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Wachs permutations, Bruhat order and weak order

Francesco Brenti ∗ and Paolo Sentinelli†

Abstract

We study the partial orders induced on Wachs and signed Wachs permutations

by the Bruhat and weak orders of the symmetric and hyperoctahedral groups. We

show that these orders are graded, determine their rank function, characterize their

ordering and covering relations, and compute their characteristic polynomials, when

partially ordered by Bruhat order, and determine their structure explicitly when par-

tially ordered by right weak order.

1 Introduction

Wachs permutations are a class of permutations first introduced (in the even case)

in [22] to study the signed Eulerian numbers and the signed major index enumerator

of the symmetric groups. This class was extended in [4] to the odd case and to signed

permutations in order to study the enumerators of the odd and even major indices of

classical Weyl groups twisted by their one-dimensional characters. In this work we study

Wachs (and signed Wachs) permutations in their own right. More precisely, we study

the partial orders induced on them by the Bruhat and weak orders of the symmetric

and hyperoctahedral groups. These orders are fundamental objects in algebraic combi-

natorics and have important connections to algebra and geometry (see, e.g., [2, Chaps.2

and 3], [1, Chap.2], [16, Chap.1], [11, Chap.5], [7, Chap.10], [17, Chap.2], and the refer-

ences cited there). Many subsets of the symmetric and hyperoctahedral groups have been

studied as posets under the Bruhat order such as, for example, quotients, descent classes,

and generalized quotients [3], complements of quotients [19], involutions [9, 12, 13, 15, 18],

conjugation-invariant sets of involutions [5, 8], and twisted identities [10]. In this paper
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we show that Wachs permutations possess many nice properties when partially ordered by

Bruhat and weak orders. More precisely, we show that they form a graded poset, deter-

mine their rank function, characterize the ordering and covering relations, and compute

the characteristic polynomial, when partially ordered by Bruhat order, and determine their

structure explicitly when partially ordered by right weak order.

The organization of the paper is as follows. In the next section we collect some notation

and results that are used in the sequel. In §3 we study the poset obtained by partially

ordering Wachs permutations with respect to Bruhat order. We show that these posets

are always graded (Theorem 3.9), characterize their order and covering relations (Theorem

3.13 and Proposition 3.12), and compute their characteristic polynomials (Corollary 3.16).

In §4, using some of the results in §3, we obtain analogous results for the poset induced on

signed Wachs permutations by Bruhat order. More precisely, we show that these posets

are graded (Theorem 4.10), characterize their order and covering relations (Theorem 4.13,

Proposition 4.2, Corollary 4.12, and Corollary 4.6), and compute the characteristic poly-

nomials (Corollary 4.16). In §5 we study the posets obtained by partially ordering Wachs

and signed Wachs permutations under right weak order. We show that they are always

isomorphic to the direct product of a Boolean algebra with the weak order on the whole

group in rank
⌈

n
2

⌉

(Theorems 5.1 and 5.3). Finally, in §6, we discuss some conjectures and

open problems arising from the present work and the evidence that we have about them.

2 Preliminaries

In this section we recall some notation, definitions, and results that are used in the

sequel. As N we denote the set of non-negative integers and as P the set of positive integers.

If n ∈ N, [n] := {1, 2, ..., n}; in particular [0] = ∅. For n ∈ P, in the polynomial ring Z[q]

the q-analogue of n is defined by [n]q :=
n−1
∑

i=0
qi and the q-factorial by [n]q! :=

n
∏

i=1
[i]q. For

a set A and f : A → N we define

A(x, f) :=
∑

w∈A

xf(w)

and f(u, v) := f(v)− f(u), for all u, v ∈ A. The cardinality of a set X will be denoted by

|X| and the power set of X by P(X). Given a cartesian product X ×Y of two sets X and

Y , we indicate with π1 and π2 the projections on X and Y respectively.

Let n ∈ N, i ∈ Z, q ∈ Q and J ⊆ [n]; then we define Je := {j ∈ J : j ≡ 0 mod 2},

Jo := {j ∈ J : j ≡ 1 mod 2}, J + i := {i+ j : j ∈ J} ∩ [n], and qJ :=
⋃

j∈J
{qj} ⊆ Q.

We follow Chapter 3 of [20] for notation and terminology concerning posets. We just
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recall some definitions. Given two posets P and Q, their ordinal product P ⊗Q is defined

by ordering the set P × Q in the following manner: (x, y) 6 (x′, y′) if and only if x = x′

and y 6 y′ or x < x′, for all (x, y), (x′, y′) ∈ P × Q. If µ is the Möbius function of a

graded poset P with minimum 0̂, maximum 1̂ and rank function ρ, then the characteristic

polynomial of P in the indeterminate x is defined by

CP (x) :=
∑

z∈P

µ(0̂, z)xρ(z,1̂).

Next recall some basic results in the theory of Coxeter groups which will be useful in

the sequel. The reader can consult [2] or [11] for further details. Let (W,S) be a Coxeter

system. The length of an element z ∈ W with respect of the given presentation is denoted

as ℓ(z). If J ⊆ S, we let

W J := {w ∈ W : ℓ(ws) > ℓ(w) ∀ s ∈ J},

JW := {w ∈ W : ℓ(sw) > ℓ(w) ∀ s ∈ J},

D(w) := {s ∈ S : ℓ(ws) < ℓ(w)},

and, more generally, for any A ⊆ W we let AJ := A ∩W J . The subgroup WJ ⊆ W is the

group generated by J . In particular WS = W and W∅ = {e}, being e the identity of W .

We consider on W the Bruhat order 6 (see, e.g., [2, Chapter 2] or [11, Chapter 5]) and

on any subset we consider the induced order. When the group W is finite, there exists a

unique maximal element w0 of maximal length. We recall this characterizing property of

the Bruhat order, known as the lifting property (see [2, Proposition 2.2.7]):

Proposition 2.1. Let v,w ∈ W be such that v < w and s ∈ D(w) \D(v). Then v 6 ws

and vs 6 w.

For J ⊆ S, each element w ∈ W has a unique expression w = wJw
J , where wJ ∈ W J

and wJ ∈ WJ (see [2, Proposition 2.4.4]). Often we consider the projection P J : W → W J

defined by P J(w) = wJ . This map is order preserving ( [2, Proposition 2.5.1]). We let

T := {wsw−1 : w ∈ W, s ∈ S}. The following lemma will be useful in the next section; for

a proof see [2, Lemma 2.2.10].

Lemma 2.2. Suppose that x < xt and y < ty, for x, y ∈ W , t ∈ T . Then, xy < xty.

For w ∈ W we set TL(w) := {t ∈ T : ℓ(tw) < ℓ(w)}; the right weak order 6R on

W is the partial order whose cover relations are defined by letting u ⊳R v if and only if

v−1u ∈ S and ℓ(v) = ℓ(u) + 1, for all u, v ∈ W (see [2, Chapter 3]). Then the following

characterization holds (see [2, Proposition 3.1.3]):
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Proposition 2.3. Let (W,S) be a Coxeter system. Then u 6R v if and only if TL(u) ⊆

TL(v), for all u, v ∈ W .

Now, for any n ∈ P, let Sn be the group of all bijections of the set [n]. It is well

known that it is a Coxeter group with set of generators {s1, s2, ..., sn−1}, being si the

simple inversion given, in one line notation, by 12...(i + 1)i...n. Given a permutation

σ = σ(1)σ(2)...σ(n) ∈ Sn, the action of si on the right is given by σsi = σ(1)σ(2)...σ(i +

1)σ(i)...σ(n), for all i ∈ [n − 1]. For i, j ∈ [n], the action on the right of a transposition

(i, j), i 6= j, then is given by σ(i, j) = σ(1)σ(2)...σ(i − 1)σ(j)...σ(j − 1)σ(i)...σ(n), for

all σ ∈ Sn. As a Coxeter group, identifying {s1, s2, ..., sn−1} with [n − 1], we have that

(see e.g. [2, Propositions 1.5.3 and 1.5.2]) D(σ) = {i ∈ [n − 1] : σ(i) > σ(i + 1)} and

ℓ(σ) = ℓA(σ), where ℓA(σ) := inv(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|, for all σ ∈ Sn.

Then, given J ⊆ [n− 1], SJ
n = {σ ∈ Sn : σ(i) < σ(i+ 1) ∀ i ∈ J}.

For i ∈ [n] and A ⊆ Sn define A(i) := {σ ∈ A : pos(σ) = i}, being pos : Sn → [n] the

function defined by pos(σ) := σ−1(n), for all σ ∈ Sn. We find it convenient to define the

following involution on [n]:

i∗ :=















i− 1, if i ≡ 0 mod 2;

i+ 1, if i ≡ 1 mod 2 and i+ 1 ∈ [n];

n, otherwise,

and the simple inversion s∗i := (i, i∗), for all i ∈ [n]. Given a permutation σ ∈ Sn,

k ∈ [n] and i ∈ [k], define σi,k as the i-th element in the increasing rearrangement of

{σ(1), σ(2), ..., σ(k)}< and σ−1
i,k as the position of σ(i) in {σ(1), σ(2), ..., σ(k)}< . So σj,k =

σ(i) if j = σ−1
i,k . The following theorem, known as the “tableau criterion”, characterizes the

Bruhat order on Sn (see [2, Theorem 2.6.3]).

Theorem 2.4. Let n ∈ P and σ, τ ∈ Sn. The following are equivalent:

1. σ 6 τ ;

2. σi,k 6 τi,k for all k ∈ D(σ) and i ∈ [k];

3. σi,k 6 τi,k for all k ∈ [n− 1] \D(τ) and i ∈ [k].

We indicate by wn the maximum of the poset (Sn,6), i.e., in one line notation, wn =

n...321.

The descent number and the major index are the functions des : Sn → N and maj :

Sn → N defined respectively by des(σ) := |D(σ)| and maj(σ) :=
∑

i∈D(σ) i. A famous result

of McMahon asserts that ℓA and maj are equidistribuited over Sn (see, e.g. [20, Proposition
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1.4.6]), i.e. Sn(x, ℓA) = Sn(x,maj), and this rank-generating function is known to be (see,

e.g [20, Corollary 1.3.10])

Sn(x, ℓA) = [n]x!. (1)

Following [4] we define functions from Sn to N by letting

odes(σ) := |D(σ)o|, emaj(σ) :=
∑

i∈D(σ)e

i

2
,

for all σ ∈ Sn, and call these functions odd descent number and even major index respec-

tively.

Following [4], for n ∈ P, we let

W(Sn) := {σ ∈ Sn : |σ−1(i) − σ−1(i∗)| 6 1 if i ∈ [n− 1]}

and call the elements of W(Sn) Wachs permutations. It is not hard to see that, if n is even,

W(Sn) = {σ ∈ Sn : |σ(i) − σ(i∗)| 6 1 if i ∈ [n− 1]}.

Let [±n] := {−n, . . . ,−1, 1, . . . , n}. We denote by Bn the group of bijective functions

σ : [±n] → [±n] satisfying −σ(i) = σ(−i), for all i ∈ [n]. We use the window notation.

So, for example, the element [−2, 1] ∈ B2 represents the function σ : [±2] → [±2] such

that σ(1) = −2 = −σ(−1) and σ(2) = 1 = −σ(−2). We let Neg(σ) := {i ∈ [n] :

σ(i) < 0}, neg(σ) = |Neg(σ)|, nsp(σ) := |{(i, j) ∈ [n]2 : i < j, σ(i) + σ(j) < 0}|,

sBj := (j, j + 1)(−j,−j − 1) for j = 1, ..., n − 1, s0 := (1,−1), and SB := {s0, s
B
1 , ..., s

B
n−1}.

It is well known that (Bn, SB) is a Coxeter system and that, identifying SB with [0, n− 1],

the following holds (see, e.g., [2, §8.1]).

Proposition 2.5. Let σ ∈ Bn. Then ℓB(σ) = ℓA(σ) + neg(σ) + nsp(σ), and D(σ) = {i ∈

[0, n − 1] : σ(i) > σ(i+ 1)}, where σ(0) := 0.

We denote by 6 the Bruhat order of Bn and by σ 7→ σ̃ the embedding Bn →֒ S±n

(where S±n is the set of all bijections of [±n]) . The following result is [2, Corollary 8.1.9].

Proposition 2.6. We have that σ 6 τ in Bn if and only if σ̃ 6 τ̃ in S±n.

The next result, which appears in [14, Theorem 5.5], characterizes the cover relations

in the Bruhat order of Bn. For σ ∈ Bn and i, j ∈ [±n], i < j, we say that (i, j) is a rise for

σ if σ(i) < σ(j) (i.e., if (i, j) is not an inversion of σ). Given a rise (i, j) for σ we then say,

following [14], that (i, j) is central if (0, 0) ∈ [i, j]× [σ(i), σ(j)], that (i, j) is free if there is

no i < k < j such that σ(i) < σ(k) < σ(j), and that it is symmetric if i = −j.

Theorem 2.7. Let n ∈ P and σ, τ ∈ Bn. Then σ⊳ τ in Bruhat order if and only if either

5



1. τ = σ(i, j)(−i,−j) where (i, j) is a non-central free rise of σ or

2. τ = σ(i, j) where (i, j) is a central symmetric free rise of σ.

Following [4], for n ∈ P, we let

W(Bn) := {σ ∈ Bn : |σ−1(i)− σ−1(i∗)| 6 1 if i ∈ [n− 1]}

and call the elements of W(Bn) signed Wachs permutations.

Our aim in this work is to study the sets of Wachs and signed Wachs permutations

under the Bruhat order and the weak order.

3 Wachs permutations and Bruhat order

Let (W,S) be a Coxeter system. For any independent set I ⊆ S (i.e. st = ts for all

s, t ∈ I) we define a subgroup of W by

GI := {w ∈ W : Iw = I},

where Iw := {wsw−1 : s ∈ I}. Note that GI is a subgroup of W , and that, since I is

independent, WI ⊆ GI . Furthermore, WI is normal in GI .

Proposition 3.1. P I(GI) is a subgroup of GI , isomorphic to the quotient GI/WI . In

particular we have the group isomorphisms

GI ≃ P I(GI)⋉WI ≃ S2 ≀I P
I(GI).

Proof. Let w ∈ GI and write w = wIwI where wI ∈ W I and wI ∈ WI . Let s ∈ I. Then, by

our hypothesis, wsw−1 = wIwIs(wI)
−1(wI)−1 = wIs(wI)−1 so wI ∈ GI . So P I(GI) ⊆ GI .

Let u, v ∈ GI and write u = uIuI and v = vIvI where uI , vI ∈ W I and uI , vI ∈ WI ,

so uI , vI ∈ P I(GI). Let s ∈ I. Then there is t ∈ I such that vIs = tvI . Furthermore,

since uI , vI ∈ W I , ℓ(tvI) > ℓ(vI), and ℓ(uIt) > ℓ(uI). Therefore, by Lemma 2.2 we

obtain that uIvIs = uItvI > uIvI . Hence uIvI ∈ W I . But, since vI ∈ GI , there exists

ũI ∈ WI such that uv = uIvI ũIvI so (uv)I = uIvI . Hence uIvI ∈ P I(GI). In particular,

(uI)−1 = (u−1)I , so P I(GI) is a subgroup of GI , and P I : GI → P I(GI) is a surjective

homomorphism whose kernel is WI . The last statements follow by the definitions.

Let m ∈ P, W := S2m. For any set X, we consider P(X) as an abelian group, the

operation being the symmetric difference +, i.e. A + B := (A \B) ∪ (B \ A), for all

A,B ∈ X. Then it is straightforward to see that if we take I = {si : i ≡ 1 mod 2} ⊆ S

6



then W(S2m) = GI . The group isomorphisms P I(W(S2m)) ≃ Sm and WI ≃ P([m]) then

imply

W(S2m) ≃ Sm ⋉ P([m]) = S2 ≀ Sm.

Therefore W(S2m) is isomorphic to the hyperoctahedral group.

We consider Sn with the Bruhat order and the subset W(Sn) ⊆ Sn with the induced

order. It is not difficult to see, using Theorem 2.4 that P I(W(S2m)) ≃ Sm as posets for

all m > 0, where the set Sm is ordered by the Bruhat order. Let m > 0. For u ∈ Sm and

T ⊆ [m] let φ−1
2m(u, T ) := v, where v ∈ W(S2m) is defined by

v(2i − 1) =

{

2u(i) − 1, if i 6∈ T ,

2u(i), if i ∈ T ,

and

v(2i) =

{

2u(i), if i 6∈ T ,

2u(i) − 1, if i ∈ T ,

for all i ∈ [m]. The following result follows easily from our definitions and Theorem 2.4,

and its proof is omitted.

Proposition 3.2. Let m ∈ P. Then

1. φ2m is a bijection;

2. φ2m : W(S2m) → Sm ⊗P([m]) is order preserving;

3. φ−1
2m : Sm ×P([m]) → W(S2m) is order preserving.

Moreover ℓ(v) = 4ℓ(τ) + |T | if φ(v) = (τ, T ).

Figure 3 shows the Hasse diagram of (W(S5),6). By the following example we see that

φ2m and φ−1
2m are not poset isomorphisms in general.

Example 3.3. Let m = 3. Then (123, {1, 2, 3}) 6 (132,∅) in Sm⊗P([m]) but φ−1
2m(123, {1, 2, 3}) =

214365 
 125634 = φ−1
2m(132,∅) in W(S2m).

Let m = 2, u = 2143 and v = 3412. Then u, v ∈ W(S4), u < v and φ2m(u) =

(12, {1, 2}) 
 (21,∅) = φ2m(v) in Sm × P([m]).

We consider now W(S2m+1). For any m > 0 it is not difficult to see that the set

W(S2m+1) is not a group. The previous general construction in Coxeter systems gives, for

W = S2m+1, the group GI ≃ W(S2m) which, as a set, can be included in W(S2m+1). For

n > 1, define a function χn : W(Sn) → W(Sn−1) by

7



4321

3421 4312

3412

2143

1243 2134

1234

Figure 1: Hasse diagram of (W(S4),6).

χn(v)(i) =

{

v(i), if i < pos(v);

v(i+ 1), if i > pos(v),

for all i ∈ [n−1], v ∈ W(Sn). Note that the function χn is not necessarily order preserving.

For example, if m = 2 and u = 21345, v = 51234 then u 6 v but χn(u) = 2134 
 1234 =

χn(v).

Let φ2m+1 : W(S2m+1) → [m+ 1]× Sm × P([m]) be the function defined by

φ2m+1(v) := ((pos(v) + 1)/2, τ, T ),

if χ2m+1(v) = (τ, T ), for all v ∈ W(S2m+1). For example, φ2m+1(4312756) = (3, 213, {1}).

As in the even case, noting that u 6 v implies pos(v) 6 pos(u), we have the following

result whose proof follows easily from our definitions and Proposition 3.2.

Proposition 3.4. Let m > 0. Then

1. φ2m+1 is a bijection;

2. φ2m+1 : W(S2m+1) → [m+ 1]∗ ⊗ Sm ⊗ P([m]) is order preserving;

3. φ−1
2m+1 : [m+ 1]∗ × Sm × P([m]) → W(S2m+1) is order preserving,

where i 6 j in [m + 1]∗ if and only if j 6 i, for all i, j ∈ [m + 1]. Moreover ℓ(v) =

4ℓ(τ) + |T |+ 2(m− i+ 1) if φ2m+1(v) = (i, τ, T ).

Let n > 0 and fn : W(Sn) → S⌊n

2 ⌋
be the function defined by the assignment (i, τ, T ) 7→

τ if n is odd, and (τ, T ) 7→ τ if n is even. By Proposition 3.2, if n is even then fn is order

8



54321

53421 54312

43521 53412

52143 34521 43512

51243 52134 34512 43215

21543 51234 34215 43125

12543 21534 34125

12534 21435

12435 21345

12345

Figure 2: Hasse diagram of (W(S5),6).
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preserving. Corollary 3.8 states that the function fn is order preserving also in the odd

case. We also define a function ℓW : W(Sn) → N by

ℓW(v) := ℓ(v)− ℓ(fn(v)),

for all v ∈ W(Sn). For example, ℓW(342156) = 5 − 1 = 4 and ℓW(3472156) = 9 − 1 = 8.

The minimum and the maximum of the poset (W(Sn),6) are respectively the identity of

Sn, which corresponds to (e,∅) in the even case and to (m+ 1, e,∅) in the odd one, and

the element of maximal length wn of Sn, which corresponds to (wm, [m]) in the even case

and to (1, wm, [m]) in the odd one, where m :=
⌊

n
2

⌋

. Moreover ℓW(e) = 0 and

ℓW(wn) =

(

n

2

)

−

(

⌊n2 ⌋

2

)

. (2)

Note that if n is even then ℓW(wn) = (3n−2)n
8 = (3m−1)m

2 . So {ℓW(w2m)}m∈P is

the sequence of pentagonal numbers (see A000326 in OEIS). If n is odd then ℓW(wn) =
3(n2−1)

8 = 3m(m+1)
2 ; so {ℓW(w2m+1)}m∈P is the sequence of triangular matchstick numbers

(see A045943 in OEIS).

Let n > 0 and m :=
⌊

n
2

⌋

; for any i, j ∈ [m], i < j, we define an involution wA
i,j :

W(Sn) → W(Sn) by

wA
i,j(v) =

{

(τ(i, j), T + {i, j}), if n is even and v = (τ, T );

(k, τ(i, j), T + {i, j}), if n is odd and v = (k, τ, T ),

for all v ∈ W(Sn). For example, if v = 4312765 ∈ W(S7), then wA
2,3(v) = 4356721.

Lemma 3.5. Let m > 0, v = (τ, T ) ∈ W(S2m), i, j 6∈ T and τ(i, j) ⊳ τ . Then wA
i,j(v) < v

and ℓW(v) − ℓW(wA
i,j(v)) = 1. If u = (σ, S) ∈ W(S2m), u < v and σ 6 τ(i, j) then

u 6 wA
i,j(v).

Proof. We have that v̂ := wA
i,j(v) = (τ(i, j), T ∪ {i, j}). By the tableau criterion it is easy

to deduce that v̂ < v and the equality ℓW(v̂, v) = 1 follows easily from Proposition 3.2

and the definition of ℓW . We now show that u 6 v̂. We use Theorem 2.4. Note first that,

since u and v̂ are Wachs permutations and σ 6 τ(i, j), ul,h 6 v̂l,h for all 1 6 l 6 h if h is

even. Furthermore, since u < v, ul,h 6 v̂l,h for all l ∈ [h] if h 6 2i − 2 or h > 2j. So let

k ∈ [m] be such that k 6∈ T and i < k < j. We wish to show that ul,2k−1 6 v̂l,2k−1, for all

1 6 l 6 2k − 1.

Let a := v(2i − 1) and b := v(2j − 1). So a+ 1 = v(2i) and a > b+ 1 = v(2j) as well

as v̂(2i − 1) = b + 1, v̂(2i) = b, v̂(2j − 1) = a+ 1 and v̂(2j) = a. Let c := v(2k − 1) and

d := u(2k − 1). Note that, since τ(i, j) ⊳ τ , c 6∈ [b, a + 1] and that c ≡ 1 (mod 2) since
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k 6∈ T . Let r, s ∈ [k] be such that v2r−1,2k−1 = c and u2s−1,2k−1 = d. We have two cases to

consider according as to whether c < b or c > a+ 1.

Say c > a+ 1.

Let p, q ∈ [k] be such that v2q−1,2k−1 = a and v̂2p−1,2k−1 = b, so p 6 q, v2q,2k−1 = a+1

and v̂2p,2k−1 = b+ 1. Then 2r − 1 > 2q since c > a+ 1. Note that

vl,2k−1 = v̂l,2k−1 (3)

if 1 6 l 6 2p− 2 or 2q + 1 6 l 6 2k − 1 and that

vl,2k−1 = v̂l+2,2k−1 (4)

if 2p− 1 6 l 6 2q − 2. Moreover, since u 6 v by our hypothesis,

ul,2k−1 6 vl,2k−1, (5)

for all 1 6 l 6 2k − 1.

Note that, by (3) and (5), we have

ul,2k−1 6 vl,2k−1 = v̂l,2k−1

if 1 6 l 6 2p− 2 or 2q + 1 6 l 6 2k − 1. So assume 2p− 1 6 l 6 2q.

If x, y ∈ P, x, y ≡ 1 (mod 2), then we find it convenient to write {x, x+1} 6 {y, y+1}

if x 6 y and similarly for <.

We have two cases to consider.

Let s > q. Then, since σ 6 τ(i, j), we have that

{u2h−1,2k−1, u2h,2k−1} 6 {v̂2h−1,2k−1, v̂2h,2k−1}

for all p 6 h 6 q, so ul,2k−1 6 v̂l,2k−1 for all 2p− 1 6 l 6 2q.

Let s 6 q. If p 6 h 6 s− 1 then, since σ 6 τ(i, j), we have that

{u2h−1,2k−1, u2h,2k−1} 6 {v̂2h−1,2k−1, v̂2h,2k−1}

so ul,2k−1 6 v̂l,2k−1 for all 2p − 1 6 l 6 2s − 2.

We may therefore assume that max{2p − 1, 2s − 1} 6 l 6 2q. Since σ 6 τ(i, j), we

have that

ul,2k−2 6 v̂l,2k−2
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for 1 6 l 6 2k − 2. But

ul,2k−1 = ul−1,2k−2

if 2s 6 l 6 2k − 1 since {u(1), ..., u(2k − 2)} = {u(1), ..., u(2k − 1)} \ {d}, and similarly

v̂l,2k−1 = v̂l,2k−2

if 1 6 l 6 2r − 2. Therefore

ul,2k−1 < ul+1,2k−1 = ul,2k−2 6 v̂l,2k−2 = v̂l,2k−1,

if 2s− 1 6 l 6 2r − 2, so ul,2k−1 6 v̂l,2k−1 if 2s− 1 6 l 6 2q, because 2q 6 2r − 2.

The case c < b is similar (and slightly simpler) except that one uses 2k rather than

2k − 2 and obtains that

ul,2k−1 = ul,2k 6 v̂l,2k = v̂l−1,2k−1 < v̂l,2k−1

if 2p 6 l 6 2s − 1. We leave the details to the interested reader.

The following lemma can be proved using Lemma 3.5 and the definitions.

Lemma 3.6. Let m > 0, v = (k, σ, S) ∈ W(S2m+1), i, j, k 6∈ S and σ(i, j) ⊳ σ. Then

wA
i,j(v) < v, v(k, k + 2) < v and ℓW(wA

i,j(v)) = ℓW(v(k, k + 2)) = ℓW(v) − 1.

The next result is the crucial technical tool for the proof of our main theorem, and

states that elements of W(S2m+1) are “join-irreducible” in a certain sense.

Proposition 3.7. Let m > 0, u, v ∈ W(S2m+1), u < v and i := pos(v). If u < v and

pos(u, v) > 0 then u 6 z where z ∈ W(S2m+1) is defined by

z =

{

v(i, i + 2), if v < v(i + 1, i+ 2);

v(i+ 1, i+ 2), otherwise.

Proof. Let h := (i+ 1)/2 and consider first the case i+ 1 6∈ D(v). Let a := v(i+ 1); then

a+ 1 = v(i+ 2) = z(i), a = z(i + 1) and z(i+ 2) = 2m+ 1. Define c := u(i), r ∈ [m+ 1]

be such that u(2r − 1) = 2m+ 1, p ∈ [h] be such that z2p−1,i = a+ 1 and q ∈ [h] be such

that u2q−1,i = c. Notice that u(i + 1) ∈ {u(i) + 1, u(i) − 1} since pos(u, v) > 0. Assume

that q 6 p. Note that

ul,i 6 vl,i = zl,i
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if 1 6 l 6 2p− 2, while

ul,i = ul−1,i−1 6 vl−1,i−1 = zl−1,i−1 = zl,i

if 2p 6 l, and

u2p−1,i =















u2p−2,i−1 6 v2p−2,i−1 = z2p−2,i−1 = z2p−2,i < z2p−1,i, if q < p,

u2p−1,i+1 6 v2p−1,i+1 = a < a+ 1 = z2p−1,i, if q = p and u(i) < u(i+ 1),

u2p−1,i+1 + 1 6 v2p−1,i+1 + 1 = a+ 1 = z2p−1,i, if q = p and u(i) > u(i+ 1),

since u 6 v. Moreover ul,i+1 = ul−1,i 6 zl−1,i = zl,i+1 if l > 2p + 1 while ul,i+1 6 vl,i+1 =

zl,i+1, if l 6 2p − 2. Let l ∈ {2p − 1, 2p}. There are some cases to be considered.

1. q < p and u(i) > u(i + 1): in this case we have that u2p,i+1 = u2p−1,i 6 z2p−1,i =

z2p,i+1 and so u2p−1,i+1 6 u2p,i+1 − 1 6 z2p,i+1 − 1 = z2p−1,i+1.

2. q < p and u(i) < u(i + 1): in this case we have that u2p−1,i+1 = u2p−1,i − 1 6

z2p−1,i − 1 = z2p−1,i+1 and so u2p,i+1 = u2p−1,i+1 + 1 6 z2p−1,i+1 + 1 = z2p,i+1.

3. q = p and u(i) > u(i + 1): in this case u2p,i+1 = u2p−1,i 6 z2p−1,i = z2p,i+1 and

u2p−1,i+1 = u2p−1,i − 1 6 z2p−1,i − 1 = z2p−1,i+1.

4. q = p and u(i) < u(i + 1): in this case u2p−1,i+1 6 v2p−1,i+1 = a = z2p−1,i+1 and

u2p,i+1 = u2p−1,i+1 + 1 6 z2p−1,i+1 + 1 = z2p,i+1.

So we have proved that u 6 z whenever q 6 p. Consider the case q > p. If l 6 2p − 2

or l > 2q the result follows as above. Let 2p 6 l 6 2q− 2. Then ul,i = ul,i+1 6 vl,i+1 = zl,i.

Moreover

u2p−1,i = u2p−1,i+1 6 v2p−1,i+1 = a < a+ 1 = z2p−1,i.

Let u(i) < u(i+ 1). Then

u2q−1,i = u2q−1,i+1 6 v2q−1,i+1 = z2q−1,i.

If u(i) > u(i + 1) we have that u2q−1,i = u2q−1,i+1 + 1 6 v2q−1,i+1 + 1 = z2q−1,i and then

we have proved that u 6 z also in case q > p.

Let’s consider the case si+1 ∈ D(v). Define a := v(i + 2) and v2p−1,i+1 := a + 1. If

l 6= 2p−1 we have that ul,i+1 6 vl,i+1 = zl,i+1. Let l = 2p−1. Since u2p−1,i+1 ≡ 1 (mod 2),

a ≡ 1 (mod 2) and u2p−1,i+1 6 a+ 1, we conclude that u2p−1,i+1 6 a = z2p−1,i+1.

Corollary 3.8. Let n ∈ P. Then fn : W(Sn) → S⌊n

2
⌋ is order preserving.
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Proof. If n is even the result was already observed. If n is odd let u, v ∈ W(Sn) and

u 6 v. We prove the result by induction on pos(u, v). If pos(u, v) = 0 by the tableau

criterion we conclude that χn(u) 6 χn(v) and then the result follows by the even case.

Let pos(u, v) > 0 and i := pos(v). In this case, by Proposition 3.7, u 6 v(i, i + 2) < v

or u 6 v(i + 1, i + 2)(i, i + 2) < v(i + 1, i + 2) < v. Hence, by the inductive hypothesis,

fn(u) 6 fn(v(i, i+2)) = fn(v) or fn(u) 6 fn(v(i+1, i+2)(i, i+2)) = fn(v(i+1, i+2)) =

fn(v).

We can now prove the main result of this section.

Theorem 3.9. Let n > 0. Then (W(Sn),6) is graded, of rank
(n
2

)

−
(⌊n

2
⌋

2

)

, and its rank

function is ℓW .

Proof. Assume first n = 2m, m > 1. Let u, v ∈ W(S2m) with u < v, φ(u) = (σ, S) and

φ(v) = (τ, T ). We prove that, if ℓW(u, v) 6= 1, then there exists z ∈ W(S2m) such that

u < z < v and ℓW(z, v) = 1. Note that, by Proposition 3.2, σ 6 τ . We have two cases to

consider.

1. ℓ(σ, τ) = 0: then σ = τ so, by Proposition 3.2, S ⊆ T . Therefore there exists

i ∈ T \ S. So s2i−1 ∈ D(v) \ D(u) hence, by the Lifting Property, u < vs2i−1 < v,

vs2i−1 ∈ W(S2m) and ℓW(vsi, v) = 1.

2. ℓ(σ, τ) > 0: in this case, since σ < τ , there exist 1 6 x < y 6 m such that

σ 6 τ(x, y)⊳ τ . Let i := 2x− 1 and j := 2y − 1. There are three cases to consider.

(a) si ∈ D(v): let z := vsi and w := (τ(x, y), T ). We want to prove that u < z. Let

a + 1 := v(i) = v2p−1,i, b := w(i) = v(j) = w2q−1,i and c := u(i) = u2s−1,i. In

particular q 6 p. We only have to prove that ul,i 6 (vsi)l,i for all l 6 i. Since

(vsi)l,i = vl,i if l 6= 2p− 1, it is enough to prove that u2p−1,i 6 (vsi)2p−1,i. Note

that ul,i+1 6 vl,i+1 = (vsi)l,i+1 for all 1 6 l 6 i+ 1.

If s 6 p then

(vsi)2p−1,i > (vsi)2p−2,i = w2p−1,i = w2p,i+1 > u2p,i+1 > u2p−1,i

because b < a, and σ 6 τ(x, y).

If s > p then u2p−1,i = u2p−1,i+1 6 (vsi)2p−1,i+1 = (vsi)2p−1,i. Since ℓW(vsi, v) =

1 the result follows.

(b) si 6∈ D(v) and sj ∈ D(v): we then claim that u < vsj. Let b+1 = v(j) = v2p−1,j;

then b = (vsj)(j) = (vsj)2p−1,j. As in the case above it is sufficient to prove
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that u2p−1,j 6 (vsj)2p−1,j . If u(j) > u2p−1,j then u2p−1,j = u2p−1,j+1 =

u2p,j+1 − 1 6 v2p,j+1 − 1 = b. Let u(j) 6 u2p−1,j; since σ 6 τ(x, y) we

have {u2p−1,j−1, u2p,j−1} 6 {w2p−1,j−1, w2p,j−1}. Then, u2p−1,j < u2p,j =

u2p−1,j−1 6 w2p−1,j−1 = b, since a > b+ 1.

(c) si, sj 6∈ D(v): in this case, by Lemma 3.5, u < wA
x,y(v) < v and wA

x,y(v) ∈

W(S2m), ℓW(wA
x,y(v), v) = 1.

Now assume n = 2m+ 1, m > 0. Let u 6 v, i := pos(v), and ℓW(u, v) > 1. We prove

that there exists z ∈ W(S2m+1) such that u < z < v and ℓW(z, v) = 1. If pos(u, v) = 0

then the result follows by the previous point. If pos(u, v) > 0 we have, by Proposition 3.7,

u < v(i, i + 2) < v if si+1 6∈ D(v) and u < vsi+1 < v otherwise.

Remark 3.10. In general W(Sn)∩S
J
n is not graded; one can see this by considering J = {s1}

and the interval [124365, 561234] in W(S6) ∩ SJ
6 .

We can now compute the rank-generating function of (W(Sn),6).

Corollary 3.11. Let m > 0. Then

W(S2m)(x, ℓW) = (1 + x)m[m]x3 !,

W(S2m+1)(x, ℓW ) = (1 + x)m[m+ 1]x2 [m]x3 !.

Moreover

W(S2m)(x, ℓW ) = W(S2m)(x, 3 emaj + odes)

and

W(S2m+1)(x, ℓW ) = W(S2m+1)(x, (3 emaj + odes) ◦ χ2m+1 + pos).

Proof. The result follows by (1), Theorem 3.2 and the definition of ℓW . In fact, W(S2m+1)(x, ℓW ) =

[m+ 1]x2 W(S2m)(x, ℓW) and ℓ(v) = odes(v) + 4ℓ(f2m(v)), for all v ∈ W(S2m).

From Proposition 3.11 we find that the polynomials W(Sn)(x, ℓW) are reciprocal, i.e.

xℓW(wn) W(Sn)(x
−1, ℓW) = W(Sn)(x, ℓW ). In fact the poset (W(Sn),6) is self-dual, for

all n ∈ P, since the map v 7→ vwn is an antiautomorphism of (W(Sn),6) such that

ℓW(vwn) = ℓW(wn)− ℓW(v) (see [2, Propositions 2.3.2 and 2.3.4]).

From the combinatorial description of the rank function of W(S2m+1) we can deduce

a description of its cover relations.

Proposition 3.12. Let m ∈ P, u, v ∈ W(S2m+1), u = (i, σ, S) and v = (j, τ, T ). Then

u ⊳ v if and only if either

15



1. i = j, σ = τ and S ⊳ T , or

2. j = i− 1, σ = τ , i− 1 ∈ S and T = S \ {i− 1}, or

3. i = j, σ ⊳ τ , T ∩ {a, b} = ∅ and S = T ∪ {a, b},

where (a, b) := τ−1σ. In particular, if u, v ∈ W(S2m), u = (σ, S) and v = (τ, T ), then

u ⊳ v if and only if either σ = τ and S ⊳ T , or σ ⊳ τ , T ∩ {a, b} = ∅ and S = T ∪ {a, b}.

Proof. If point 1 or 2 hold then ℓW(v)− ℓW(u) = 1 and by Theorem 3.4 there follows that

u 6 v. If point 3 holds then the result follows by Lemma 3.6.

Conversely let u ⊳ v. Then σ 6 τ by Corollary 3.8 and ℓW(u, v) = 1. If i− j > 2 then,

by Proposition 3.7 there is z ∈ W(S2m+1) such that u 6 z < v and ℓW(z, v) = 1; so z = u,

which is a contradiction since k − j 6 1, being z = (k, ρ,R). Hence assume i− j 6 1.

If σ < τ then there exists a reflection (r, s) such that σ 6 τ(r, s) ⊳ τ . If i− j = 1 then

by Proposition 3.7 u = v(2j−1, 2j+1) and σ = τ , which is a contradiction. Therefore i = j.

As in the proof of Theorem 3.9, if r ∈ T then (σ, S) 6 (τ, T \{r}); if r 6∈ T and s ∈ T then

(σ, S) 6 (τ, T \ {s}). Moreover ℓW((τ, T \ {r}), (τ, T )) = 1 and ℓW((τ, T \ {s}), (τ, T )) = 1

in these cases. Then (σ, S) = (τ, T \{r}) or (σ, S) = (τ, T \{s}), a contradiction. Therefore

r, s 6∈ T and, as in the proof of Theorem 3.9, (σ, S) 6 (τ(r, s), T ∪ {r, s}) ⊳ (τ, T ), and

ℓW((τ(r, s), T ∪{r, s}), (τ, T )) = 1. So we conclude that S = T ∪{r, s} and σ = τ(r, s) ⊳ τ .

Assume now σ = τ . If i = j then S ⊳ T (else ℓW(u, v) = ℓ(u, v) > 2). If i− j = 1 then

by Proposition 3.7 we have that u = v(2j − 1, 2j + 1) and v < vs2j and the result follows.

The second statement follows from the first one by observing that W(S2m) is isomorphic

to the interval [e, 2m...321(2m + 1)] in W(S2m+1).

For example the permutation 782156934 ∈ W(S9) covers the Wachs permutations

781256934, 782156439 and 652187934, which correspond respectively to cases 1, 2 and 3

in Proposition 3.12.

From Proposition 3.12 we can now prove the second main result of this section, namely

a characterization of the Bruhat order relation on Wachs permutations.

Theorem 3.13. Let m > 0 and u, v ∈ W(S2m+1), u = (i, σ, S), v = (j, τ, T ). Then u 6 v

if and only if

σ 6 τ , S(u, v) ⊆ T (u, v), and j 6 i,

where, for X ⊆ [m + 1], X(u, v) := X ∩ ([j − 1] ∪ [i,m]) ∩ F (σ, τ), being F (σ, τ) :=

{k ∈ [m] : σ(k) = τ(k)}. Moreover ℓW(u) = 3ℓ(σ) + |S| + 2(m − i + 1). In particular, if

u, v ∈ W(S2m), u = (σ, S), v = (τ, T ), then u 6 v if and only if σ 6 τ and S∩F (σ, τ) ⊆ T ,

and ℓW(u) = 3ℓ(σ) + |S|.
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Proof. Let u 6 v. We may assume u ⊳ v. There are three cases to consider.

1. i = j, σ = τ and S ⊳ T : in this case F (σ, τ) = [m] so the result follows.

2. j = i− 1, σ = τ and S = T ∪ {i− 1}, with i− 1 6∈ T : in this case F (σ, τ) = [m] and

S ∩ ([i− 2] ∪ [i,m]) ⊆ T .

3. i = j, σ ⊳ τ , T ∩ {a, b} = ∅ and S = T ∪ {a, b}, where (a, b) = τσ−1: we have

F (σ, τ) = [m] \ {a, b} and then S ∩ F (σ, τ) ⊆ T .

Now let σ 6 τ , j < i and S ∩ ([j−1]∪ [i,m])∩F (σ, τ) ⊆ T . In Sm there exists a saturated

chain σ = σ0 ⊳ σ1 ⊳ ... ⊳ σn = τ with n = ℓ(σ, τ). Define (ai, bi) := σ−1
i σi−1 for all

i ∈ [n]. We have the following chain in (W(S2m+1),6):

(i, σ, S) 6 (i, σ, S ∪ [j, i − 1])

⊳ (i− 1, σ, (S ∪ [j, i − 2]) \ {i− 1})

⊳ (i− 2, σ, (S ∪ [j, i − 3]) \ {i− 2, i− 1})

⊳ ... ⊳ (j + 1, σ, (S ∪ {j}) \ [j + 1, i − 1])

⊳ (j, σ, S \ [j, i− 1])

6 (j, σ, (S \ [j, i − 1]) ∪ {a1, b1})

⊳ (j, σ1, (S \ [j, i − 1]) \ {a1, b1})

6 (j, σ1, (S \ ([j, i − 1] ∪ {a1, b1})) ∪ {a2, b2})

⊳ (j, σ2, (S \ [j, i − 1]) \ {a1, b1, a2, b2})

6 ... 6 (j, τ, (S \ [j, i− 1]) \ {a1, b1, ..., an, bn}) 6 (j, τ, T ),

since {a1, b1, ..., an, bn} = [m] \ F (σ, τ). The length formula follows by Proposition 3.4.

The last statement follows immediately noting that the map (σ, S) 7→ (m + 1, σ, S) is

a poset isomorphism between W(S2m) and {(i, σ, S) ∈ W(S2m+1) : i = m+ 1}.

We illustrate the preceding theorem with an example. Let u = (4, 2431, {1, 2, 3}) ∈

W(S9) and v = (3, 3421, {2}) ∈ W(S9). Then we have that 2431 < 3421 and S ∩ ([j − 1]∪

[i,m]) ∩ F (σ, τ) = {1, 2, 3} ∩ ({1, 2} ∪ {4}) ∩ {2, 4} = {2}; hence, by Theorem 3.13, u < v.

The following lemma can be easily deduced by Theorem 3.13 so we omit its verification.

Lemma 3.14. Let m > 0 and u, v ∈ W(S2m+1). If u 6 (i, σ, S1) 6 v and u 6 (i, σ, S2) 6 v

in (W(S2m+1),6) then u 6 (i, σ, S1 ∪ S2) 6 v.

The characterization obtained in Theorem 3.13 enables us to give an explicit expression

for the Möbius function of lower intervals in the poset of Wachs permutations partially

ordered by Bruhat order, and shows, in particular, that it has values in {0, 1,−1}.
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Proposition 3.15. Let m > 0, and v = (j, τ, T ) ∈ W(S2m+1). Then

µ(e, v) =

{

(−1)|T |, if τ = e and j = m+ 1;

0, otherwise.

In particular, if v = (τ, T ) ∈ W(S2m) then

µ(e, v) =

{

(−1)|T |, if τ = e;

0, otherwise.

Proof. We proceed by induction on ℓW(v). If τ = e and j = m+1 then, by Theorem 3.13,

the interval [e, v] is isomorphic to a Boolean algebra, so we conclude that µ(e, v) = (−1)|T |,

as desired. So assume that either τ 6= e or j < m+1. Then, by Proposition 3.12, ℓW(v) > 2,

so, by Lemma 3.14 there exists R ⊆ [m], R 6= ∅, such that [e, v] ∩ {(k, ρ, U) ∈ W(S2m+1) :

ρ = e, k = m+ 1} = [e, (m + 1, e, R)]. Hence

µ(u, v) = −
∑

x∈[e,v)

µ(e, x)

= −
∑

x∈[e,(i,σ,R)]

µ(e, x) −
∑

x∈[e,v)\[e,(i,σ,R)]

µ(e, x)

= −
∑

x∈[e,v)\[e,(i,σ,R)]

µ(e, x) = 0

by our induction hypothesis, and the fact that |[e, (i, σ,R)]| 6= 1, where [u, v) := {z ∈

W(S2m+1) : u 6 z < v}.

The statement about Wachs permutations in the even case follows from the odd one

as in the proof of Theorem 3.13.

We conclude by computing, using Proposition 3.15, the characteristic polynomial of

the poset of Wachs permutations.

Corollary 3.16. The characteristic polynomial of (W(Sn),6) is

(x− 1)⌊
n

2 ⌋x(
n

2)−(
⌊n
2 ⌋+1

2
),

for all n ∈ P.

Proof. The result follows from Poposition 3.15 and Theorem 3.9.

The following is a commutative diagram that summarizes the poset morphisms consid-

ered in this section. The function πi stands for the canonical projection on the i-th factor
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of a Cartesian product. Notice that, if A and B are posets, the projection π1 : A⊗B → A

is order preserving, whereas π2 : A⊗B → B is not order preserving.

[m+ 1]∗ × Sm × P([m]) W(S2m+1) ([m+ 1]∗ × Sm)⊗ P([m])

Sm × P([m]) W(S2m) Sm ⊗ P([m])

Sm

φ−1

2m+1

π2×π3

φ2m+1

f2m+1

φ−1

2m

π1

φ2m

f2m
π1

4 Signed Wachs permutations and Bruhat order

For n > 0 recall (see [4]) that the set of signed Wachs permutation is

W(Bn) := {σ ∈ Bn : |σ−1(i)− σ−1(i∗)| 6 1 ∀ i ∈ [n− 1]}.

So, for example, [−2,−1, 4, 3] ∈ W(B4) while [3, 4,−2, 1] /∈ W(B4). In the even case, as in

type A, we have the following group isomorphism (see Proposition 3.1)

W(B2m) ≃ Bm ⋉ P([m]) = S2 ≀Bm.

We define a bijection φ : W(B2m) → Bm×P([m]) as follows. For σ ∈ Bm and T ⊆ [m]

let φ−1(σ, T ) := v, where v ∈ W(B2m) is defined by

v(2i − 1) =

{

2σ(i) − χ(σ(i) > 0), if i 6∈ T ,

2σ(i) + χ(σ(i) < 0), if i ∈ T ,

and

v(2i) =

{

2σ(i) + χ(σ(i) < 0), if i 6∈ T ,

2σ(i) − χ(σ(i) > 0), if i ∈ T ,

for all i ∈ [m]. For example, let v := [−3,−4, 1, 2, 6, 5] ∈ W(B6); then φ(v) = ([−2, 1, 3], {1, 3}).

Because of this bijection from now on we freely identify the sets W(B2m) and Bm×P([m]),

so if v ∈ W(B2m) and φ(v) = (σ, T ), then we simply write v = (σ, T ) and we define

ℓW(v) := ℓB(v)− ℓB(σ).

Recall that we denote by v 7→ ṽ the natural embedding Bn →֒ S±n. Note that if

v ∈ W(B2m) then ṽ ∈ W(S±2m). Indeed, if v = (σ, T ) then ṽ = (σ̃,−T ∪ T ). In fact, by

Proposition 2.6, this is an injective group and poset morphism W(B2m) →֒ W(S±2m). For
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example, for u = [−2,−1, 6, 5,−3,−4] = ([−1, 3,−2], {2, 3}) ∈ W(B6) we have

ũ = (4, 3,−5,−6, 1, 2,−2,−1, 6, 5,−3,−4) = ((2,−3, 1,−1, 3,−2), {−3,−2, 2, 3}) ∈ W(S±6).

Notice that if n is odd then the image of a signed Wachs permutation is not a Wachs

permutation. For example, if u = [−2,−1, 6, 5,−3,−4, 7] ∈ W(B7) we have

ũ = (−7, 4, 3,−5,−6, 1, 2,−2,−1, 6, 5,−3,−4, 7) 6∈ W(S±7).

It is known that 2ℓB(v) = ℓA(ṽ) + neg(v) (see e.g. [2, Exercise 8.2]) so we have that

ℓW(v) =
ℓW(ṽ) + neg(σ)

2
, (6)

for all v = (σ, T ) ∈ W(B2m), because 2 neg(σ) = neg(v).

Proposition 4.1. The function W(B2m) → Bm defined by the assignment (τ, T ) 7→ τ is

order preserving.

Proof. Let u = (σ, S) ∈ W(B2m) and v = (τ, T ) ∈ W(B2m). We have that u 6 v implies

ũ 6 ṽ and then, by Corollary 3.8, σ̃ 6 τ̃ . By Proposition 2.6, this implies σ 6 τ .

It is easy to characterize, using Theorem 3.13, the Bruhat order relation between signed

Wachs permutations in the even case.

Proposition 4.2. Let u, v ∈ W(B2m), u = (σ, S), v = (τ, T ). Then u 6 v if and only if

σ 6 τ in Bm and S ∩ F (σ, τ) ⊆ T , where F (σ, τ) := {i ∈ [m] : σ(i) = τ(i)}.

Proof. We have that ũ = (σ̃,−S ∪ S) and similarly ṽ = (τ̃ ,−T ∪ T ). But, by Theorem

3.13, ũ 6 ṽ if and only if σ̃ 6 τ̃ and (−S ∪ S) ∩ F (σ̃, τ̃ ) ⊆ −T ∪ T , which in turn happens

if and only if σ 6 τ and S ∩ F (σ, τ) ⊆ T .

The next result is the analogue of Proposition 3.2.

Proposition 4.3. Let m > 0. Then

1. φ : W(B2m) → Bm ⊗ P([m]) is order preserving;

2. φ−1 : Bm × P([m]) → W(B2m) is order preserving.

Moreover ℓB(τ, T ) = 4ℓB(τ) + |T | − neg(τ), for all (τ, T ) ∈ W(B2m).
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Proof. Points 1. and 2. are direct consequences of Propositions 2.6 and 3.2. The last

equality follows by the formula of Proposition 3.2; in fact

ℓB(τ, T ) =
ℓA(τ̃ ,−T ∪ T ) + neg(τ, T )

2
= 2ℓA(τ̃) + |T |+ neg(τ)

= 4ℓB(τ)− 2 neg(τ) + |T |+ neg(τ).

For any (i, j) ∈ [n]× [±n], i 6= j, we find it convenient to define

(i, j)B :=

{

(i, j)(−i,−j), if i 6= |j|;

(i,−i), otherwise.

So the set of reflections of Bn is (see [2, Proposition 8.1.5])

TBn = {(i, j)B : 1 6 i < |j| 6 n} ∪ {(i,−i)B : i ∈ [n]}.

Let m > 0. For any reflection (i, j)B ∈ TBm we define an involution wB
i,j : W(B2m) →

W(B2m) by letting

wB
i,j(τ, T ) := (τ(i, j)B , T + {i, |j|}) ,

for all (τ, T ) ∈ W(B2m), where X+Y stands for the symmetric difference between two sets

X and Y . For example, if v = ([−2, 1, 4, 3], {1, 4}) then wB
3,−3(v) = ([−2, 1,−4, 3], {1, 3, 4})

and wB
1,−3(v) = ([−4, 1, 2, 3], {3, 4}).

Remark 4.4. We observe that, under the embedding W(B2m) →֒ W(S±2m), we have that

wB
i,j(v) 7→ wA

−i,−j(w
A
i,j(ṽ)), if i 6= −j, and wB

i,−i(v) 7→ wA
i,−i(ṽ).

The next technical result enables us to “lift” some order theoretic properties from B2m

to W(B2m). Its proof relies on the corresponding result in type A, namely Lemma 3.5.

Lemma 4.5. Let m > 0, i ∈ [m] and j ∈ [±m]. Assume v = (τ, T ) ∈ W(B2m), i, |j| 6∈ T

and τ(i, j)B ⊳ τ . Then wB
i,j(v) < v and ℓW(wB

i,j(v), v) = 1. Moreover if u = (σ, S) ∈

W(B2m) and σ 6 τ(i, j)B then u 6 wB
i,j(v) < v.

Proof. Consider the element ṽ = (τ̃ ,−T ∪ T ) ∈ W(S±2m). Then by our hypothesis and

Theorem 2.7 we have that τ̃(i, j)(−i,−j) ⊳ τ̃(i, j) ⊳ τ̃ if i 6= |j|, and τ̃(i,−i) ⊳ τ̃ if

i = |j|. So, by Lemma 3.5, ũ 6 wA
−i,−j(w

A
i,j(ṽ)) < wA

i,j(ṽ) < ṽ (since i, j 6∈ T implies

−i,−j 6∈ −T ) if i 6= |j|, and ũ 6 wA
i,−i(ṽ) < ṽ if i = |j|. By Proposition 2.6 and Remark

4.4 we conclude that u 6 wB
i,j(v) < v. Note also that, by Theorem 2.7, i 6= |j| and

v(i, j)B ⊳ v in Bn imply neg(v(i, j)B ) = neg(v), and that v(i,−i)B ⊳ v in Bn implies
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neg(v(i,−i)B) = neg(v) − 1. Therefore, if i, |j| 6∈ T and τ(i, j)B ⊳ τ , then by Lemma 3.5

and (6) we have that ℓW(wB
i,j(v), v) = 1.

The following result characterizes the cover relations of the ordering induced by Bruhat

order on the signed Wachs permutations in the even case.

Corollary 4.6. Let m > 0, u, v ∈ W(B2m), u = (σ, S) and v = (τ, T ). Then u ⊳ v if and

only if either one of the following conditions is satisfied:

1. σ = τ and S ⊳ T ;

2. σ ⊳ τ , T ∩ {a, |b|} = ∅ and S = T ∪ {a, |b|}, where (a, b)B := τ−1σ.

Proof. Let u ⊳ v in W(B2m). Then σ 6 τ by Corollary 4.1. Moreover, if σ < ω < τ for

some ω ∈ Bm then, by Proposition 4.3, u 6 (ω, S) 6 v. So u ⊳ v implies σ = τ or σ ⊳ τ .

If σ = τ then, by Corollary 4.2, S ⊆ T ; since u ⊳ v, we have that S ⊳ T . Assume

now σ ⊳ τ and let (a, b)B := τ−1σ. If a ∈ T or |b| ∈ T then, by point 2 of the proof of

Theorem 3.9, ũ 6 ṽ(a, a + 1)(−a − 1,−a) < ṽ and ũ 6 ṽ(|b|, |b| + 1)(−|b| − 1,−|b|) < ṽ,

respectively. Hence u ⊳ v and σ ⊳ τ imply T ∩ {a, |b|} = ∅ and u = wB
a,b(v), by Lemma

4.5. This implies S = T ∪ {a, |b|}.

The converse can be proved by noting that if condition 1 or 2 are satisfied then, by

Proposition 3.12, [ũ, ṽ] = {ũ, w1, w2, ṽ}, with w1, w2 ∈ W(S±2m) \ W(B2m), or [ũ, ṽ] =

{ũ, ṽ}, where the intervals are taken in W(S±2m).

For example [−2,−1, 3, 4, 6, 5,−7,−8] ⊳ [−2,−1, 4, 3, 6, 5,−7,−8] ⊳ [−2,−1, 5, 6, 3, 4,−7,−8].

By Corollary 4.6 we have that if u ⊳ v holds in W(B2m) then either u = v(2i− 1, 2i)B for

some i ∈ [m], or u = wB
i,j(v) for some (i, j)B ∈ TBm .

We can now prove the even part of the main result of this section.

Theorem 4.7. The poset W(B2m) is graded, with rank function ℓW , and its rank is 3m2.

Proof. Since e, wB2m

0 ∈ W(B2m), these are the minimum and maximum of the poset

W(B2m), respectively. Let u = (σ, S) ∈ W(B2m) and v = (τ, T ) ∈ W(B2m) be such

that u ⊳ v. Therefore, by Corollary 4.6, either u = v(2i − 1, 2i)B for some i ∈ [m] or

u = wB
i,j(v), where σ = τ(i, j)B ⊳ τ . In both cases ℓW(u, v) = 1, and this proves the

first statement. The rank of the poset W(B2m) is, by (6), ℓW(w0(B2m)) = 3m2, being

ℓW

(

˜w0(B2m)
)

= m(6m− 1).

We now investigate the Bruhat order on W(Bn) for n odd. Let v ∈ W(B2m+1). Note

that there is a bijection between W(B2m+1) and W(B2m) × [±(m + 1)] given by v 7→
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(v, (pos(v) + sgn(pos(v)))/2) where

v(i) =

{

v(i), if i < v−1(2m+ 1),

v(i+ 1), if i > v−1(2m+ 1),

for i ∈ [2m]. Combining this with the bijection between W(B2m) and Bm × P([m]) ex-

plained at the beginning of this section we obtain a bijection φ between W(B2m+1) and

[±(m + 1)] × Bm × P([m]). If v ∈ W(B2m+1) and (i, σ, S) ∈ [±(m + 1)] × Bm × P([m])

correspond under this bijection then we write v = (i, σ, S), and we define

ℓW (v) := ℓB(v)− ℓB(σ), (7)

and v̌ := (σ, S) (so v̌ ∈ W(B2m)). So, for example, if v = [−1,−2, 5, 6,−7, 3, 4, ] then

v = (−5, [−1, 3, 2], {−1}) so ℓW (v) = (9+3+7)−2 = 17, and v̌ = [−1,−2, 5, 6, 3, 4]. Note

that, if u, v ∈ W (B2m+1) are such that u−1(2m+ 1) = v−1(2m+ 1) then

ℓW (u, v) = ℓW (ŭ, v̆). (8)

The next result is the analogue of Proposition 3.4.

Proposition 4.8. Let m > 0. Then

1. φ : W(B2m+1) → [±(m+ 1)]∗ ⊗Bm ⊗ P([m]) is order preserving;

2. φ−1 : [±(m+ 1)]∗ ×Bm × P([m]) → W(B2m+1) is order preserving.

Moreover ℓB(v) = 4ℓB(τ) + |T | − neg(τ) + 2(m − i + 1) − 3χ(i < 0) = ℓB(v̆) + 2(m − i+

1)− 3χ(i < 0), for all v = (i, τ, T ) ∈ W(B2m+1).

Proof. The first two points follow easily from Proposition 4.3 and the fact that if u 6 v

then pos(u) > pos(v). The length equality is easy to check using our definitions and the

well known fact (see, e.g., [2, Prop. 8.1.1]) that ℓB(v) = inv(v) + neg(v) + nsp(v) for all v

in the hyperoctahedral group.

For v ∈ W(B2m+1) we define an element c(v) ∈ W(B2m+1) by

c(v) :=















v(−1, 1)B , if j = −1;

v(j + 1, j + 2)B , if j 6= −1 and v(j + 1) > v(j + 2);

v(j, j + 2)B , if j 6= −1 and v(j + 1) < v(j + 2);

(9)

where j := v−1(2m+1). For example, c([−9, 4, 3,−6,−5, 2, 1,−8,−7]) = [9, 4, 3,−6,−5, 2, 1,−8,−7],

c([4, 3,−6,−5, 9, 2, 1,−8,−7]) = [4, 3,−6,−5, 9, 1, 2,−8,−7] and c([3, 4,−9, 1, 2, 6, 5,−7,−8]) =
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[−9, 4, 3, 1, 2, 6, 5,−7,−8]. Note that ℓW(c(v), v) = 1. The next result implies that c(v) is

the only coatom u of v such that v−1(2m + 1) 6= u−1(2m + 1), and is the main technical

tool in our proof of the fact that W(Bn), under Bruhat order, is graded.

Theorem 4.9. Let m ∈ P, and u, v ∈ D(B2m+1), u < v, be such that v−1(2m + 1) <

u−1(2m+ 1). Then u 6 c(v).

Proof. Let j := v−1(2m+1). We distinguish various cases according as to whether j < −1,

j = −1, or j > 0. Let, for brevity, z := c(v). Given a signed permutation w ∈ Bn

and j ∈ [±n] we find it convenient to denote by wj the increasing rearrangement of

{w(−n), w(−n + 1), . . . , w(j)}.

Assume first that j > 0 and j+1 ∈ DR(v). Let a := v(j+2) so v(j+1) = a+1. Then

vk = zk for all k ∈ [±(2m+ 1)] \ {j + 1,−j − 2}. Since u, v, z are all Wachs permutations

there are x1, . . . , xm̃, y1, . . . , ym̃+1 ∈ [±(2m)], where m̃ := 2m−1+j
2 , such that

vj+1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

zj+1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m + 1)

and

uj+1 = (−2m− 1, y1, y1 + 1, . . . , ym̃+1, ym̃+1 + 1),

for some 0 6 p 6 m̃. Since uj+1 6 vj+1 we have that yp+1 6 a+ 1. But yp+1 and a are of

the same parity if they have the same sign so yp+1 6 a and hence uj+1 6 zj+1.

Similarly, there are x1, . . . , xm̃, y1, . . . , ym̃ ∈ [±(2m)], where m̃ := 2m−j−1
2 such that

v−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

z−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

and

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1),

for some 0 6 p 6 m̃. Since u−j−2 6 v−j−2 we have that yp 6 xp + 1. But xp + 1 < −a− 1

so yp + 1 6 −a− 1 and hence u−j−2 6 z−j−2.

Suppose now that (j > 0 and) j + 1 /∈ DR(v). Consider first vj , zj , uj , vj+1, zj+1, uj+1.

Since v, u, and z are all Wachs permutations, and by our definition of z, there are {x1, . . . , xm̃}<,

{y1, . . . , ym̃}< ⊆ [±(2m)], where m̃ := 2m−1+j
2 such that

vj = (−2m− 1, x1, x1 + 1, . . . , xm̃, xm̃ + 1, 2m + 1)
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zj = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

uj = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, b∗, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

vj+1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a, xp+1, xp+1 + 1, . . . , xm̃, xm̃+1, 2m+ 1)

zj+1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1, a, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

uj+1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, b, b + 1, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

where a := v(j + 1) (= z(j + 1)), b∗ := u(j), and p, q ∈ [m̃]. By our hypothesis u 6 v

so uj 6 vj and uj+1 6 vj+1 (componentwise). This easily implies that uj 6 zj and

uj+1 6 zj+1 (componentwise) keeping in mind the fact that xr and ys have the same

parity if they have the same sign for all r, s ∈ [m̃] (so ys 6 xr + 1 implies ys 6 xr for all

r, s ∈ [m̃]). For example, if q < p, then yp 6 a (since uj+1 6 vj+1), while yk 6 xk + 1

(since uj 6 vj) so yk 6 xk if p + 1 6 k 6 m̃. Similarly, if q > p, then yp+1 6 a (since

uj+1 6 vj+1) while b 6 xq+1 so b 6 xq, while yk 6 xk + 1 (since uj 6 vj) so yk 6 xk if

q + 1 6 k 6 m̃, and yk 6 xk−1 + 1 (since uj+1 6 vj+1) so yk 6 xk−1 if p+ 2 6 k 6 q. The

case p = q is even simpler, and is therefore omitted.

Consider now u−j−2, z−j−2, v−j−2 and u−j−1, z−j−1, v−j−1.Then reasoning as above we

have that there are {x1, . . . , xm̃}<, {y1, . . . , ym̃}< ⊆ [±(2m)] , where m̃ := m− j+1
2 , such

that

v−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

z−j−2 = (−2m− 1, x1, x1 + 1, . . . , xm̃, xm̃ + 1)

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1)

v−j−1 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

z−j−1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

u−j−1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1,−b, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

where p, q ∈ [m̃]. As above, the fact that u−j−2 6 v−j−2 and u−j−1 6 v−j−1 easily implies

that u−j−2 6 z−j−2 and u−j−1 6 z−j−1. For example, if q < p, then yk 6 xk + 1 (since

u−j−2 6 v−j−2) so yk 6 xk for 1 6 k 6 p and hence −b < yq+1 6 xq+1. Similarly, if q > p.

Consider now the case j < −1 (so j 6 −3). Assume first that j+1 /∈ DR(v). Consider

uj , zj , vj , uj+1, zj+1, vj+1. If u−1(−2m − 1) > j then we conclude exactly as in the case

j > 0. So assume that u−1(−2m − 1) < j. Then reasoning as above we conclude that
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there are {x1, . . . , xm̃}<, {y1, . . . , ym̃}< ⊆ [±(2m)], where m̃ := m+ j+1
2 , such that

vj = (x1, x1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

zj = (x1, x1 + 1, . . . , xp, xp + 1, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

uj = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1)

vj+1 = (x1, x1 + 1, . . . , xp, xp + 1, a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

zj+1 = (x1, x1 + 1, . . . , xp, xp + 1, a, a + 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1)

uj+1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

vj+2 = (x1, x1 + 1, . . . , xp, xp + 1, a, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m + 1)

uj+2 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c, c + 1, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

where a := v(j + 1) (= z(j + 1)), c := u(j + 1), and p, q ∈ [m̃]. By our hypothesis u 6 v

so uj 6 vj , uj+1 6 vj+1, and uj+2 6 vj+2 (componentwise). As above, this implies that

uj 6 zj and uj+1 6 zj+1. For example, if p < q, then yp+1 6 a + 1 (so yp+1 + 1 6 xp+1),

yp+1 6 a, c 6 xq+1, and yi 6 xi−1+1 (so yi 6 xi−1) for p+2 6 i 6 q (since uj+2 6 vj+2),

while yi 6 xi + 1 (so yi 6 xi) for p+ 1 6 i 6 m̃ ( since uj 6 vj). Similarly, if q < p, then

yp 6 a and yi 6 xi +1 (so yi 6 xi) for p+1 6 i 6 m̃ (since uj+1 6 vj+1). Finally, if q = p,

then c 6 a+1, yp+1 6 a and yi 6 xi+1 (so yi 6 xi) for p+1 6 i 6 m̃ (since uj+2 6 vj+2).

Consider now u−j−1, v−j−1, z−j−1, u−j−2, v−j−2, z−j−2. If u−1(−2m − 1) > j then we

conclude exactly as in the case j > 0. So assume that u−1(−2m− 1) < j. Then as above,

since u, v, and z are all Wachs permutations we conclude that there are {x1, . . . , xm̃}< ⊆

[±(2m)] and {y1, . . . , ym̃}< ⊆ [±(2m)] such that

v−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

z−j−2 = (−2m− 1, x1, x1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1)

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c∗, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

v−j−1 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m + 1)

z−j−1 = (−2m− 1, x1, x1 + 1, . . . , xp, xp + 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m + 1)

u−j−1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c, c + 1, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1)

v−j−3 = (x1, x1 + 1, . . . , xm̃, xm̃ + 1, 2m + 1)
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u−j−3 = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1)

where m̃ := m − j+3
2 , −a := v(−j − 1) (= z(−j − 1)), and c∗ := u(−j − 2), for some

p, q ∈ [m̃]. It is then not hard to conclude that u−j−2 6 z−j−2 and u−j−1 6 z−j−1. For

example, if p 6 q, then yi 6 xi + 1 (since u−j−2 6 v−j−2) so yi 6 xi for 1 6 i 6 p. If

p > q then yi 6 xi + 1 ( since u−j−3 6 v−j−3) so yi 6 xi for 1 6 i 6 m̃ and hence

c+ 1 < yq+1 6 xq+1.

Assume now that (j < −1 and) j + 1 ∈ DR(v). Then vk = zk if k ∈ [±(2m + 1)] \

{−j−2, j+1}. Assume first that u−1(2m+1) > −j. Let a := v(j+2) so v(j+1) = a+1.

Then there are x1, . . . , xm̃, y1, . . . , ym̃ ∈ [±(2m)], where m̃ := 2m−3−j
2 such that

v−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m + 1) (10)

z−j−2 = (x1, x1 + 1, . . . , xp, xp + 1,−a− 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1) (11)

and

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c∗, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1),

for some 0 6 p, q 6 m̃ where c∗ := u(−j − 2). It is then easy to see that u−j−2 6 z−j−2.

Indeed, if q < p then, since u−j−2 6 v−j−2, yp 6 −a so, as above, yp 6 −a − 1 and

hence u−j−2 6 z−j−2. If q > p then yp 6 xp + 1 (since u−j−2 6 v−j−2) so yp 6 xp. But

xp + 1 < −a hence yp + 1 6 −a− 1 so u−j−2 6 z−j−2.

Similarly, there are {x1, . . . , xm̃}<, {y1, . . . , ym̃}< ∈ [±(2m)], where m̃ := 2m+j+1
2 , such

that

vj+1 = (x1, x1 + 1, . . . , xp, xp + 1, a+ 1, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1) (12)

zj+1 = (x1, x1 + 1, . . . , xp, xp + 1, a, xp+1, xp+1 + 1, . . . , xm̃, xm̃ + 1, 2m+ 1) (13)

and

uj+1 = (−2m− 1, y1, y1 + 1, . . . , yq, yq + 1, c∗, yq+1, yq+1 + 1, . . . , ym̃, ym̃ + 1),

for some 0 6 p, q 6 m̃, where c∗ := u(j + 1), and we conclude exactly as in the last case.

Assume now that u−1(2m+1) < −j. Then there are x1, . . . , xm̃, y1, . . . , ym̃+1 ∈ [±2m],

where m̃ := 2m+1+j
2 such that (12) and (13) hold and

uj+1 = (y1, y1 + 1, . . . , ym̃+1, ym̃+1 + 1)
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and the result follows easily. Similarly, there are x1, . . . , xm̃, y1, . . . , ym̃ ∈ [±2m], where

m̃ := 2m−3−j
2 , such that (10) and (11) hold and

u−j−2 = (−2m− 1, y1, y1 + 1, . . . , ym̃, ym̃ + 1, 2m+ 1)

for some 0 6 p 6 m̃. Hence, since u−j−2 6 v−j−2, yp 6 xp+1 < −a−1 so yp+1 6 −a−1.

Finally, if j = −1 then z = v(−1, 1) so there are x1, . . . , xm, y1, . . . , ym ∈ [±2m] such

that v−1 = (x1, x1+1, . . . , xm, xm+1, 2m+1), z−1 = (−2m−1, x1, x1+1, . . . , xm, xm+1)

and u−1 = (−2m − 1, y1, y1 + 1, . . . , ym, ym + 1), so the conclusion follows easily. This

concludes the proof.

Recall that if v = (σ, S, i) ∈ W(B2m+1) then we let v̆ = (σ, S) ∈ W(B2m). We can now

prove the main result of this section.

Theorem 4.10. W(Bn) is graded, with rank function ℓW , and its rank is n2 −
⌊

n
2

⌋2
.

Proof. If n is even then this follows from Theorem 4.7. So assume that n = 2m + 1 for

some m > 0. Since W(B2m+1) has both a maximum and a minimum element it is enough

to show that if u, v ∈ W(B2m+1) and u ⊳ v then ℓW(u, v) = 1. So let u, v ∈ W(B2m+1)

be such that u ⊳ v. Let j := u−1(2m + 1), and i := v−1(2m + 1). Since u < v we have

that i 6 j. If i < j then by Theorem 4.9 we have that u 6 c(v) < v so u = c(v) and

hence ℓW(u, v) = 1. If i = j then ŭ ⊳ v̆ so, by Theorem 4.7, ℓW(ŭ, v̆) = 1 and hence,

by (8), ℓW(u, v) = 1. Finally, it is not difficult to see, by our definition of ℓW , that

ℓW(w0(B2m+1)) = 3m2 + 4m+ 1.

We remark that the sequence {ℓW(w0(B2m))}m∈P gives the number of edges of the

complete tripartite graph Km,m,m (see A033428 in OEIS), and {ℓW(w0(B2m+1))}m∈P is

the sequence of octagonal numbers (see A000567 in OEIS). We can now compute the

rank-generating function of (W(Bn),6).

Corollary 4.11. Let m > 0. Then

W(B2m)(x, ℓW) = (1 + x)m[m]x3 !

m
∏

i=1

(1 + x3i−1)

and

W(B2m+1)(x, ℓW ) = [m+ 1]x2(1 + x2m+1)(1 + x)m[m]x3 !

m
∏

i=1

(1 + x3i−1).

Proof. Note first that by our definition and Proposition 4.3 if u ∈ W(B2m), u = (σ, S),
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then ℓW(u) = 3ℓB(σ) + |S| − neg(σ). Therefore

∑

u∈W(B2m)

xℓW(u) =
∑

σ∈Bm

∑

S⊆[m]

x3ℓB(σ)+|S|−neg(σ) = (1 + x)m
∑

σ∈Bm

x3ℓB(σ)−neg(σ).

Let J := [m]. Then by [2, Prop. 2.4.4] every element of σ ∈ Bm may be expressed

in a unique way as σ = zw where w ∈ (Bm)J and z ∈ (Bm)J . But the elements of

(Bm)J are permutations of Sm and the z ∈ (Bm)J are characterized by the fact that

z(1) < z(2) < · · · < z(m). Hence these elements z are in bijection with subsets S ⊆ [m],

where the subset S is the set of negative values taken by σ. Furthermore, we then have that

ℓB(σ) = inv(σ)+neg(σ)+nsp(σ) = inv(w)+neg(z)+nsp(z) = inv(w)+|S|+
∑

s∈S(s−1) =

inv(w) +
∑

s∈S s. We therefore have that

∑

σ∈Bm

x3ℓB(σ)−neg(σ) =
∑

w∈Sm

∑

S⊆[m]

x3 inv(w)−|S|+3
∑

s∈S
s =

∑

w∈Sm

x3 inv(w)
∑

S⊆[m]

x
∑

s∈S
(3s−1)

and the first equation follows. For the second formula we have, using Proposition 4.8 and

(7),

∑

u∈W(B2m+1)

xℓW(u) =

(

−1
∑

i=−m−1

x2m−2i−1 +

m+1
∑

i=1

x2(m−i+1)

)

W(B2m)(x, ℓW )

= [m+ 1]x2(1 + x2m+1)W(B2m)(x, ℓW ).

Theorem 4.10 enables us to explicitly determine the cover relations in W(Bn) for n

odd.

Corollary 4.12. Let u, v ∈ W(B2m+1), u = (i, σ, S), v = (j, τ, T ) (σ, τ ∈ Bm, S, T ⊆ [m],

i, j ∈ [±(m + 1)]). Then u ⊳ v if and only if either one of the following conditions is

satisfied:

1. i = j, σ = τ , and S ⊳ T ;

2. j = i− 1, σ = τ and either |j + χ(j < 0)| ∈ S, T = S \ {|j + χ(j < 0)|} if j 6= −1,

or S = T if j = −1;

3. i = j, σ ⊳ τ , T ∩ {|a|, |b|} = ∅ and S = T ∪ {|a|, |b|}, where (a, b)B = τσ−1.

Proof. Note that, since W(B2m+1) is graded, and its rank function is ℓW , u⊳ v if and only

if u 6 v and ℓW(u, v) = 1. If either 1. or 2. hold then it is easy to check that u 6 v and

ℓW (u, v) = 1.
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Assume now that 3. holds. Suppose first that τ = σ(a, b)(−a,−b). Since σ ⊳ τ

we have from Theorem 2.7 that ab > 0. We may assume that 0 < a < b. Again by

Theorem 2.7 we have that {k ∈ [a + 1, b − 1] : σ(a) < σ(k) < σ(b)} = ∅. This, by

3., implies that inv(v) − inv(u) = 4 − 2, neg(v) = neg(u), and nsp(v) = nsp(u). Hence

ℓW(u, v) = ℓB(u, v) − ℓB(σ, τ) = 2 − 1 = 1. Suppose now that τ = σ(c,−c). We may

clearly assume that c > 0. Then by Theorem 2.7 {k ∈ [c− 1] : −σ(c) < σ(k) < σ(c)} = ∅.

This, again by 3., implies that inv(v) − inv(u) = −2(σ(c) − 1) − 1, neg(v) = neg(u) + 2,

and nsp(v) = nsp(u) + 2(σ(c) − 1) + 1. Hence ℓW(u, v) = ℓB(u, v) − ℓB(σ, τ) = 2− 1 = 1.

Conversely, assume that u⊳ v. If j > i then by Theorem 4.9 u 6 c(v) < v so u = c(v).

If j = −1 then 2. follows easily from (9). If j 6= −1 then v(pos(v) + 1) < v(pos(v) + 2)

(else, by (9), v−1(2m+1) = c(v)−1(2m+1) so i = j, a contradiction) and 2. again follows

from (9). If i = j and σ = τ then it follows easily from Proposition 2.6 and Theorem 2.4

that S ⊆ T and 1. follows since u ⊳ v. So assume (i = j and) σ < τ . Then, since i = j,

(σ, S) ⊳ (τ, T ) in W(B2m) so 3. follows from Corollary 4.6.

So, for example, in W(B9) we have that [9, 2, 1,−3,−4, 8, 7,−6,−5]⊳[−9, 2, 1,−3,−4, 8, 7,−6,−5]

⊳[1, 2,−9,−3,−4, 8, 7,−6,−5]⊳[1, 2,−9,−3,−4, 8, 7,−5,−6]⊳[1, 2,−9,−6,−5, 8, 7,−4,−3],

where the first two covering relations are of type 2. (with j = −1, and j = −2, respectively),

the third one is of type 1., and the fourth one of type 3., with (a, b)B = (2, 4)(−2,−4).

The next theorem characterizes the Bruhat order on signed Wachs permutations, in

the odd case. Note that it generalizes and puts in perspective the results of Proposition

4.8.

Theorem 4.13. Let m > 0 and u, v ∈ W(B2m+1), u = (i, σ, S), v = (j, τ, T ). Then u 6 v

if and only if

σ 6 τ , S(u, v) ⊆ T (u, v), and j 6 i ,

where, for X ⊆ [m], X(u, v) := X ∩ ([min{|i|, |j|} − 1] ∪ [max{|i|, |j|},m]) ∩F (σ, τ), being

F (σ, τ) := {i ∈ [m] : σ(i) = τ(i)}. Moreover ℓW(u) = 3ℓB(σ) + |S| − neg(σ) + 2(m − i +

1)− 3χ(i < 0).

Proof. Let u 6 v. We may assume u ⊳ v. It is clear from Corollary 4.12 that σ 6 τ and j 6

i. Furthermore in case 1 of Corollary 4.12 and in case 2 with j = −1 we have that S ⊆ T and

then S(u, v) ⊆ T (u, v). In case 2 with j 6= −1 we have that i and j have the same sign and

F (σ, τ) = [m]; hence T = S \ {j} if i > 0, so T (u, v) = (S \ {j}) ∩ ([j − 1] ∪ [j + 1,m]) =

S(u, v). If i < 0 then T = S \ {|i|} and T (u, v) = (S \ {|i|}) ∩ ([|i| − 1] ∪ [|i| + 1,m]) =
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S(u, v). Finally in case 3 we have that F (σ, τ) = [m] \ {|a|, |b|}; since S = T ∪ {|a|, |b|} we

obtain T (u, v) = S(u, v).

Now let σ 6 τ , j 6 i and S(u, v) ⊆ T (u, v). Assume j 6 i < 0. We then have the

following chain in (W(B2m+1),6):

(i, σ, S) 6 (i, σ, S ∪ [|i|, |j| − 1])

⊳ (i− 1, σ, (S ∪ [|i|+ 1, |j| − 1]) \ {|i|})

⊳ (i− 2, σ, (S ∪ [|i|+ 2, |j| − 1]) \ {|i|, |i| + 1})

⊳ ... ⊳ (j, σ, S \ [|i|, |j| − 1]) 6 (j, τ, T ),

where the last inequality follows from Proposition 4.2 and the facts that (S \ [|i|, |j| − 1])∩

F (σ, τ) = S(u, v) ⊆ T (u, v) ⊆ T and (j, σ, S \ [|i|, |j| − 1]) 6 (j, τ, T ) if and only if

(σ, S \ [|i|, |j| − 1]) 6 (τ, T ). If j < 0 < i and |j| < i we have the following chain in

(W(B2m+1),6):

(i, σ, S) 6 (i, σ, S ∪ [|j|, i − 1])

⊳ (i− 1, σ, (S ∪ [|j|, i − 2]) \ {i− 1})

⊳ (i− 2, σ, (S ∪ [|j|, i − 3]) \ {i− 2, i− 1})

⊳ ... ⊳ (−j, σ, S \ [|j|, i − 1]) 6 (j, σ, S \ [|j|, i − 1]) 6 (j, τ, T ),

where the last inequality follows as in the previous case. If j < 0 < i and |j| > i have that

(i, σ, S) 6 (−i, σ, S) 6 (j, τ, T ), where the second inequality follows by the first case above.

The case i > j > 0 is similar and easier, so we omit it. The length formula follows from

Proposition 4.8.

We illustrate the previous theorem with an example. Let m = 4, u = [3, 4,−5,−6, 1, 2, 9,−7,−8]

and v = [−3,−4,−9, 1, 2,−5,−6,−8,−7]. Then u = (4, [2,−3, 1,−4], {2, 4}), and v =

(−2, [−2, 1,−3,−4], {1, 3}), so σ = [2,−3, 1,−4] 6 [−2, 1,−3,−4] = τ , F (σ, τ) = {4},

j = −2 6 4 = i, and S(u, v) = {2, 4}∩{1, 4}∩{4} = {4}, T (u, v) = {1, 3}∩{1, 4}∩{4} = ∅,

so u 66 v in W(B9).

The following lemma is the analogue of Lemma 3.14 and can be easily deduced from

Theorem 4.13 so we omit its verification.

Lemma 4.14. Let m > 0 and u, v ∈ W(B2m+1). If u 6 (i, σ, S1) 6 v and u 6 (i, σ, S2) 6

v in (W(B2m+1),6) then u 6 (i, σ, S1 ∪ S2) 6 v.

The next result gives an explicit expression for the Möbius function of lower intervals

in the poset of signed Wachs permutations partially ordered by Bruhat order, and shows,
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in particular, that it has values in {0, 1,−1}. The proof is similar to the one of Proposition

3.15 and we omit it.

Proposition 4.15. Let m > 0, and v = (j, τ, T ) ∈ W(B2m+1). Then

µ(e, v) =

{

(−1)|T |, if τ = e and j = m+ 1;

0, otherwise.

In particular, if v = (τ, T ) ∈ W(B2m) then

µ(e, v) =

{

(−1)|T |, if τ = e;

0, otherwise.

By Proposition 4.15 and Theorem 4.10 we deduce the following result.

Corollary 4.16. The characteristic polynomial of W(Bn) with the Bruhat order is

(x− 1)⌊
n

2 ⌋xn
2−⌊n

2 ⌋
2
−⌊n

2 ⌋,

for all n ∈ P.

5 Weak orders on Wachs permutations and signed Wachs

permutations

In the previous sections we have proved several results concerning the Bruhat order

on Wachs permutations and signed Wachs permutations. The Bruhat order of a Coxeter

group is a refinement of two fundamental orders, the left weak order 6L and the right one

6R (see, e.g. [2, Chapter 3]), whose Hasse diagrams are isomorphic to the Cayley graph

of the group, relative to the considered Coxeter presentation. Then it is natural to ask

when our results hold, and in what terms, for the left and right weak orders on Wachs

permutations and signed Wachs permutations.

Differently from the Bruhat order, for the right weak order the answer is easily described

as a Cartesian product (compare with Propositions 4.3 and 4.8). For reasons that will

become clear in the next two pages we begin with signed Wachs permutations. Recall that

the set of reflections of Bn is {(a, b)(−a,−b) : 1 6 a < |b| 6 n} ∪ {(a,−a) : 1 6 a 6 n}.

Therefore, if v ∈ Bn, (a, b)(−a,−b) ∈ TL(v) if and only if b > 0 and b is to the left of a in

the complete notation of v, or b < 0 and b is to the right of a, while (a,−a) ∈ TL(v) if and

only if a is to the left of −a.
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[−1,−2,−3]

[−2,−1,−3]

[2, 1,−3] [−3,−1,−2]

[1, 2,−3] [−3,−2,−1] [3,−1,−2]

[−3, 2, 1] [3,−2,−1]

[−3, 1, 2] [3, 2, 1] [−1,−2, 3]

[3, 1, 2] [−2,−1, 3]

[2, 1, 3]

[1, 2, 3]

Figure 3: Hasse diagram of (W(B3),6).

33 32 31 30

34 16 15 14 29

35 17 5 4 13 28

36 18 6 3 12 27

19 7 1 2 11 26

20 8 9 10 25

21 22 23 24

Figure 4: Reading clockwise, the bold numbers on the diagonals of the hexagon are the
sequences {3, 12, 27, . . .} = {rk(W(B2m))}m>0, {2 rk(W(S2m))}m>0, {rk(W(B2m+1))}m>0

and {2 rk(W(S2m+1))}m>0.
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Theorem 5.1. Let n > 0; then (W(Bn),6R) ≃
(

B⌈n

2 ⌉
,6R

)

× P
([⌊

n
2

⌋])

. In particular,

(W(Bn),6R) is a complemented lattice.

Proof. Let n be even; for v = (τ, T ) ∈ W(Bn) we have that

TL(τ, T ) =
⊎

(a,−a)B∈TL(τ)

{(2a− 1,−2a+ 1)B , (2a,−2a)B , (2a − 1,−2a)B}

⊎

(a,b)B∈TL(τ):b>0

{(2a− 1, 2b − 1)B , (2a − 1, 2b)B , (2a, 2b − 1)B , (2a, 2b)B}

⊎

(a,b)B∈TL(τ):b<−a

{(2a − 1, 2b + 1)B , (2a − 1, 2b)B , (2a, 2b + 1)B , (2a, 2b)B}

⊎ {(v(2a), v(2a − 1))B : a ∈ T, τ(a) > 0}

⊎ {(−v(2a− 1),−v(2a))B : a ∈ T, τ(a) < 0} .

Note that in the first group of reflections the non-symmetric ones (i.e., not of the form

(k,−k) for some k ∈ [n]) are never simple and have odd first element, and even and negative

second one. The only simple reflections in the second line have even first element and odd

positive second one. The ones in the third line are never simple, have negative second

element, and if the first one is odd and the second one even then the difference between

the absolute values of the two is > 3 (and hence are disjoint from the non-symmetric ones

in the first line). The reflections in the last two lines are always simple, and have odd first

element and even and positive second one, since (v(2a), v(2a − 1))B = (2τ(a)− 1, 2τ(a))B

if τ(a) > 0 while (−v(2a− 1),−v(2a))B = (−2τ(a)− 1,−2τ(a))B if τ(a) < 0.

Therefore, if u = (σ, S) ∈ W(Bn) and v = (τ, T ) ∈ W(Bn), we have that TL(u) ⊆

TL(v) if and only if TL(σ) ⊆ TL(τ) and σS ⊆ τT , where, for X ⊆ [n/2] and w ∈ Bn/2,

wX := {w(i) : i ∈ X}. Indeed, if TL(u) ⊆ TL(v) and (a, b)B ∈ TL(σ) is such that (say)

b < −a then, by the equation written at the beginning of this proof, (2a, 2b)B ∈ TL(u) so

(2a, 2b)B ∈ TL(v) which implies, by the remarks above, that there is (c, d)B ∈ TL(τ) such

that c < −d and (2a, 2b)B = (2c, 2d)B , so (a, b)B = (c, d)B ∈ TL(τ). Similarly all the other

cases. The converse is clear. Hence, by Proposition 2.3, the map (τ, T ) 7→ (τ, τT ) gives the

desired poset isomorphism.
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Let n be odd and v = (j, τ, T ) ∈ W(Bn). Then similarly

TL(j, τ, T ) =
⊎

(a,−a)B∈TL(τ̄ ):a6=⌈n/2⌉

{(2a− 1,−2a+ 1)B , (2a,−2a)B , (2a − 1,−2a)B}

⊎

(a,b)B∈TL(τ̄ ):0<b<⌈n/2⌉

{(2a − 1, 2b − 1)B , (2a − 1, 2b)B , (2a, 2b − 1)B , (2a, 2b)B}

⊎

(a,b)B∈TL(τ̄ ):−⌈n/2⌉<b<−a

{(2a− 1, 2b + 1)B , (2a − 1, 2b)B , (2a, 2b + 1)B , (2a, 2b)B}

⊎

(a,b)B∈TL(τ̄ ):b=⌈n/2⌉

{(2a− 1, n)B , (2a, n)B}

⊎

(a,b)B∈TL(τ̄ ):b=−⌈n/2⌉,a6=−b

{(2a− 1,−n)B , (2a,−n)B}

⊎{(n,−n)B : (⌈n/2⌉,−⌈n/2⌉)B ∈ TL(τ̄)}

⊎ {(2τ(a) − 1, 2τ(a))B : a ∈ T, τ(a) > 0}

⊎ {(2τ(a) − 1, 2τ(a))B : −a ∈ T, τ(a) > 0}

where

τ̄(k) :=















τ(k), if k < |j|;

sgn(j) · (n+ 1)/2, if k = |j|;

τ(k − 1), if k > |j|,

for all k ∈ ⌈n/2⌉. The considerations made in the even case apply line by line also to

this case, with the added remark that the reflections in lines 4, 5, and 6 are the only

ones with n or −n in the second position. Therefore, if u = (i, σ, S) ∈ W(Bn) and

v = (j, τ, T ) ∈ W(Bn), we have that TL(u) ⊆ TL(v) if and only if TL(σ̄) ⊆ TL(τ̄) and

σS ⊆ τS, and we conclude as in the previous case. The last statement follows from the fact

that (B⌈n

2 ⌉
,6R) is a complemented lattice (see, e.g., [2, Cor. 3.2.2]).

Regarding left weak order we have the following observations.

Proposition 5.2. Let m > 0. The posets (W(B2m),6R) and (W(B2m),6L) are isomor-

phic.

Proof. The assignment v 7→ v−1 defines a bijective function W(B2m) → W(B2m) and

u 6R v if and ony if u−1 6L v−1, for all u, v ∈ B2m.

On the other hand, the poset (W(B3),6L) is not graded.

For Wachs permutations the situation is analogous but simpler so we leave to the

interested reader the proof of the following result.
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Theorem 5.3. Let n > 0; then (W(Sn),6R) ≃
(

S⌈n

2 ⌉
,6R

)

× P
([⌊

n
2

⌋])

. In particular,

(W(Sn),6R) is a complemented lattice.

As in the case of signed Wachs permutations, the posets (W(S2m),6R) and (W(S2m),6L

) are isomorphic, for all m > 0. On the other hand, the poset (W(S5),6L) is not graded.

6 Open problems

In this section we collect some open problems and conjectures which arise in this work,

and the evidence that we have in their favor.

We have proved in Propositions 3.15 and 4.15 that the Möbius function of lower intervals

in the posets of Wachs permutations and signed Wachs permutations partially ordered by

Bruhat order always has values in {0, 1,−1}. We feel that this is true in general.

Conjecture 6.1. Let n ∈ P. Then

µ(u, v) ∈ {0, 1,−1}

for all u, v ∈ W(Sn).

We have verified Conjecture 6.1 for n 6 8.

Conjecture 6.2. Let n ∈ P. Then

µ(u, v) ∈ {0, 1,−1}

for all u, v ∈ W(Bn).

We have verified Conjecture 6.2 for n 6 6. Note that since W(Sn) is isomorphic, as a

poset, to the interval [e, [n, . . . , 3, 2, 1]] in W(Bn), Conjecture 6.2 implies Conjecture 6.1.

Recently Davis and Sagan [6] studied the convex hull of various sets of pattern avoiding

permutations. Following this idea, it is natural to look at the convex hulls c(W(Sn)) and

c(W(Bn)) of Wachs and signed Wachs permutations in Rn. In this respect, we feel that

the following is true.

Conjecture 6.3. Let m ∈ P. Then c(W(S2m)) is a simple polytope.

We have verified Conjecture 6.3 for m 6 5. According to SageMath [21] c(W(S9)) is

not simple.

Conjecture 6.4. Let m ∈ P. Then c(W(B2m)) is a simple polytope.
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We have verified Conjecture 6.4 for m 6 3. According to SageMath [21] c(W(B3)) is

not simple.

Regarding left weak order, we feel that the following might be true.

Problem 1. Is (W(S2m+1),6L) a lattice for all m ∈ P?

We have verified that the answer to Problem 1 is yes if m 6 4.
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