∞∑

l=0

n∑

j=0

(−1)jh2πl+n+2(x)Mn−j,l+n−j(q, q̄)

2
l+n
2 (2π)jj!(l + n− j)!(n− j)!

.

Firstly, we observe that by Proposition 3.19, for k > 0, we have that

Dn(Mn−j,k(q, q̄)) =

{
n!Qk(q, q̄) if j = 0,

0 if j > 0.

�is imply that when we apply the the operatorDn toΦ(q, x) the only term that we have

to take into account in the second series is when j = 0, since the others members are all

zero. Now, we perform the computation

Dn (Φ(q, x)) = −
√
n!(2π)

n
2 2

3
4

∞∑

k=0

n∑

j=0

(−1)jh2πk+n+2(x)Dn (Mn−j,k+n−j(q, q̄))

2
k+n
2 (2π)jj!(k + n− j)!(n− j)!

= −
√
n!π

n
2 2

3
4

∞∑

k=0

Qk+n(q, q̄)h
2π
k+n+2(x)

2
k
2 (k + n)!

.

�

Remark 4.31. If we put n = 0 in (4.14) we obtain the same kernel of the integral transform

obtained in [17, �m. 4.14], up to a constant.

Now, we prove some properties of the τ - poly Fueter-Bargmann transform .

First of all we recall the normalized Hermite functions

ψ2π
k (x) =

h2πk (x)

‖h2πk ‖L2
H
(R)

,

where h2πk are defined in formula (2.5).
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Proposition 4.32. For any fixed n ≥ 0, the action of the τ - poly Fueter-Bargmann trans-

form on the normalized Hermite function is the following

Bn+1
τ (ψ2π

k )(q) =

{
−
√
22n+1

√
(2π)k+nn!k!Qk−2(q,q̄)

(k−2)! if k ≥ n+ 2

0 if k < n+ 2.

Proof. From Proposition 4.29 we know that

Bn+1
τ (ψ2π

k )(q) = 2nDn
(
Bn+1

C ψ2π
k

)
(q).

Now, if k ≥ n+ 2, by Proposition 4.14 we get that

Bn+1
τ (ψ2π

k )(q) = −
√
22n+1

√
(2π)k+nk!n!

n∑

j=0

(−1)jDn (Mn−j,k−j−2(q, q̄))

(2π)jj!(n− j)!(k − j − 2)!
.

By Proposition 3.19 we have that

Dn (Mn−j,k−j−2(q, q̄)) =

{
n!Qk−2(q, q̄) if j = 0,

0 if j > 0.

�is means that in the summation survives only the term with j = 0. Hence, we get

Bn+1
τ (ψ2π

k )(q) = −
√
22n+1

√
(2π)k+nk!n!

n!Qk−2(q, q̄)

n!(k − 2)!

= −
√
22n+1

√
(2π)k+nk!n!

Qk−2(q, q̄)

(k − 2)!
.

�

Remark 4.33. If we put n = 0 in Proposition 4.32 we get the same result of [17, Prop.

4.18], up to a constant. Indeed, if k ≥ 2 we get

B1
τ (ψ

2π
k )(q) = −2

√
2
√
(2π)kk!

Qk−2(q, q̄)

(k − 2)!

= −2
√
2
√
(2π)kk(k − 1)

√
(k − 2)!

Qk−2(q, q̄)

(k − 2)!

= −2
√
2

√
(2π)kk(k − 1)

(k − 2)!
Qk−2(q, q̄).

Now, using Definition 4.16, we have the following

Proposition 4.34. Let ϕ ∈ Hn. �en, for any fixed n ≥ 0 we have

Bn+1
τ (ϕ)(q) =

∞∑

k=0

Qk+n(q, q̄)βk,

where

βk = −
√
22n+1

√
(2π)k+2+2nn!(k + n+ 2)!

(k + n)!
αk+n+2, {αk}k≥0 ⊂ H.

Proof. By Definition 4.16 we can write

ϕ(x) =

∞∑

k=n+2

ψ2π
k (x)αk, {αk}k≥0 ⊂ H.
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�en by Proposition 4.32 we get

Bn+1
τ (ϕ)(q) =

∞∑

k=n+2

Bn+1
τ (ψ2π

k )(q)αk

= −
∞∑

k=n+2

√
22n+1

√
(2π)k+nn!k!

Qk−2(q, q̄)

(k − 2)!
αk

= −
∞∑

k=0

√
22n+1

√
(2π)k+2+2nn!(k + n+ 2)!

Qk+n(q, q̄)

(k + n)!
αk+n+2

:=

∞∑

k=0

Qk(q, q̄)βk.

�

�eorem 4.35. �e τ -polyanalytic Bargmann transform is a surjective operator that satis-

fies the following unitary and isometric properties for ϕ, ψ ∈ Hn

〈Bn+1
τ ϕ,Bn+1

τ ψ〉Ãn+1(H) = 4n+22(2π)2(n+1)n!〈ϕ, ψ〉Hn .

In particular

(4.15) ‖Bn+1
τ ϕ‖Ãn+1(H) =

√
22n+2(2π)n+1

√
n!‖ϕ‖Hn .

Proof. Let us consider

ϕ =

∞∑

k=n+2

ψ2π
k αk, ψ =

∞∑

k=n+2

ψ2π
k α′

k,

with {αk}k≥0 ⊂ H and {α′
k}k≥0 ⊂ H. From Proposition 4.34 we know that

Bn+1
τ (ϕ)(q) =

∞∑

k=0

Qk+n(q, q̄)βk and Bn+1
τ (ψ)(q) =

∞∑

k=0

Qk+n(q, q̄)γk,

where

βk := −
√
22n+1

√
(2π)k+2+2nn!(k + n+ 2)!

(k + n)!
αk+n+2,

γk := −
√
22n+1

√
(2π)k+2+2nn!(k + n+ 2)!

(k + n)!
α′
k+n+2.
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Now, recalling the definition of the inner product Ãn+1(H) (see Definition 4.26) we get

〈Bn+1
τ ϕ,Bn+1

τ ψ〉Ãn+1(H) =

∞∑

k=0

(k + n)!

(k + n+ 2)(k + n+ 1)(2π)k
γkβk

=

∞∑

k=0

(k + n)!

(k + n+ 2)(k + n+ 1)(2π)k
4n+22(2π)2+k+2nn!(k + n+ 2)!

[(k + n)!]2
·

·α′
k+n+2αk+n+2

= 4n+22(2π)2(n+1)n!
∞∑

k=0

(k + n)!

(k + n+ 2)(k + n+ 1)(2π)k
·

· (2π)
k(k + n+ 2)(k + n+ 1)(k + n)!

[(k + n)!]2
α′
k+n+2αk+n+2

= 4n+22(2π)2(n+1)n!
∞∑

k=n+2

α′
kαk

= 4n+22(2π)2(n+1)n!〈ϕ, ψ〉Hn .

In particular if ψ = ϕ we get formula (4.15). �

Corollary 4.36. �e τ -poly Fueter-Bargmann transform is a quaternionic bounded operator

such that for any ϕ ∈ L2
H
(R), we have

‖Bn+1
τ ‖Ãn+1(H) ≤

√
22n+2(2π)n+1

√
n!‖ϕ‖L2

H
(R).

Proof. Since Hn is a subspace of L2
H
(R) we get that

‖ϕ‖Hn ≤ ‖ϕ‖L2
H
(R).

�erefore by applying this inequality to (4.15) we get the thesis. �

Remark 4.37. If we put n = 0 in Proposition 4.32, �eorem 4.35 and Corollary 4.36 we

get [17, Prop. 4.18], [17, Prop. 4.20] and [17, Prop. 4.19], respectively.

Also in this case it is possible to construct a τ -polyanalytic Fueter Bargmann transform

by applying the Fueter poly map τn+1 to the quaternionic reproducing kernel of the QTP

Fock space Kn+1. However, also in this case the computations are very hard. For this

reason we write only the case n = 1.

Proposition 4.38. For any q, r ∈ H we denote by K2(q, r) the reproducing kernel of the
QTP Fock space, in the case n = 1, then we have

(4.16) τ2 (K2(q, r)) = −8

∞∑

k=0

Qk(q)

k!
H2π

1,k+2(r, r̄).

Proof. From formula (4.8) we have the polyanalytic decomposition ofK2(q, r). Recalling
the action of the global operator V , we get that

V (K2(q, r)) = 4π[e∗(2πqr̄)r − qe∗(2πqr̄)].
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Using similar computations as Proposition 4.22 we get

τ2 (K2(q, r)) = ∆ ◦ V (K2(q, r))

= 4π[∆ (e∗(2πqr̄)r) −∆(qe∗(2πqr̄))]

= −8

∞∑

k=0

Qk(q)

k!
H2π

1,k+2(r, r̄).

�

Remark 4.39. It will be interesting to find a general expression for the formula (4.16) in

the case n ≥ 2.

5. The polyanalytic Fueter Bargmann transforms

In this sectionwe see how the results obtained for theQTP Fock space can be reformulated

for the quaternionic polyanalytic Fock space. In order to do this it is crucial the following

result, see [20, �m. 3.4],

�eorem 5.1. LetN ≥ 0. �e quaternionic polyanalytic Fock space F̃N+1
Slice(H) is the direct

sum of QTP Fock spaces Fn
T (H), n = 0, ..., N i.e.

F̃N+1
Slice(H) =

N⊕

n=0

Fn
T (H).

Remark 5.2. From the �eorem 5.1 it is clear that a function f ∈ F̃N+1
Slice(H) if and only if

f(q) =

N∑

n=0

fn(q), fn ∈ Fn
T (H), n = 0, ..., N.

We will omit all proofs because by the previous remark they are similar to those ones

obtained in the previous section.

First of all we characterize the space F̃N+1
Slice(H). By pu�ing the sum from n = 0 to N in

the proof of Proposition 4.1 we get the following

Proposition 5.3. A function of the form

f(q) =

N∑

n=0

∞∑

j=0

H2π
n,j(q, q̄)αn,j {αn,j}0≤n≤N,j≥0 ⊂ H,

belongs to the space F̃N+1
Slice(H) if and only if

N∑

n=0

∞∑

j=0

(2π)j+nj!n!|αn,j |2 <∞.

5.1. �emap Cn+1 applied to the QFPBargmann transform. Let us start by defining

the range of the polyanalytic Fueter mapping Cn+1 on the quaternionic polyanalytic Fock

space,

AN (H) =

N⊕

n=0

An+1(H),

where An+1(H) is the space defined in formula (4.1).

We have the following characterization of the previous space
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�eorem 5.4. Let N ≥ 0. �en we have

AN(H) =

{ N∑

n=0

∞∑

h=0

n∑

s=0

Mn−s,h+n−s(q, q̄)βn,h,s,

N∑

n=0

∞∑

h=0

n∑

s=0

[(h+ n− s)]2(s!)2[(n− s)!]2

(n+ 1)!(2π)h+2n+2−2s(h+ n+ 2)!
|βn,h,s|2 <∞

}
.

where {βn,h,s}0≤n≤N,h≥0,0≤s≤n ⊂ H.

Definition5.5. Let f, g ∈ AN (H) be such that f =
∑N

n=0

∑∞
h=0

∑n
s=0 Mn−s,h+n−s(q, q̄)αn,h,s

and g =
∑N

n=0

∑∞
h=0

∑n
s=0 Mn−s,h+n−s(q, q̄)βn,h,s. We define their inner product as

〈f, g〉AN (H) =

N∑

n=0

〈f, g〉An+1(H)

(n+ 1)!(2π)n
=

N∑

n=0

∞∑

h=0

n∑

s=0

[(h+ n− s)]2(s!)2[(n− s)!]2

(n+ 1)!(2π)h+2n+2−2s(h+ n+ 2)!
βn,h,sαn,h,s

and the norm as

‖f‖2
AN(H) =

N∑

n=0

‖f‖2An+1(H)

(n+ 1)!(2π)n
=

N∑

n=0

∞∑

h=0

n∑

s=0

[(h+ n− s)]2(s!)2[(n− s)!]2

(n+ 1)!(2π)h+2n+2−2s(h+ n+ 2)!
|αn,h,s|2.

Now, we can give the following

Definition 5.6 (C- full poly Fueter Bargmann transform). Let ~ϕ = (ϕ0, ..., ϕN ) be a

vector-valued function in L2(R,HN+1). We define BC : L2(R,HN+1) → AN(H) as

(5.1) BC(~ϕ)(q) :=
N∑

n=0

CN+1 ◦Bn+1ϕn(q).

By using �eorem 4.10 we can write an expression of the C- full poly Fueter Bargmann

transform

�eorem 5.7. �e C- full poly Fueter Bargmann transform can be wri�en by using the

following commutative diagram

BC : L2(R,HN+1) //

B

��

AN(H)

F̃N+1
Slice(H)

Id
// SPN+1(H)

CN+1

OO

with B is the QFP Bargmann transform. More precisely, for any vector-valued function

~ϕ = (ϕ0, ..., ϕN ) in L2(R,HN+1) and q ∈ H we have

BC(~ϕ)(q) =

∫

R

ΦN (q, x)ϕn(x)dx,

where

ΦN (q, x) := −2
3
4

N∑

n=0

∞∑

l=0

n∑

j=0

(−1)j
√
n!(2π)

n
2 h2πl+n+2(x)Mn−j,l+n−j(q, q̄)

2
l+n
2 (2π)jj!(l + n− j)!(n− j)!

.

In order to show an unitary and isometric property of the C- full poly Fueter Bargmann

transform we need the following
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Definition 5.8. Let us consider the following subspace of L2(R,HN+1)

HN :=
N⊕

n=0

∞⊕

k=n+2

{ψ2π
k,nα, α ∈ H},

where ψ2π
k,n are the components of a vector-valued function.

Proposition 5.9. Let us assume ~ϕ, ~ψ ∈ HN . �en we have

〈BC ~ϕ,BC ~ψ〉AN (H) = 8〈~ϕ, ~ψ〉HN
.

In particular

‖BC ~ϕ‖AN (H) = 2
√
2‖~ϕ‖HN

.

5.2. �e map τn+1 applied to the QFP Bargmann transform. Firstly, we study the

range of the polyanalytic Fueter mapping τn+1 on the quaternionic polyanalytic Fock

space,

ÃN (H) =

N⊕

n=0

Ãn+1(H),

where the space Ãn+1(H) is defined in (4.12). �is leads to the following result that

extends �eorem 4.25

�eorem 5.10. It holds that

ÃN(H) =

{
N∑

n=0

∞∑

h=0

Qh+n(q, q̄)βn,h,

N∑

n=0

∞∑

h=0

(h+ n)!|βn,h|2
4nn!(h+ n+ 1)(h+ n+ 2)(2π)h+2n

<∞
}
,

where {βh}h≥0 ⊂ H.

�e counterpart of Definition 4.26 in this full polyanalytic se�ing can be presented as

follows

Definition 5.11. Let us consider f(q) =
∑N

n=0

∑∞
h=0 Qh+n(q, q̄)βn,h and

g(q) =
∑N

n=0

∑∞
h=0 Qh+n(q, q̄)γn,h. We define the inner product as

〈f, g〉
ÃN (H) =

N∑

n=0

〈f, g〉Ãn+1(H)

4n(2π)nn!
=

N∑

n=0

∞∑

k=0

(k + n)!

4nn!(k + n+ 1)(k + n+ 2)(2π)k+2n
γn,kβn,k.

�e associated norm is

‖f‖2
ÃN(H)

=

N∑

n=0

‖f‖2Ãn+1(H)

4n(2π)nn!
=

N∑

n=0

∞∑

k=0

(k + n)!

4nn!(k + n+ 1)(k + n+ 2)(2π)k+2n
|βn,k|2.

Definition5.12 (Full τ - poly Fueter-Bargmann transform). WedefineBτ : L2(R,HN+1) →
ÃN(H) as

Bτ :=

N∑

n=0

τN+1 ◦Bn+1.

We present different results in the full polyanalytic se�ing as follows
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�eorem 5.13. It is possible to define the full τ - poly Fueter-Bargmann through this dia-

gram

Bτ : L2(R,HN+1) //

B

��

ÃN (H)

F̃N+1
Slice(H)

Id
// SPN+1(H)

τN+1

OO

Precisely, for any ~ϕ = (ϕ0, ..., ϕN ) ∈ L2(R,HN+1) and q ∈ H we have

Bτ (~ϕ)(q) =

∫

R

ΘN (q, x)ϕ(x) dx,

where

(5.2) ΘN(q, x) = −2
3
4

N∑

n=0

∞∑

h=0

√
n!π

n
2 Qk+n(q, q̄)h

2π
k+n+2(x)

2
k
2 (k + n)!

.

�eorem 5.14. Let ~ϕ , ~ψ be vector-valued function inHN then

〈Bτ ~ϕ,Bτ
~ψ〉

ÃN (H) = 32(2π)2〈~ϕ, ~ψ〉HN
.

In particular

(5.3) ‖Bτ ~ϕ‖ÃN (H) = 16π
√
2‖~ϕ‖HN

.
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[6] Balk, M. ,Polyanalytic functions, Akademie-Verlag, Berlin (1991).

[7] Benahmandi A., El Hamyani A., Ghanmi A., S-Polyregular Bargmann Spaces, Adv. Appl. Clifford Al-

gebras 29, 84 (2019).

[8] Brackx F., On (k)-monogenic functions of a quaternion variable, Function theoretic methods in differ-

ential equations, 22–44. Res. Notes in Math. 8, Pitman, London (1976).

[9] Brackx F., Delanghe R., Hypercomplex Function �eory and Hilbert Modules with Reproducing Kernel,

proceedings of the London Mathematical Society. s3-37, 545–576. (1978).

[10] Cação, I., Falcão, M.I., Malonek, H., Hypercomplex Polynomials, Vietoris’ Rational Numbers and a Re-

lated Integer Numbers Sequence. Complex Anal. Oper. �eory 11, 1059–1076 (2017)

[11] Cação, I., Falcão, M.I., Malonek, H., Laguerre derivative and monogenic Laguerre polynomials: An oper-

ational approach. Mathematical and Computer Modelling 53. 1084-1094. (2011)

[12] Colombo F., Sabadini I., Sommen F., �e Fueter mapping theorem in integral form and the F-functional

calculus. Math.Meth.Appl.Sci. 33, 2050-2066. (2010).

[13] Colombo F., Gonzalez-Cervantes J.O., Sabadini I.,On bislice regular functions and isomorphisms of

Bergmann spaces. Complex Variables and Elliptic equations, 57, 7-8, 825-839, (2012)

[14] Colombo F., Gonzalez-Cervantes J.O., Sabadini I., A nonconstant coefficients differential operator asso-

ciated to slice monogenic functions. Trans. Am. Math. Soc. 365, 303-318, (2013).

[15] Colombo F., Sabadini I., Struppa D.C., Noncommutative functional calculus, Progress in Mathematics,
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