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Abstract

A measurement result is supposed to provide information about the distribution of values that
could reasonably be attributed to the measurand. However, in general, it provides the
distribution of values returned by the employed measuring system, when the measurand is given
as the input quantity to this system. This distribution of values is mathematically given by the
convolution of two probability density functions (PDFs): the one representing the actual
distribution of values of the measurand and the one representing the uncertainty contribution of
the employed measuring system. In principle, if the uncertainty contribution of the measuring
system is known, the distribution of values that could reasonably be attributed to the measurand
can be obtained by applying a proper deconvolution algorithm: this distribution is, indeed, the

one of interest in any industrial measurement process. Similarly, if the PDF representing the
distribution of values of the measurand is known, the PDF representing the uncertainty
contribution of the measuring system to the resulting distribution of values returned by the
instrument can be obtained by applying a proper deconvolution algorithm: this distribution is,
indeed, the one of interest when a calibration is performed. In practical situations, deconvolution
algorithms provide rather inaccurate results when applied to PDFs, especially when they are
experimentally obtained from histograms of collected data. This paper proposes a deconvolution
method, based on the use of Fuzzy variables (or Possibility Distributions) to represent
distribution of values, which proves to provide much more accurate results. Simulation results,
as well as experimental results are discussed to validate the proposed method.

Keywords: uncertainty, deconvolution, random-fuzzy variables, a priori distribution,

probability distributions, possibility distributions

1. Introduction

It is well-known, in metrology, that a measurement result is a

set of quantity values being attributed to a measurand together

with any other available relevant information, so that it may
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convey ‘relevant information’ about the set of quantity val-
ues, such that some may be more representative of the meas-
urand than others and this may be expressed in the form of a
probability density function (PDF) [1]. Such relevant inform-
ation is generally expressed in terms of measurement uncer-
tainty that, according to the GUM [2], should provide an
interval about the measurement result that may be expected
to encompass a large fraction of the distribution of values
that could reasonably be attributed to the quantity subject to
measurement and such an interval can be readily provided if
the PDF representing such distribution of values is known or
assumed.

© 2023 The Author(s). Published by IOP Publishing Ltd
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However, it is also known that a measurement procedure
of a generic measurand X cannot provide the distribution of
values that can reasonably be attributed to random variable X,
but, because of the uncertainty contribution introduced by the
measuring system, it estimates the distribution of values Y that
can be assigned to the values returned by the measuring sys-
tem itself. Therefore, if S represents the intrinsic variability
of the employed measuring system, the output of the meas-
urement procedure is represented, mathematically, by random
variable [3]:

Y=X=xS (1)
where symbol = represents the mathematical convolution
between two random variables.

It can be readily checked that, unless the measuring sys-
tem’s variability is negligible with respect to the measurand’s
variability, measurement result ¥ does not actually repres-
ent measurand X and this difference may make the measure-
ment result useless. This is the case when the variability of a
product of an industrial production must be evaluated or when
the measurement result must be used to assess conformity of
a product [4]. In such a situation, if S is known, it is pos-
sible, in principle, to obtain X by means of a deconvolution
operation, as:

X = 2)

u ||~

A similar situation occurs during calibration operations,
when a reference X with known variability is employed to eval-
uate the variability S of the measuring system under calibra-
tion. In this case, the measurement result ¥ would not cor-
rectly represent S, unless the variability of X be negligible
with respect to S. Since this is not always the case, S can be
obtained, similarly to the previous case, by means of a decon-
volution operation, as:

S= 3

> |~

While deconvolution appears to be a powerful theoretical
tool to extract the information of interest (X with (2), or S
with (3)) from the measurement result Y, its practical utility
is limited to the case when Y, X and S can be represented by
normal PDFs, and the mean value and variance of the decon-
volved PDF can be obtained in closed form. In all other cases,
and in particular when the PDFs are obtained from a series
of experimental data or estimated by means of a Monte Carlo
simulation [5], a deconvolution algorithm must be used and
the result is, generally, a poor approximation of the desired
PDFE.

Recently, the use of possibility distributions (PDs) has been
proposed to represent variability and, specifically, measure-
ment results, as an alternative way, compliant with the GUM
principles [6—10], to the representation of measurement res-
ults in term of PDFs. An interesting outcome of such a repres-
entation is that operations among PDs, including convolution
and deconvolution, require only algebraic computations, thus

providing, in general, much better results than the same oper-
ations performed on PDFs.

This paper, after having briefly recalled some of the most
used available methods to perform a deconvolution of two
PDFs, will briefly recall the definition of PDs and how and
under which conditions a PDF can be transformed into a
corresponding PD, and will then show how convolution and
deconvolution of PDs can be performed. The capability of
PDs to provide accurate deconvolution results will be proved
by means of simulations and the proposed method is then
validated experimentally, by retrieving the PD representing
the measurand’s variability from the measurement result,
given that the contribution of the employed measuring system
known.

2. Deconvolution of probability distributions

Let X and Y be two generic vectors of size N. The convolution?
between them is given by:

N

Z(i) =X (i)« Y(i)=>_ X(i)Y(i—k).

k=0

“

When vectors X and Y are obtained from normal PDFs,
their convolution is obtained in a fairly simple way as a normal
PDF whose mean value and variance are computed by adding
the mean values and variances of the two initial PDFs.

The inverse operation of convolution (4) is called a decon-
volution and returns either X, given Z and Y, or Y, given Z and
X. The adopted notation is, respectively:

b
Il

&)
(6)

h<
Il
<IN <IN

Once again, when all vectors are obtained from normal
PDFs, the deconvolution result is a normal PDF, whose mean
value and variance are simply obtained by calculating the dif-
ference between the mean values and variances of the initial
PDFs.

When different PDFs from the normal ones are considered,
there is no mathematical closed form solution to the decon-
volution operation. Hence, specific algorithms must be used,
that mostly work in an iterative way, as the ones proposed
in [11-17]. In particular, the blind deconvolution algorithm
proposed in [11-13] appears to be quite interesting, since no
assumption is needed on X and Y. This is the case when X
and Y are obtained either from a series of experimental data
or a Monte Carlo simulation and cannot be represented by a
known equation. With a blind deconvolution algorithm both
the original vectors (X and Y) are estimated by maximizing
the likelihood that the two estimated vectors when convolved
provide the initial vector (Z).

2 In this paper only the discrete convolution is considered, since it is assumed
that, in practice, only a discrete number of calibrations is available.
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A non-blind deconvolution algorithm, the Lucy—
Richardson algorithm, was proposed in [14, 15]. This
algorithm assumes that the convolved vector (Z) and one
of the two original vectors (either X or Y) are known and the
deconvolution is again based on maximizing the likelihood
that the estimated vector when convolved with the known
original vector, provides the convolved vector (Z).

Another non-blind algorithm, based on the Wiener filter,
was proposed in [16, 17]. Also this algorithm assumes some
prior knowledge of one of the two original vectors (X or Y) is
known.

All deconvolution algorithms are directly applied on the
vectors. Since they are iterative in nature, aimed at minimizing
an objective function, they provide an approximate solution to
the deconvolution, and the approximation can be rather poor:
this is probably the main drawback in deconvolving PDFs dir-
ectly using the deconvolution algorithms.

3. The PDs

3.1. Definition

As already mentioned in section 1, a rather recent mathem-
atical theory, the theory of possibility, has been proposed in
the literature [6—10] as an alternative method to the theory of
probability, to represent incomplete knowledge. This theory is
based on the more general mathematical theory of evidence
[18], that encompasses, as particular cases, both possibility
and probability.

Without entering into too many mathematical details, let
us very briefly recall the definition of a PD. A PD is a con-
vex function rx(x), such that r: X — [0, 1] and sup,exrx(x) =
1 [18]. The cuts I, of a PD are called a-cuts and are
defined as:

I, ={x|r(x) > a}. @)

They can be considered as a generalization of the probab-
ilistic concept of confidence intervals and a credibility can be
associated to each of them, in the range [0, 1], that an element
x belongs to them. In particular, the credibility value is given,
for each a-cut at level a, by 1 — « [6].

Therefore, a PD can be represented by a set of a-cuts at
the different possible levels o as shown in figure 1. An inter-
esting property of the PDs is that their combination by means
of mathematical operations like sum, difference, product, can
be performed on their a-cuts by applying suitable triangular
norms (t-norms) [6, 19-24].

3.2. PDF transformation into corresponding PDs

Unimodal probability distributions can be transformed
into a corresponding PD distribution by applying suitable
probability—possibility (p—p) transformations [6, 25-28]. The
principle underlying these transformations is that the cover-
age probability p assigned to a given interval in the prob-
ability domain shall become the credibility assigned to the

a-cut with the same width as the considered interval in
probability. Therefore, such an a-cut is located, in the PD,
atlevel o =1—p [6, 27].

Examples of different PDs and the corresponding proba-
bility distributions obtained from the p—p transformation pro-
posed in [6, 27] are shown in figures 2 and 3.

The advantage of the employed p-p transformation is that,
since it operates on intervals of confidence with known levels
of confidence, it can be applied also when the initial PDF is
represented by an histogram of the distribution of experimental
data or data obtained by means of a Monte Carlo simulation.

3.3. Convolution and deconvolution in the possibility domain

The most relevant advantage of representing a random vari-
able with a corresponding PD, instead of a PDF, is that the
convolution of two random variables is obtained by summing
the PDs associated with the random variables [19, 20]. This
means that, if Xpp and Ypp are the PDs corresponding to ran-
dom variable X and Y respectively, the PD representing their
convolutions (Zpp) is given by:

Zppy = Xpp + YpD. (8)

Consequently, the deconvolution operation can be immedi-
ately performed as a difference of two PDs, the one represent-
ing the convolved distribution and the one representing one
of the distributions that contributed to the convolution. This
means that the PD Xpp can be obtained from the PDs, Zpp and
Ypp as:

Xpp = Zpp — Ypp. )

A similar equation can be written for Ypp.

4. The proposed method

The proposed method considers using PDs to represent the dis-
tributions of values X and S considered in section 1.
Considering the same meaning as those assigned to the
symbols in section 1, let X represent the variability of the
measurand, and let S represent the variability introduced by
the measuring system’s uncertainty. The distribution of values
returned by the instrument systems’ output is therefore repres-
ented, in the probability domain, by the following PDF:

Y (x) z/_+ooX(x)~S(t—x) dr (10)

or, if the PDFs are represented in the discrete domain with vec-
tors of N elements, by:

N

Y(i) =X (i) S(i) =Y _X(i)-S(i—k).

k=0

an

Let us now suppose that, given Y and knowing S, X is
desired: it can be obtained by performing the deconvolution
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Example of PD
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Figure 1. Example of possibility distribution centered on 3, whose a-cut in @ = 0 has width equal to 4.
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Figure 2. Triangular probability distribution and the corresponding possibility distribution.

of Y and S. This operation can be performed on the assumed
probability distributions by applying the blind deconvolution
algorithm [11-13], the Lucy—Richardson algorithm [14, 15]
and the Wiener-filter algorithm [16, 17].

The same probability distributions assumed by these
algorithm have been transformed into the correspond-
ing Ypp, Xpp, and Spp PDs. The deconvolution algorithm
is then performed in the possibility domain, where
Xpp = Ypp — Spp, and this difference is performed by apply-
ing the generalized Dombi #-norm that combines N gen-
eric r; PDs according to the following equation [6, 29]:

1
7529 (r) =

1

(5 (I (1 (52)7) 1))
(12)

where v = 1.1 and vy, = 1.7 [6].

In order to compare the results provided by the deconvolu-
tion algorithms working in the probability domain with the res-
ult provided by the deconvolution in the possibility domain in a
homogenous way, the deconvolved PDFs obtained in the prob-
ability domain have been also transformed into a PD, so that
the comparison can be performed in the possibility domain.

5. Simulation and simulation results

As a case study, a typical scenario is considered where a man-
ufacturing process is being evaluated in an industry that pro-
duces resistors. In this scenario, the variability of the measur-
ing instrument and the variability of the manufacturing process
are assumed to be comparable, since, as shown in section 1,
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Uniform probability distribution
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Figure 3. Uniform probability distribution and the corresponding possibility distribution.

this is the one that would provide the greatest difference
between the actual process variability and the measured one.

Two cases have been considered with different types of
probability distributions for the instrument and the manufac-
turing process. For each case, the proposed method of convert-
ing the probability distributions to PDs and then performing
the difference of the PDs has been used and the comparison
of the obtained results have been performed with the existing
deconvolution methods by converting the obtained PDF after
deconvolution into a PD.

5.1 Case 1

In case 1, it has been assumed that the industry is a resistor
manufacturer and 15¢2 resistors are being manufactured. It is
assumed that the manufactured resistors distribute according
to a uniform probability distribution X centered on 15¢2 and
with a half-width of 0.025€2. Hence, X is given by,

X = U[14.975;15.025)]. (13)

It has been assumed that the variability S of the measuring
instrument shows a uniform probability distribution as well,
with a half-width of 0.0125€2.

It has been assumed that 200 000 resistors have been meas-
ured using this instrument. So, to simulate the measuring pro-
cess, the true value of the resistors (Ryy) was obtained by
drawing a random value from distribution X and then the
measured value of the resistor is obtained by drawing a ran-
dom value from the uniform distribution centered at each
generated true value of the resistor and with a half-width of
0.0125€2 which is the probability distribution represented by
[Rirye — 0.0125; Ry +0.0125].

Therefore, 200 000 measured values have been obtained
and their histogram has been generated to represent the dis-
tribution Y of the measurement results. Since the deconvo-
lution algorithms require the PDFs expressed as functions,
the histogram has been interpolated with a suitable fitting
function to obtain the required functions. It was then pos-
sible to obtain distribution X; from Y and S by applying
one of the deconvolution algorithms seen in section 2. All
considered PDFs have also been transformed into the cor-
responding PDs, and the proposed deconvolution algorithm
applied.

Figure 4 shows the result of the comparison of the pro-
posed method with that obtained from the blind deconvolution
algorithm [11-13].

The red line represents the PD corresponding to the
assumed X distribution, the blue line corresponds to the PD
obtained from the X; probability distribution after deconvo-
lution using the blind deconvolution algorithm, and the green
line represents the PD obtained using the proposed algorithm.

It can be clearly seen that the PD obtained using the pro-
posed method is much closer to the actual X distribution than
that obtained using the blind convolution algorithm.

Figure 5 shows the result of the comparison of the proposed
method with that obtained from the Lucy—Richardson decon-
volution algorithm [14, 15].

The red line represents the PD corresponding to the
assumed X distribution, the blue line corresponds to the
PD obtained from the X, probability distribution after
deconvolution using the Lucy—Richardson deconvolution
algorithm, and the green line represents the PD obtained using
the proposed algorithm.

It can be clearly seen that the PD obtained using the pro-
posed method is much closer to the actual X distribution than
that obtained using the Lucy—Richardson deconvolution.
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Figure 4. Comparison of the results of the proposed method with those from the blind deconvolution algorithm. Red line: actual X
distribution; blue line: obtained X, distribution by means of the blind deconvolution algorithm; green line: obtained X, distribution by

means of the proposed deconvolution algorithm.
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Figure 5. Comparison of the results of the proposed method with those from the Lucy-Richardson deconvolution algorithm. Red line:

actual X distribution; blue line: obtained X, distribution by means of the Lucy—Richardson deconvolution algorithm; green line: obtained X,

distribution by means of the proposed deconvolution algorithm.

Figure 6 shows the result of the comparison of the proposed
method with that obtained from the Wiener filter deconvolu-
tion algorithm [16, 17].

The red line represents the PD corresponding to the
assumed X distribution, the blue line corresponds to the PD
obtained from the X; probability distribution after deconvo-
lution using the Wiener filter deconvolution algorithm, and
the green line represents the PD obtained using the proposed
algorithm.

It can be clearly seen that the PD obtained using the pro-
posed method is much closer to the actual X distribution than
that obtained using the Wiener filter deconvolution.

5.2. Case 2

In case 2, the same case study as case 1 was performed for
different distributions. It has been assumed that the manufac-
tured resistors distribute according to a triangular probability
distribution centered at 15€2 and with half the base of 0.025¢2.

It has been assumed that the variability S of the measuring
instrument has the same uniform probability distribution as the
previous case, with a half-width of 0.0125€).

It has been assumed once again that 200 000 resistors have
been measured using this instrument. So, to simulate the
measuring process, the true value of the resistors (Ryye) was
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Figure 6. Comparison of the results of the proposed method with those from the Wiener filter deconvolution algorithm. Red line: actual X
distribution; blue line: obtained X, distribution by means of the Wiener filter deconvolution algorithm; green line: obtained X, distribution

by means of the proposed deconvolution algorithm.
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Figure 7. Comparison of the results of the proposed method with those from the blind deconvolution algorithm. Red line: actual X
distribution; blue line: obtained X, distribution by means of the blind deconvolution algorithm; green line: obtained X, distribution by

means of the proposed deconvolution algorithm.

obtained by drawing a random value from distribution X and
then the measured value of the resistor is obtained by drawing
arandom value from the uniform distribution centered at each
generated true value of the resistor and with a half-width of
0.0125€2 which is the probability distribution represented by
[Rirye — 0.0125; Ry +0.0125].

Therefore, 200000 measured values have been obtained
again and their histogram has been generated to repres-
ent the distribution Y of the measurement results and inter-
polated with a suitable fitting function. Distribution X,
was obtained again from Y and S by applying one of
the deconvolution algorithms seen in section 2. All con-
sidered PDFs have also been transformed into the corres-
ponding PDs, and the proposed deconvolution algorithm
applied.

Figure 7 shows the result of the comparison of the pro-
posed method with that obtained from the blind deconvolution
algorithm [11-13].

Just as in the previous case, the red line represents the
PD corresponding to the assumed X distribution, the blue line
corresponds to the PD obtained from the X, probability dis-
tribution after deconvolution using the blind deconvolution
algorithm, and the green line represents the PD obtained using
the proposed algorithm.

It can be clearly seen that the PD obtained using the pro-
posed method is much closer to the actual X distribution than
that obtained using the blind convolution algorithm.

Figure 8 shows the result of the comparison of the proposed
method with that obtained from the Lucy—Richardson decon-
volution algorithm [14, 15].
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Figure 8. Comparison of the results of the proposed method with those from the Lucy-Richardson deconvolution algorithm. Red line:
actual X distribution; blue line: obtained X, distribution by means of the Lucy—Richardson deconvolution algorithm; green line: obtained X,
distribution by means of the proposed deconvolution algorithm.
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Figure 9. Comparison of the results of the proposed method with those from the Wiener filter deconvolution algorithm. Red line: actual X

distribution; blue line: obtained X, distribution by means of the blind deconvolution algorithm; green line: obtained X, distribution by

means of the proposed deconvolution algorithm.

The red line represents the PD corresponding to the
assumed X distribution, the blue line corresponds to the PD
obtained from the X; probability distribution after deconvo-
lution using the blind deconvolution algorithm, and the green
line represents the PD obtained using the proposed algorithm.

It can be clearly seen that the PD obtained using the pro-
posed method is much closer to the actual X distribution than
that obtained using the blind convolution algorithm.

Figure 9 shows the result of the comparison of the proposed
method with that obtained from the Wiener filter deconvolu-
tion algorithm [16, 17].

Once again the red line represents the PD corresponding to
the assumed X distribution, the blue line corresponds to the
PD obtained from the X; probability distribution after decon-
volution using the Wiener filter deconvolution algorithm, and

the green line represents the PD obtained using the proposed
algorithm.

It can be clearly seen that the PD obtained using the pro-
posed method is much closer to the actual X distribution than
that obtained using the Wiener filter deconvolution.

Hence it can be seen from all simulated cases that the pro-
posed method gives much better results than those provided
by the existing deconvolution algorithms.

6. Experimental results

To validate the proposed method, the experimental set-up
shown in figure 10 was implemented. A signal generator was
developed, based on a NI9263 DAC board, featuring four
output analog channels with 16-bit resolution, a 10 V range,
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Figure 10. Implemented experimental setup.
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Figure 11. Histogram of the values representing the S distributions (a) and corresponding PD (b) obtained by applying the considered p—p

transformation.

and a maximum update frequency of 100kSs~!. Signal gen-
eration was controlled by a dedicated generation VI.

The generated signal was then acquired by a NI9215
ADC board, featuring four simultaneous input analog chan-
nels with a 16-bit resolution, a 10 V range, and a maximum
sampling rate of 100 kHz on a single channel. The acquisi-
tion and subsequent measurement algorithms were controlled
by a dedicated VI. Both boards were connected to a N19174
cRIO chassis, connected to a PC, on which the implemen-
ted LabVIEW VIs were running. When needed, the genera-
tion and acquisition VIs could be synchronized by means of a
LabVIEW Global Variable (GV in the block diagram shown
in figure 10).

The experimental validation was conducted according to
the two following steps.

o System characterization. A pure sinewave was generated
by the generation board, with a peak amplitude of 9.18 V
and a frequency of 57.005Hz. 512 samples/period were
generated with an update frequency of 29 186.43 Hz. The
57.005 Hz signal frequency was chosen to avoid interference

from the 50 Hz frequency of the supply voltage. The gen-
erated sinewave was acquired by the acquisition board,
with a sampling frequency of 14593.21 Hz, so that 256
samples/period could be acquired under coherent sampling
conditions and spectral leakage errors could be minimized.
The acquired samples were then derated to a 12-bit resolu-
tion, in order to minimize the influence of the quantization
error of the generation board, with respect to the one of the
acquisition board.

The sampled data were then processed to evaluate the
sinewave rms value over a two-period window. 50000
repeated measurements were performed, and the distribution
of the obtained rms values was considered as the variability
S of the measuring system. Figure 11(a) shows the histo-
gram of the obtained values, representing the S distribution,
while figure 11(b) shows the corresponding PD obtained by
applying the above mentioned p-p transformation. In such
a way, the uncertainty contributions generated by the gen-
eration board were attributed to the measuring instrument.
Since the same set-up was also used in the second step, when
a pre-defined variability was assigned to the peak value of
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Figure 12. Result provided by the proposed method in case of uniform distribution for X with support 50% larger than that of S. Blue line:
PD representing the distribution Y of the measured values. Red line: PD representing the theoretical predefined uniform distribution for the
measurand. Green line: PD representing the X, distribution provided by the implemented deconvolution algorithm.

the generated sinewave, this procedure appears to be suit-
able to separate the measuring system contribution to the
variability of the measured values, from that of the meas-
urand. According to the experimental data, the distribution
standard deviation was og = 0.13mV and the width of its
support, that is the width of the a-cut for a =0 of the cor-
responding PD, was W,—¢ = 0.51 mV.
Variable measurand generation. In this second step,
50000 values were generated, according to a pre-defined
PDF, for the sinewave peak value, and stored in the genera-
tion VI. The same sinewave as in the previous step was then
generated with the peak value taken from the stored values
and changed every four periods of the generated waveform,
thus generating 50 000 sinewaves, each one with a differ-
ent peak value taken from the given distribution. Once every
new sinewave was generated, the global variable was set.
The acquisition VI was then triggered by the global vari-
able, acquired two periods of the generated sinewave under
the same conditions as the ones in the previous step, and
evaluated the rms value. The global variable was then reset,
so that the procedure could start again with the newly gen-
erated sinewave. At the end, 50000 rms values were avail-
able, representing the Y distribution of the measured values,
and the proposed deconvolution algorithm could be applied
to obtain the variability X of the measurand and compare it
with the pre-defined distribution used to generate the peak
values.

Two different PDFs have been considered for mod-
eling the variability X of the measurand: a uniform
and a triangular distribution. In both cases, the sup-
port of the distributions was taken the 50% larger
than that of the S distribution in a first experiment,
and the same as that of the S distribution in a second
experiment.

Figure 12 shows the result provided by the proposed
algorithm when the measurand distributes according to a
uniform distribution with support 50% larger than that of
the distribution of values S that can be attributed to the
employed measuring system when the measurand is sup-
posed to not vary. The measured values distribute with a
standard deviation, o, =0.315 mV, and the blue line in
figure 12 shows the PD representing the distribution Y of
the values returned by the measuring system. The red line
shows the PD representing the pre-set X distribution of val-
ues assigned to the measurand, while the green line shows the
PD representing the X, distribution provided by the proposed
algorithm.

It can be readily checked that the X; PD approxim-
ates very well the pre-set X PD. To provide a quant-
itative estimate of how well the proposed algorithm
provides the measurand variability by deconvolving the
Y and S distributions, the rms distance between the X
and X; PDs was computed, and a value of 30.3 uV was
obtained.



Meas. Sci. Technol. 35 (2024) 015036

A Ferrero et al

0.8

0.6

0.4

0.2

0
6.4898 6.49 6.4902 6.4904

6.4906

6.4908 6.491 6.4912 6.4914

Voltage RMS (V)

Figure 13. Result provided by the proposed method in case of uniform distribution for X with the same support as that of S. Blue line: PD
representing the distribution Y of the measured values. Red line: PD representing the theoretical predefined uniform distribution for the
measurand. Green line: PD representing the X, distribution provided by the implemented deconvolution algorithm.
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Figure 14. Result provided by the proposed method in case of triangular distribution for X with support 50% larger than that of S. Blue line:
PD representing the distribution Y of the measured values. Red line: PD representing the theoretical predefined triangular distribution for the

measurand. Green line: PD representing the X, distribution provided by the implemented deconvolution algorithm.

Figure 13 shows the same results as those shown in
figure 12, when the measurand distributes according to a uni-
form distribution with the same support as that of the dis-
tribution of values S that can be attributed to the employed
measuring system when the measurand is supposed to not
vary. The measured values distribute with a standard devi-
ation o, = 0.246V mV. Once again, the PD shown by the green
line (X;), returned by the proposed algorithm, appears to be a
good approximation of the PD shown by the red line, repres-
enting the pre-set X distribution.

The rms distance between the two PDs is, in this case,
22.2 uV, showing that it is possible to extract, from the dis-
tribution of the measured values Y, the actual distribution of
the measurand even when the variability (S) introduced by the

measuring system has a similar value as that of the measurand
X).

Figures 14 and 15 show the same results as those presented
in figures 12 and 13 when the measurand distributes according
to a triangular distribution, with support that is, respectively,
50% larger and the same as that of the distribution of values S
that can be attributed to the employed measuring system when
the measurand is supposed to not vary. The measured values
distribute with a standard deviation o, = 0.236 mV and o, =
0.143 mV respectively. In both figures, the red and green lines
are very close to each other, thus confirming that also in this
case the proposed algorithm provides very good results. The
rms distance between the two PDs is, respectively, 10.9 uV
and 10.5 uV.
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measurand. Green line: PD representing the X, distribution provided by the implemented deconvolution algorithm.

7. Conclusion

This paper has proposed a method, based on PDs, to per-
form a deconvolution between two PDFs. In metrology, this
method can be usefully applied to separate, in the distribution
of measured values, the variability contributions introduced
by the measuring system, from the actual variability of the
measurand.

While applying this method may appear quite straightfor-
ward from a mere theoretical point of view, its practical applic-
ation may provide quite inaccurate results when the deconvo-
lution is applied to PDFs, as shown by the simulation results.
On the contrary, when the PDFs are transformed into equi-
valent PDs, the deconvolution operation becomes much sim-
pler, application-wise, and provides significantly more accur-
ate results, as proved by both the simulation and experimental
results.

In particular the method was experimentally applied to
extract the actual variability of the measurand from the dis-
tribution of values provided by the employed measuring
system, after having evaluated its contribution to variabil-
ity. The method provided accurate results even when the
variability of the measurand was quite similar to that of
the employed measuring system, thus making this method
quite useful in performing calibration, since it removes the
requirement that the uncertainty of the reference be negli-
gible with respect to that of the instrument to be calibrated
to ensure that the distribution of the measured value rep-
resents the behavior of the instrument to be calibrated. If
the proposed method is applied, the variability of the instru-
ment to be calibrated can be separated by that of the ref-
erence even when instrument and reference show similar
uncertainties.

Data availability statement

The experiment that has been used to obtain the data used in
the paper can be replicated very easily with a simple setup.
The data that support the findings of this study are available
upon reasonable request from the authors.
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