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A B S T R A C T

The heterogeneity of the small body population complicates the prediction of small body properties before the
spacecraft’s arrival. In the context of autonomous small body exploration, it is crucial to develop algorithms
that estimate the small body characteristics before orbit insertion and close proximity operations. This paper
develops a vision-based estimation of the small-body rotational state (i.e., the center of rotation and rotation
axis direction) during the approach phase. In this mission phase, the spacecraft observes the rotating celestial
body and tracks features in images. As feature tracks are the projection of the landmarks’ circular movement,
the possible rotation axes are computed. Then, the rotation axis solution is chosen among the possible
candidates by exploiting feature motion and a heuristic approach. Finally, the center of rotation is estimated
from the center of brightness. The algorithm is tested on more than 800 test cases with two different asteroids
(i.e., Bennu and Itokawa), three different lighting conditions, and more than 100 different rotation axis
orientations. Each test case is composed of about 250 synthetic images of the asteroid which are used to
track features and determine the rotational state. Results show that the error between the true rotation axis
and its estimation is below 10◦ for 80% of the considered test cases, implying that the proposed algorithm is
a suitable method for autonomous small body characterization.
1. Introduction

The heterogeneity of small body characteristics is a crucial factor
to consider during mission preparation and in-orbit operations. In
particular, the limited knowledge of small bodies’ properties imposes
numerous challenges during mission design and operations. Shape,
rotational state, and geophysical characteristics can strongly change
depending on the small body under study and it is hard to predict the
exact small body properties before the encounter. When a small body
mission is planned, an observation campaign is performed to bound the
characteristics of the small body under study and to estimate the range
of uncertainty of these quantities [1]. In particular, preliminary shape,
pole orientation, and rotation period can be deduced from light-curve
inversion [2,3] and, if feasible, radar campaign [4]. The rotational
period has shown high agreement with the light-curve inversion proce-
dure and it can be estimated from on-board during far approach [5,6].
Rotation pole, shape, and gravity field estimation is a more complex
problem and ground-based observations are often inaccurate.

✩ Preliminary results of this work were presented in ‘‘Panicucci, P., Autonomous vision-based navigation and shape reconstruction of an unknown asteroid
during approach phase, Ph.D. thesis, ISAE-SUPAERO, 30 March 2021. URL http://www.theses.fr/2021ESAE0011.
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1 Currently Assistant Professor at Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano.

On the one hand, the rotation pole orientation is directly coupled,
through the rotational equations, to the inertial tensor which is deduced
from the shape. Even though small bodies, in particular asteroids,
are mainly principal axis rotators [7], fine shape estimation remains
deeply coupled with the rotation pole inertial orientation. Current
techniques to solve this problem rely on stereophotoclinometry or its
variations [8–10]. On the other hand, the gravity field can be derived
from the shape under the assumption of constant density [11–14] or
gathered by solving the orbit determination problem by processing long
trajectory arcs [15,16]. Unfortunately, these techniques strongly rely on
human intervention to control the solution convergence and validate
the output shape. Moreover, the required computational time makes it
unsuitable for onboard applications. It is worth noting that all these
techniques rely on communications with the ground implying radio
signal delays and high costs.

To overcome these limitations, vision-based systems have been
gaining attention as a cost-effective and accurate solution because they
vailable online 9 September 2023
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can provide real-time information to the spacecraft with limited impact
on system budgets. In this context, it is crucial to design autonomous
vision-based algorithms capable of supporting small-body parameter
estimation without ground communications. The rotation pole, the
shape, and the gravity field are of primary importance to allow the
GNC architecture to perform critical mission phases like orbit insertion
and close proximity characterization [17]. These quantities are strongly
correlated and their onboard estimation is difficult to be performed
independently. The gravity field depends on the small body shape
and its density distribution. Therefore it can be derived from the
shape under the assumption of constant density [11–14] or estimated
during the localization procedure [18]. The shape can be deduced by
shape from motion algorithms [6,19] or by methods solving for the
SLAM (Simultaneous Localization And Mapping) problem [20–22]. The
rotational state initial estimation is required for two main reasons.
First, it is necessary to define a relative reference frame which implies
the estimation of a point and three vectors. Second, the knowledge –
even if coarse – of the small body rotational dynamics can help the
convergence of the relative localization as proposed in Panicucci [20].
The rotational state can be determined implicitly by solving the SLAM
problem as the spacecraft poses, i.e., positions and orientations, are
estimated in the small-body-fixed reference frame. Alternatively, it can
be determined during close approach when the small body is resolved
and image processing algorithms can extract information about the
small body rotation in time. Bandyonadhyay et al. [6] proposes a
method to determine the rotation state of the small body by simul-
taneously optimizing the shape and the rotation state. The proposed
method accurately estimates the pole orientation and the small body
shape, but it requires a Monte-Carlo optimization which increases the
computational burden. Bissonnette et al. [23] studies the estimation
of the pole orientation from matched features. This work studies the
possibility of detecting ellipses in the image and reconstructing the
landmark’s circles movements in 3D. In recent year several algorithms
have been developed in the spacecraft close proximity community to
solve for the angular velocity and inertia tensor f an unknown target.
The pioneering work of Masutani et al. [24] studied the dimensionless
inertia estimation from frame-to-frame tracking by exploiting the an-
alytical solution of the Euler equations. Despite the angular velocity
was not the focus of the estimation, angular velocity data were derived
from noiseless synthetic data and used to determine the inertial tensor
of a torque-free angular motion. Augenstein and Rock [25] proposes
a Bayesian filtering approach to estimate the chaser transnational
state, the target rotation state and its inertia parameter ratio. Despite
the. Padial et al. [26] extended Augenstein and Rock [25]’s work
by merging range measurements and vision data to solve the scale
factor. Range measurements are also used in Lichter and Dubowsky
[27] where the proposed methodology determines the angular state and
the inertia matrix of a uncooperative target from range measurements
filtered in a Kalman filter. Also Hillenbrand and Lampariello [28]
uses range measurements with iteratively-reweighted-least-squares to
determine the target rotational state and its inertia parameters. Results
show agreement when measurements were available, but the target
rotational state diverges quite rapidly, implying a coarse estimation of
the rotational parameters. A purely vision-based approach was used
by Tweddle et al. [29] by exploiting bundle adjustment in a graph-
based SLAM framework to solve for the rotational and translational
evolution of two uncooperative spacecrafts. Results show agreement
with testing conducted on the ISS, leading also to a correct estimation of
the target inertia ratios. A different approach is used in Setterfield et al.
[30] where the polhode is analyze to estimate and predict the target
rotational state and parameters. The previous references mainly focus
on rotational state and inertia ratio estimation for artificial satellite
close proximity, where the target undergoes high and variable rotation
rate, the observational period is short, and the observed spacecraft
is an human-made object. On the contrary, the algorithm presented
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in this work studies small body applications which differs in sev-
eral aspect to human-made uncooperative target. First the rotation
axis is generally fixed and the rotational period is long. This implies
long tracking windows which are challenging for feature tracking and
matching algorithms. Second, the observed body is composed of rocky
and dusty terrain implying different performance on image processing
performance.

Therefore, in the context of making space exploration more au-
tonomous and avoid to perform long-lasting ground-based characteriza-
tion before launch, the current study aims to develop an algorithm that
estimate the rotation state of an asteroid during the approach phase.
The main motivation is to avoid relying to ground-based observations
and to purely rely on images obtained during the preliminary character-
ization phase. It is worth to underline the paradigm shift between the
this approach and the ground-based lightcurve inversion. Lightcurve
inversion processes photometric data from ground-based observations
which can span up to several years [31]. Data are validated and
chosen by ground-based operators who plan carefully the observations
schedule to improve the output accuracy and remove outliers caused by
corrupted observation. The rotation pole ambiguity (see Sections 6.3.2
and 6.4.2 for details) is solved by exploiting multiple observational
geometry and long-lasting observations, even thought this is a complex
task for low-inclination asteroid orbit [31]. Moreover, despite pole
orientation estimation seems to provide valuable and reliable results for
near-Earth asteroids, Hanuš et al. [32] shows that pole orientation es-
timation errors can be considerably higher (i.e., 10 degrees of standard
deviation for the pole latitude and 5 degree for the pole longitude).
Finally, the computational burden of the lightcurve inversion take often
dozens of hours of computing time on a desktop computer [31]. On
the contrary, the proposed paradigm wants to exploit short observation
timeframe during in-situ exploration to determine the pole orientation.
The proposed approach works with hour-lasting observations (i.e., the
observation time is comparable with the asteroid rational period) by ex-
ploiting geometrical information from image processing and computer
vision algorithms developed for autonomous and on-board applications.

In this context, this paper develops an algorithm to autonomously
determine the small body rotational state during close approach with-
out the need of performing the localization task starting from Bisson-
nette et al. [23]’s work. The proposed approach also estimates the
small-body-fixed reference frame origin leading to the definition of the
small-body-fixed reference frame. This task is crucial to be performed
before the localization task because it enables changing the navigation
from the inertial reference frame to the small-body-fixed reference
frame. By tracking points extracted from small body images taken
during the approach, it is possible to retrieve the circular movement
of the landmark in the inertial frame. Indeed, the trajectory of each
3D landmark is a circle having as center a point on the rotation axis
and lying on a plane defined by the same axis. By assuming known the
rotational period, the feature circular movements provide an estimate
of all the possible rotation axes. Multiple solutions are present because
the camera cannot retrieve the movement of the feature along its
boresight. The correct one is determined by using a heuristic approach.
The algorithm is tested through numerical simulation with synthetic
images in the loop for a wide range of observation geometries and
two different asteroids, i.e., Bennu and Itokawa. Finally, numerical
results are presented and the algorithm’s performance and limitations
are discussed.

2. Notation

In this paper the following notation is used:

• 3D vectors are in lower case bold text, such as 𝒓, and 2D vectors
are in upper case bold, such as 𝑹.

• Matrices are in plain text in brackets, such as [𝐴]
• Vector initialization are performed with parenthesis, such as 𝒃 =
(

𝒂𝑇 𝒂𝑇
)𝑇
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•  =
{

𝑎, 𝒂1, 𝒂2, 𝒂3
}

is a 3D reference frame centered in 𝑎 with
axes 𝒂1, 𝒂2, and 𝒂3. All the reference frame are right-handed.

• A =
{

𝐴, 𝑨1, 𝑨2
}

is a 2D reference frame. This reference frame is
centered in 𝐴 with axes 𝑨1 and 𝑨2.

• The vector 𝒓 expressed in the  reference frame is denoted 𝒓
• The homography matrix from S to C is [CS].
• The vector 𝑹 expressed in the S reference frame is denoted S𝑹
• The angular velocity of reference frame  with respect to refer-

ence frame  is labeled 𝝎∕

3. Problem statement and algorithm overview

During close approach to a small body, the spacecraft moves at low
velocity with respect to its target and acquires images of the small
body to perform characterization. The proposed algorithm is conceived
to be used during the early characterization phase during which the
shape and the rotation state are coarsely estimated before performing
orbit insertion [33]. Note that the small body gravity field is negligible
in the dynamics as the early characterization is performed during the
approach, thus the spacecraft motion is fully determined by the Sun
gravity and deep-space perturbations. The spacecraft observes with
an onboard camera the small body which is resolved in the image
and rotates around its rotation axis which is assumed fixed in the
inertial reference frame. Note that the small body must be resolved to
enable the possibility of tracking features on its surface. Moreover, to
ensure image processing accuracy and precision during tracking, it is
convenient to process images where the small body occupies a large
portion of the field of view (e.g., hundreds of pixels), such that features
can be correctly identified and followed.

The observation geometry is depicted in Fig. 1 where the main
geometrical entities are defined. In particular:

• The approach angle is the angle between the small body rota-
tion axis and the approach direction, i.e., the camera-small-body
direction.

• The illumination angle or phase angle is defined as the angle
between the approach direction and the Sun-small-body direction.

• The obliquity, also known as the axial tilt, is the angle between
the small-body rotation axis and the small-body orbital plane.

Note that the approach angle defines which hemisphere of the small
body is observed during the approach. Moreover, the illumination
angle is an indicator of possible shadows due to the terminator line
and self-shadowing. A more detailed analysis of shadow generation
can be found in Panicucci et al. [19]. Finally, the obliquity defines
which hemisphere is illuminated at approach time, thus which is the
observable part of the small body with a vision-based sensor. The
combination of these three angles defines the appearance of the small
body in the image, which influences the performance of the image
processing and vision-based system under study.

Note that the movement of the spacecraft in the small-body-fixed
reference frame can be decomposed in the motion of the spacecraft
in the inertial reference frame and the motion due to the small-body
rotational dynamics. As the spacecraft’s inertial trajectory is usually
dynamically slower than the rotational dynamics of the small body,
the motion of the latter in the images is mainly due to its rotation.
When this is not the case as in fast fly bys, an estimation of the
spacecraft inertial poses can be exploited to reconstruct the inertial
epipolar geometry between the different poses and correct the images
for the inertial spacecraft rototranslational motion. From images of the
rotating small body, it is possible to extract and follow 2D features
which represent the projection of surface 3D landmarks. In the inertial
reference frame landmarks, which are points anchored to the small
body, rotate according to the small-body rotational dynamics. When
considering a principal axis rotator, the landmark trajectory in the
inertial space is circular. This movement is projected as a conic or as
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a single line in the camera frame (see Section 6.1 for a more rigorous
analysis). By fitting the conics from the observed small body feature
tracks, it is possible to reconstruct the circle traced by the landmarks.
This procedure provides a direct estimation of all possible solutions
for the orientation of the small body rotation axis. As outlined in
detail in Section 6, some solutions can be pruned by exploiting the
information about feature movement in the images. Others cannot be
removed without information about the landmarks’ movement in the
boresight direction (which is not observable), thus a heuristic approach
is exploited to determine the correct solution.

The algorithm is composed as follows:

1. The small-body-fixed reference frame origin is estimated from
the first image to define the small-body-fixed reference frame
origin as outlined in Section 5.

2. Images are processed sequentially to identify in the image the
projection of the circle associated with the landmark move-
ment. Several features are extracted which implies that several
landmarks are observed.

3. The algorithm decides whether to consider the conics as de-
generated. This is a crucial algorithm step as the optimization
procedure is different between the two cases (see Section 6 for
more details).

4. The conics are fitted and the possible solutions for the rotation
axis orientation are identified. This process is outlined for the
not-degenerate case in Section 6.3 and for the degenerate case
in Section 6.4.

5. The solution is identified by discarding unfeasible solutions. This
process strongly depends on the degeneracy of the observed
conics as outlined in Sections 6.3 and 6.4.

he main assumptions are:

1. The rotational period is known from light curves. This is a
standard estimation from ground-based campaigns [16] or far-
approach photometric studies [5,6].

2. The distance between the small body and the probe is known for
the first camera view. This is required to break the scale ambigu-
ity and to place the small body reference frame at the time of the
first camera view. This could be considered a strong assumption
but a wrong estimation of the distance of the first camera view,
or equivalently the scale factor, would simply induce an overall
scaling of the solution. The small-body-spacecraft distance can
be determined by a preliminary scale estimation through 𝛥V
ranging with circle or ellipsoid fitting [34,35].

3. The small body is observed for one rotation period to enable the
spacecraft to observe long feature tracks needed to bound the
rotation axis estimation.

Note that the knowledge of the distance between the small body and the
probe only affects the determination of the small-body reference frame
origin (see Section 4). The image processing pipeline developed in the
following sections is not affected by the scale factor as the calculations
are directly performed on image points, leading to be scale invariant.
Indeed, the possible solution for the rotation axis are scale invariant as
well because their calculation is computed from the eigenvectors which
are known up to a scale factor (see Sections 6.3.2 and 6.4.2). It is worth
noting that the small-body reference frame origin is used to discard
unfeasible solutions for the not-degenerate case (see Section 6.3.3), but
a change in the scale – due to an error in the asteroid–spacecraft range
– would affect only the small body overall size without any impact
in the pruning process. In other words, the spacecraft would estimate
points moving on a larger small body if the range is larger than the
truth. Otherwise, the spacecraft would estimate points moving a smaller

celestial body.
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Fig. 1. The observational geometry during small body approach.
4. Determination of the small-body-fixed reference frame origin

In this section the estimation of an approximation of the rotation
center is presented. From rigid body dynamics, the rotation axis passes
through the small body barycenter, thus the rotation center is coin-
cident with the barycenter. As the probe is not orbiting around the
small body, the mass distribution, and thus the barycenter, cannot be
determined. To do so, Bandyonadhyay et al. [6] proposes to determine
the center of rotation as the average between a given image and the one
with the asteroid rotated of 180 degrees. This approach can be useful
for low illumination angle, where self-shadowing does not influence
the center of brightness estimation. A different approach foresees the
computation of the center of brightness and to apply a correction to
estimate the projection of the center of mass [36,37]. For the sake
of simplicity. the center of brightness is computed only for the first
image in this work and no correction is applied. Only the first image
is used as the distance to the small body is considered known only
for that instant. Note that the center of brightness is usually close to
the center of mass only for low illumination angles, as the center of
brightness can shift considerably when the illumination angle increases.
In the framework of this work, no correction is applied for the sake of
simplicity and future work should investigate the benefit of adding the
correction within the proposed algorithmic pipeline.

To compute the center of brightness, the first image is binarized by
using Otsu’s method [38] to identify the bright pixels. By labeling 𝜒1
the bright pixel map in the first image, the center of brightness C1𝑹CB
expressed in the first image reference frame C1 is computed as

C1𝑹CB =

(∑

𝑃∈𝜒1
𝑷 𝑥

|

|

𝜒1
|

|

,

∑

𝑃∈𝜒1
𝑷 𝑦

|

|

𝜒1
|

|

)𝑇

(1)

where 𝑷 is an arbitrary pixel in 𝜒1, the subscripts 𝑥 and 𝑦 label the 𝑥
and 𝑦 coordinates in the image, and |

|

𝜒1
|

|

is the area of 𝜒1.
By knowing the distance from the first camera pose to the small

body, the rotation center 𝒓RC is computed by backprojecting in the 3D
space the center of brightness:

 𝒓RC =  𝒓SC1
+

𝑑SC1∕SB
‖ −1C ‖

[𝑁𝐶1] [𝐾] −1C1
ℎ 𝑹CB (2)
180

‖

‖

[𝐾] ℎ𝑹CB‖
‖

where [𝐾] is the camera calibration matrix, 𝒓SC1
is the spacecraft

position at the first image time, 𝑑SC1∕SB is the small-body-spacecraft
distance at the first image time, and

[

𝑁𝐶1
]

is the rotation matrix from
the camera frame 1 at the first image time to the inertial frame  .
Note that the camera calibration matrix can be computed from camera
characteristics as follows:

[𝐾] =

⎡

⎢

⎢

⎢

⎣

𝑓
𝑠𝑥

0 𝐶𝑥

0 𝑓
𝑠𝑦

𝐶𝑦

0 0 1

⎤

⎥

⎥

⎥

⎦

(3)

where 𝑓 if the camera focal length, 𝑠𝑥 and 𝑠𝑦 are the pixel physical
size in 𝑥 and 𝑦 components, and 𝑪 =

(

𝐶𝑥, 𝐶𝑦
)𝑇 is the camera center in

pixels.
The computation of  𝒓RC defines the origin of the small-body-fixed

reference frame . In order to fully define , the angular velocity 𝝎∕
of the small-body-fixed reference frame  with respect to the inertial
reference frame  must be characterized. As the rotational period
is known, only the unit vector of the rotational axis 𝝎̂∕ must be
estimated.

5. Feature extraction and tracking

5.1. Feature-based image processing

The first step of the algorithm is to process images to detect land-
marks’ movement. From subsequent images, information about the
relative motion of the scene can be recovered. The apparent motion
of the scene and objects in the image is called optical flow, which is
caused by both the observer’s and the object’s motion. The optical flow
estimation provides information about the relative movement between
the observer and the scene.

A standard procedure to perform this task is to use a feature-
based image processing algorithm. Features are usually 2D entities
that are characterized by a location and a compact description of
the feature information. As a consequence, two tasks are performed
to identify a feature [39]: feature detection and feature description.
Feature extraction deals with the problem of determining the feature
locations in the image. Many algorithms (e.g., SURF [40], BRISK [41],
ORB [42], SIFT [43]) are available to perform this task. The main
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difference is the type of structure (e.g., corners, edges, or blobs) they
try to detect and the required computational effort. Feature descrip-
tion is designed to build a compact and informative descriptor of the
information contained in the feature location neighborhood designed
to be non-redundant and optimized for feature association. Feature de-
tection algorithms often have an associated descriptor (e.g., SURF [40],
BRISK [41], and KAZE [44]), but any combination of feature descrip-
tion and detection is possible. Once features are detected from different
images, it is necessary to determine their path to gather the optical
flow. This is a complex procedure as feature appearance can signifi-
cantly change from different points of view and illumination conditions.
Moreover, features can be shadowed during their motion which implies
their loss in the image. This task can be fulfilled with two different
approaches [39]: feature matching and feature tracking. On the one
hand, feature matching exploits feature description to perform feature
association between different images. A naive and widely-used method
to perform this task is brute force matching where features in one image
are associated according to the closest descriptor in the other image. As
feature matching is based on feature description, it is usually exploited
when images are generated from different observation geometries and
when the motion is rapidly changing in time. On the other hand,
feature tracking determines feature association by searching in the
neighborhood of the feature location. A classical approach to perform
feature tracking is Kanade–Lucas–Tomasi (KLT) algorithm [45,46]. The
KLT tracker exploits the spatial gradient of image intensity to find
the feature in the next image by Newton–Raphson gradient descent
algorithm.

In this work SURF features are used to identify salient points in
small body images. They are chosen as they are extracted faster than
other features and are robust to camera rotation and translation. Fea-
ture association is then performed with the KLT algorithm as it does
not require the use of time-consuming descriptor algorithms.

5.2. Kanade–Lucas–Tomasi optical flow tracker

In this section, an overview of the KLT algorithm is provided as
depicted in Lucas and Kanade [45] and Tomasi and Kanade [46]. Let
𝐼 and 𝐽 be two different grayscale images. The aim is to find the
isplacement 𝑫 of the feature 𝑷 from 𝐼 to 𝐽 by minimizing the error
etween the two images. The error function 𝜀 between the two images
s defined by computing the squared difference in intensity in a region
f interest 𝑅 which is normally considered a user-defined rectangle or
quare. As a consequence:

=
∑

𝑅
(𝐼 (𝑷 +𝑫) − 𝐽 (𝑷 ))2 (4)

Image 𝐼 can be linearly approximated:

𝜀 ≃
∑

𝑅

(

𝐼 (𝑷 ) +
[ 𝜕𝐼
𝜕𝑫

]

𝑫 − 𝐽 (𝑷 )
)2

(5)

here the spatial partial derivative
[ 𝜕𝐼
𝜕𝑫

]

can be computed by finite

differences. The error can be thus minimized:
[ 𝜕𝜀
𝜕𝑫

]

≃ 𝜕
𝜕𝑫

∑

𝑅

(

𝐼 (𝑷 ) +
[ 𝜕𝐼
𝜕𝑫

]

𝑫 − 𝐽 (𝑷 )
)2

=2
∑

𝑅

(

𝐼 (𝑷 ) +
[ 𝜕𝐼
𝜕𝑫

]

𝑫 − 𝐽 (𝑷 )
)𝑇 [ 𝜕𝐼

𝜕𝑫

]

= 0
(6)

The displacement 𝑫 is analytically computed:

𝑫 = −

(

∑

𝑅

[ 𝜕𝐼
𝜕𝑫

]𝑇 [ 𝜕𝐼
𝜕𝑫

]

)−1 (
∑

𝑅

[ 𝜕𝐼
𝜕𝑫

]𝑇
(𝐼 (𝑷 ) − 𝐽 (𝑷 ))

)

(7)

In the KLT algorithm, not all features are tracked as only a subset is
informative for the tracker. Good features are defined internally from
the tracking algorithm as the ones having the highest eigenvalues of the
matrix

(

∑

𝑅

[

𝜕𝐼
]𝑇 [

𝜕𝐼
]

)

[47]. This ensures that feature tracking is a
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𝜕𝑫 𝜕𝑫
well-conditioned process and that the algorithm is numerically stable.
Moreover, to increase algorithm performance and to exploit different
detail levels in the image a pyramidal scheme is often used [48].

In the present work the feature extraction and tracking are per-
formed with Airbus Defence & Space software Themis [49]. Themis
is an enhanced space-certified KLT tracker which compensates for
features rotation, scaling, and translation. Moreover, it implements a
pyramidal scheme and homography filtering to improve the algorithm’s
overall performance. The use of Themis is justified by the fact that
it has been optimized for space application, and it has shown its
embeddability in space-certified processors LEON4 [49].

The output of Themis is a series of feature tracks of different length.
These tracks are exploited to fit the conic obtained from the circle
projection in the image and to determine the rotation axis orientation.

6. Estimation of small body rotation axis

6.1. Projection of the circle

Before entering into the details of the algorithm fitting the conics
generated by the projection of the tracked landmarks, it is worth
analyzing how a 3D circle projects into a camera.

Let  the 3D reference centered in the circle origin and whose third
xis oriented as the circle plane normal 𝒏cl. The circle plane is the plane
here the circle lies and where the first two axes of  lie. Moreover,

et P be the 2D reference frame centered in circle center projected on
he circle plane and whose axes are oriented as the projection on the
ircle plane of the first two axes of  . In P, the equation of the circle
an be expressed as follows:

𝑷 𝑇
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 −𝑅2

⎤

⎥

⎥

⎦

P
ℎ𝑷 = P

ℎ𝑷
𝑇 [𝐶] Pℎ𝑷 = 0 (8)

where 𝑅 is the circle radius and P
ℎ𝑷

𝑇 is a 2D homogeneous point
expressed in P and belonging to the circle plane defined by 𝒏cl. More
details about homogeneous coordinates can be found in Hartley and
Zisserman [50]. By denoting C the image plane reference, the mapping
from the circle plane to the image plane is defined by the following
homography [50]:

[CP] = [𝐾]
[𝒑1 𝒑2 𝒓cl

]

(9)

where 𝒑𝑖 is the 𝑖th axis of  expressed in  and 𝒓cl is the vector from
he camera to the circle origin in . Note that 𝒑𝑖 is also the 𝑖th column
f the rotation matrix [𝐶𝑃 ] from  to the camera frame .

The circle as projected in the camera can be computed by noticing
hat:

𝑷 = [CP] Pℎ𝑷 (10)

Thus:
C
ℎ𝑷

𝑇 [CP]𝑇 [𝐶] [CP] Pℎ𝑷 = C
ℎ𝑷

𝑇 [𝐸] Cℎ𝑷 = 0 (11)

where [𝐸] is the conic representing the projection of the circle in the
image. If [𝐸] is full rank, the conic represents an ellipse, an hyperbola,
or a parabola. Otherwise, the conic degenerates to a line. As the circle is
not a degenerate conics and its matrix has full rank, it is worth noticing
that the conics degenerate to a line only if the homography matrix has
not full rank. This happens when the camera boresight is perpendicular
to the circle plane normal, i.e., 𝒑𝑇3 𝒓cl = 0.

To prove that the projection is a single line, it is worth demonstrat-
ing that the projection of 𝒑1 and 𝒑2 in the image are parallel. For the
sake of simplicity, let 𝒓̂cl be the unit vector pointing as 𝒓cl. Note that
𝒓̂cl is linearly dependent of 𝒑1 and 𝒑2, thus 𝒓̂cl = 𝒓̂𝑇cl𝒑1𝒑1 + 𝒓̂𝑇cl𝒑2𝒑2. The
vector perpendicular to the camera boresight unit vector are:

̂𝑇 ̂
𝒆1 = 𝒑1 − 𝒓cl𝒑1𝒓cl (12)
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𝒆2 = 𝒑2 − 𝒓̂𝑇cl𝒑2𝒓̂cl (13)

Note that these vectors belongs to the circle plane and to the image
plane. To prove that these vectors are parallel, it must be proven that
𝒆1 × 𝒆2 = 0. Thus:

𝒆1 × 𝒆2 = 𝒑1 × 𝒑2 − 𝒓̂𝑇cl𝒑2𝒑1 × 𝒓̂cl − 𝒓̂𝑇cl𝒑1𝒓̂cl × 𝒑2 + 𝒓̂𝑇cl𝒑1 𝒓̂
𝑇
cl𝒑2𝒓̂cl × 𝒓̂cl

= 𝒑3 −
(

𝒓̂𝑇cl𝒑2
)2

𝒑3 −
(

𝒓̂𝑇cl𝒑1
)2

𝒑3

=
(

1 −
(

𝒓̂𝑇cl𝒑2
)2

−
(

𝒓̂𝑇cl𝒑1
)2

)

𝒑3

=
(

1 − ‖

‖

𝒓̂cl‖‖
2
)

𝒑3 = 0

(14)

his implies that the degenerate conic is composed of a single line.
herefore either the circle is projected as a full rank conic or to a rank-1
egenerate conic. No other situations are possible. From an operative
erspective, this suggests that the algorithm must be able to cope with
ull-rank conic estimation and with single line fitting.

When the conic is full rank, it is represented by a full rank matrix
hich is usually written as follows:

[𝐸] =

⎡

⎢

⎢

⎢

⎣

𝐴 𝐵
2

𝐷
2

𝐵
2 𝐶 𝐸

2
𝐷
2

𝐸
2 𝐹

⎤

⎥

⎥

⎥

⎦

(15)

therwise, when the conic degenerates, it is represented by the follow-
ng equation [50]

𝐸] = 𝑴𝑳𝑇 +𝑳𝑴𝑇 (16)

here 𝑴 and 𝑳 are the two lines composing the degenerate conic. As
he two lines coincide for the circle projection, 𝑳 = 𝑴 . Thus:

𝐸] = 2𝑳𝑳𝑇 (17)

hich implies that Eq. (11) can be rewritten as the classical line
quation C

ℎ𝑷
𝑇𝑳 = 0.

As multiple features are tracked by Themis, several 3D circles are
rojected in the image, so different ellipses or lines are present. Note
hat the 3D landmark movement is caused by the rotational dynamics of
he small body. Therefore, landmarks move on 3D circles whose circle
lane normal is the small body rotation axis. Thus, the 3D circles all
ave the same circle plane normal and have different origins lying on
he rotation axis.

.2. Detection of degenerate solutions

As shown in Section 6.1, the projection of the 3D circle, generated
y the landmarks, is a series of ellipses when the camera boresight is
ot perpendicular to the circle plane normal. As the circle plane normal
s the rotation axis direction for all the 3D circles, this situation happens
hen the rotation axis is tilted with respect to the camera boresight.
therwise, the projection of the 3D circle degenerates into a sheaf of
arallel lines. It is thus necessary to develop a method to detect whether
he rotation axis is perpendicular to the camera boresight only using
racked features. To do so, it is proposed hereafter a detection algorithm
o understand if the conic projection is degenerate.

Recall that a point lying on an ellipse can be represented as follows:

𝜉2 + 𝐵 𝜉𝜂 + 𝐶 𝜂2 +𝐷𝜉 + 𝐸 𝜂 + 𝐹 = 0 with 4𝐴𝐶 − 𝐵2 > 0 (18)

here (𝜉, 𝜂) are Cartesian coordinates obtained from the image co-
rdinates through normalization with respect to the image size. The
ormalization is required to let the following steps of the algorithm be
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ndependent with respect to the image size. t
All the reprojected points of the same track must verify Eq. (18).
hus:

𝜉21 𝜉1𝜂1 𝜂21 𝜉1 𝜂1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜉2𝑖 𝜉𝑖𝜂𝑖 𝜂2𝑖 𝜉𝑖 𝜂𝑖 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝜉2𝑁𝑗

𝜉𝑁𝑗
𝜂𝑁𝑗

𝜂2𝑁𝑗
𝜉𝑁𝑗

𝜂𝑁𝑗
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝑗
𝐵𝑗
𝐶𝑗
𝐷𝑗
𝐸𝑗
𝐹𝑗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
[[

𝐷2,𝑗
] [

𝐷1,𝑗
]]

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝑗
𝐵𝑗
𝐶𝑗
𝐷𝑗
𝐸𝑗
𝐹𝑗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
[

0𝑁𝑗×1

]

(19)

here 𝑁𝑗 is the number of frames during which the 3D point is tracked
or the 𝑗th conic,

[

0𝑛×𝑚
]

is the zero 𝑛×𝑚 matrix, the 𝑗 subscript define
he parameters associated with the 𝑗th conic,

[

𝐷2,𝑗
]

∈ R𝑁𝑗×3 denotes
he matrix associated with the second-order conic coefficients, and
𝐷1,𝑗

]

∈ R𝑁𝑗×3 the matrix associated with the remaining-orders conics
oefficients.

Recall that a point lying on a line can be represented as follows:

𝜉 + 𝐸 𝜂 + 𝐹 = 0 with 𝐷2 + 𝐸2 = 1 (20)

oreover, the points of the 𝑗th line verify:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜉1 𝜂1 1
⋮ ⋮ ⋮
𝜉𝑖 𝜂𝑖 1
⋮ ⋮ ⋮
𝜉𝑁𝑗

𝜂𝑁𝑗
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎝

𝐷𝑗
𝐸𝑗
𝐹𝑗

⎞

⎟

⎟

⎠

=
[

𝐷1,𝑗
]

⎛

⎜

⎜

⎝

𝐷𝑗
𝐸𝑗
𝐹𝑗

⎞

⎟

⎟

⎠

=
[

0𝑁𝑗×1

]

(21)

s the lines of the matrix in Eq. (21) are linearly dependent, the rank
f the matrix

[

𝐷1,𝑗
]

is one. Due to tracking errors, the rank is not one.
evertheless, being

[

𝐷1,𝑗
]

nearly singular, its condition number is high.
ote that this is only true when the conics are degenerate. As

[

𝐷1,𝑗
]

has

𝑗 lines, it is more convenient to work with
[

𝑆3,𝑗
]

=
[

𝐷1,𝑗
]𝑇 [

𝐷1,𝑗
]

∈
3×3.

To understand if the family of conics degenerates, the following
teps are applied:

1. For each tracked feature, the track length is computed to store
only the longest 𝑀curv tracks. This step is necessary to avoid pro-
cessing a high number of tracks which increases the numerical
burden. Moreover, it is worth noting that long-tracked features
are the ones that provide more information about the rotational
state. 𝑀curv is set to 50 in this work. The maximum number
of curves number can be also set free and select a minimum
tracking time to reject short tracks. The proposed approach is
used in this work also to limit the computational burden.

2. For each tracked feature, the conditioning number of
[

𝑆3,𝑗
]

is
computed. If the tracks conditioning number is greater than a
threshold 𝛾CN for more than 𝛾sheaf, the conics are considered
degenerate and processed as a sheaf of parallel lines. Otherwise,
they are considered a family of ellipses. 𝛾CN and 𝛾sheaf are set
to 105 and 0.8 respectively in this work. See Section 7.3 for
comments about parameter selection.

his procedure detects autonomously whether the rotation axis is per-
endicular to the camera boresight. As the 3D circle projection gener-
tes different conics, the estimation procedure is not identical between
he two cases and two algorithms must be developed. First, in Sec-
ion 6.3 the general case of a tilted axis with respect to the camera
oresight is presented. Then, in Section 6.4 the algorithm when the
wo axes are perpendicular is explained.

.3. Rotation axis tilted with respect to camera boresight

.3.1. Ellipses fitting
If the rotation axis is tilted with respect to the camera boresight,
he projection of the concentric circles is a family of ellipses. As the
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Fig. 2. Example of the ellipse fitting from tracked features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
3D circle origins belong to the same axis, the ellipse semi-major axes
are all oriented in the same direction [23]. The optimization to gather
the ellipses family exploits this property to compute a series of ellipses
with the same orientation. This optimization technique is outlined
in Bissonnette et al. [23] and reviewed hereafter.

Let 𝑀 be the number of ellipses to be found. The orientation 𝜙𝑗 of
he 𝑗th ellipse according to its Cartesian representation (see Eq. (18))
s:

tan 2𝜙𝑗 =
𝐵𝑗

𝐶𝑗 − 𝐴𝑗
(22)

q. (22) shows that to obtain a family of ellipses with the same
rientation, the fraction of the three Cartesian parameters must be
he same for all the 𝑀 ellipses. By introducing 𝑘𝑗 = 𝐶𝑗 − 𝐴𝑗 , it is
traightforward to impose that 𝐵𝑗 = 𝐵 and 𝑘𝑗 = 𝑘 ∀ 𝑗 ∈ [1, 𝑀] to

implicitly verify the constraint in Eq. (22). Thus, the equation of the
𝑗th ellipses becomes [23]:

𝐴𝑗
(

𝜉2 + 𝜂2
)

+ 𝐵𝜉𝜂 + 𝑘𝜂2 +𝐷𝑗 𝜉 + 𝐸𝑗 𝜂 + 𝐹𝑗 = 0 (23)

By defining the vectors 𝒂1 =
(

𝐵, 𝑘, 𝐴1, … , 𝐴𝑀
)𝑇 and 𝒂2 =

(

𝐷1, 𝐸1, 𝐹1, … , 𝐷𝑀 , 𝐸𝑀 , 𝐹𝑀
)𝑇 and the matrices

𝐷2
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉1,1𝜂1,1 𝜂21,1 𝜉21,1 + 𝜂21,1 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜉𝑁1 ,1𝜂𝑁1 ,1 𝜂2𝑁1 ,1
𝜉2𝑁1 ,1

+ 𝜂2𝑁1 ,1
0 0 0

𝜉1,2𝜂1,2 𝜂21,2 0 𝜉21,2 + 𝜂21,2 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜉𝑁2 ,2𝜂𝑁2 ,2 𝜂2𝑁2 ,2
0 𝜉2𝑁2 ,2

+ 𝜂2𝑁2 ,2
0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝜉1,𝑀𝜂1,𝑀 𝜂21,𝑀 0 0 0 𝜉21,𝑀 + 𝜂21,𝑀
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜉𝑁𝑀 ,𝑀𝜂𝑁𝑀 ,𝑀 𝜂2𝑁𝑀 ,𝑀 0 0 0 𝜉2𝑁𝑀 ,𝑀 + 𝜂2𝑁𝑀 ,𝑀

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

[

𝐷1
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝜉1,1 𝜂1,1 1 0 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜉𝑁1 ,1 𝜂𝑁1 ,1 1 0 0 0 0 0 0 0
0 0 0 𝜉1,2 𝜂1,2 1 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 𝜉𝑁2 ,2 𝜂𝑁2 ,2 1 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 𝜉1,𝑀 𝜂1,𝑀 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(25)
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⎣
0 0 0 0 0 0 0 𝜉𝑁𝑀 ,𝑀 𝜂𝑁𝑀 ,𝑀 1

⎦

where
(

𝜉𝑖,𝑗 , 𝜂𝑖,𝑗
)

is the 𝑖th point of the 𝑗th ellipse in normalized coordi-
nates, the problem is to be rewritten as:
[

[

𝐷2
] [

𝐷1
]

]

(

𝒂1
𝒂2

)

= [𝐷]𝒂 =
[

0(4𝑀+2)×1
]

(26)

The solution of this homogeneous equation is found by minimizing
𝐽 = 𝒂𝑇 [𝐷]𝑇 [𝐷]𝒂 subject to 𝒂𝑇 𝒂 = 1.

This optimization can be solved by solving the rank-deficient gener-
alized eigenvalue system associated with the problem [51]. To have a
numerically-stable computation the algorithm proposed by Halır and
Flusser [52] is used to compute the solution. By defining

[

𝑆1
]

=
[

𝐷1
]𝑇 [

𝐷1
]

,
[

𝑆2
]

=
[

𝐷2
]𝑇 [

𝐷1
]

and
[

𝑆3
]

=
[

𝐷2
]𝑇 [

𝐷2
]

, the solution for
𝒂1 is the eigenvector associated with the smallest positive eigenvalue
of

(

[

𝑆1
]

−
[

𝑆2
] [

𝑆3
]−1 [𝑆2

]𝑇
)

. The solution for 𝒂2 is the computed as

𝒂2 = −
[

𝑆3
]−1 [𝑆2

]𝑇 𝒂1.
This provides a family of conics all with the same orientation. Note

that the conics are not necessary ellipses as no constraint has been
imposed on the Cartesian coefficients to verify it. Thus, for each conic,
the eccentricity is computed and, if greater or equal to 1, the conic is
discarded. In Figs. 2(a) and 2(b) the different optimization outputs for
the main steps are shown.

6.3.2. Computation of the rotation axis candidates
Once the ellipses family is found, the rotation axis can be recon-

structed by knowing that a 2D ellipse in the image is the projection of
a 3D circle [53]. From a single ellipse, an elliptic cone, i.e. a cone with
an elliptical cross-section, is generated from backprojection. If a sheaf
of planes is intersected with the cone, only two planes generate circles
when intersected [53]. This geometrical construction is shown in Fig. 3.
In the figure, the red ellipse is backprojected in the 3D space generating
the green opaque cone. Among all the possible directions only two of
them are generating a circle on the cone when intersecting it. The two
circle solutions are shown in purple and blue. The solid part of the
circle is the one visible from the reader’s perspective and not covered
by the elliptic cone, while the dashed part is the one hidden by the cone
to the reader. The blue and purple lines represent the perpendicular
directions to the circles. The green dotted line represents the camera
boresight which intersects the image plane in the green dot.

From these 2 planes, 4 unit normal vectors can be defined. It
is important to note that both the positive and the negative normal
vectors define the same plane. But, if the goal is to gather the rotation

axis, the two normal vectors are associated with opposite rotation
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Fig. 3. The geometrical construction generating the two circles.
Fig. 4. The four normal vector solutions from the circle computation.
directions on the same plane. Therefore, the correct normal vector must
be identified.

The first step is to compute the four unit normal vectors. By know-
ing that the matrix [𝐸] (see Eq. (15)) represents an ellipse which is
projection of a 3D circle, all the unit normal vectors generating the
conics in the image can be extracted [53]. Note that the matrix [𝐸] is
composed of the ellipse Cartesian parameters in pixel units. Thus the
184
parameters found in the previous step must be rescaled according to
the normalization procedure for consistency.

Let 𝜆𝑖 and 𝒖𝑖 ∀𝑖 ∈ [1, 3] be the eigenvalues and eigenvectors of
[𝐸]. If det [𝐸] < 0, the eigenvalues are ordered in such a way that
𝜆 < 0 < 𝜆 ≤ 𝜆 . The four solutions for the circle plane normal are
3 1 2
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Fig. 5. The estimation of the circles from the two possible rotation axis candidates.
computed as [53]:

𝝂̂ = ± 𝝂
‖𝝂‖

where 𝝂 =

√

𝜆2 − 𝜆1
𝜆2 − 𝜆3

𝒖2 ±

√

𝜆1 − 𝜆3
𝜆2 − 𝜆3

𝒖3 (27)

To estimate the four solutions, the two vectors 𝝂 are computed for each
ellipse and their mean is calculated to minimize numerical errors. It is
worth noting that the proposed method is not robust with respect to
outliers. RANSAC could be exploited to identify the correct orientation
among a given orientation set as in Andreis et al. [54].

In Fig. 4 the geometry of the normal vectors reconstruction is
shown. The four solutions are depicted in two different colors according
to the generating circle plane. Moreover, their projections on the 1
reference frame are shown in brown. Note that they are paired in two
different ways. First, each pair has the same projection on the camera
boresight direction. Second, each pair has the same module in the
camera plane, but opposite direction. Recall that the solutions with
opposite directions but associated with the same plane denote the same
circle, but swept in opposite directions.

6.3.3. Rotation axis pruning and selection
As the correct rotation axis must be found among the four solutions,

a procedure is outlined hereafter to identify the correct normal vector
among the 4 different possibilities. The main idea is to remove two
spurious solutions among the four by exploiting how features move
in time. The estimation of the correct rotation axis between the two
remaining solutions is a more complex task as they are both acceptable
with respect to the camera projection and both respect the features’
motion. The idea behind the correct identification of the solution is
the selection based on a heuristic, using statistical facts or a priori
information. Two heuristics are investigated:

1. A coarse guess of the rotation axis direction is available on board
from ground-based observation. The correct solution is identified
as the closest one to the onboard guess.

2. It is remarked that, even though the observed small body can
have concavities, the majority of the initialized 3D points during
185
tracking lie between the camera and the estimated rotation
center. To have statistical relevance, this reasoning must be
applied to a high number of 3D points. As a consequence all
3D points that are tracked more than a given percentage of
frame 𝛾heur over one rotational period are considered. In this
work, 𝛾heur is set to be 0.2. Once it is understood which is
the solution that initializes the majority of the point closer to
the camera, that solution is the correct one [23]. Note that
increasing 𝛾heur would imply to consider longer tracks, thus less
point. On the contrary, decreasing 𝛾heur would lead to more
statistical relevance at the cost of more computational burden.
The selected value is selected as a trade off between these two
factors, leading to satisfying results.

The first step is to exploit the feature rotation as seen in the image
to remove two spurious solutions. Except tracking errors, matched
points rotate all in the same direction. This rotation identifies uniquely
the projection of the rotation axis on the camera boresight. Thus, by
computing the feature rotation, it is possible to identify the two correct
rotation axis candidates.

To avoid selecting the wrong solutions due to tracking errors, the
rotation direction of each track is computed and the rotation axis can-
didates not consistent with the average feature rotation are discarded.
The rotation direction 𝝂𝑖,𝑗 between two successive frames is computed
as:

𝝂𝑖,𝑗 =
(

ℎ𝜩 𝑖,𝑗 − ℎ𝜩𝑐𝑗

)

×
(

ℎ𝜩 𝑖+1,𝑗 − ℎ𝜩𝑐𝑗

)

(28)

where ℎ𝜩 𝑖,𝑗 =
(

𝜉𝑖,𝑗 , 𝜂𝑖,𝑗
)𝑇 is the 𝑗th tracked feature location in the 𝑖th

image in homogeneous normalized coordinates and ℎ𝜩𝑐𝑗 =
(

𝜉𝑐𝑗 , 𝜂𝑐𝑗
)𝑇

is the 𝑗th ellipse center in homogeneous normalized coordinates. The
vector 𝝂𝑖,𝑗 provides information about the rotation direction of the 𝑗th
feature between the 𝑖th image and the (𝑖 + 1)th image. By counting the
features moving clockwise and the ones moving counterclockwise, it is
possible to understand which is the average feature motion. It is thus
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Fig. 6. The perpendicular-axis case reconstruction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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seful to define the clockwise index 𝐽cw:

𝐽cw =
𝑀
∑

𝑗=1

𝑁𝑗−1
∑

𝑖=1
𝐽cw𝑖,𝑗

where 𝐽cw𝑖,𝑗
=

{

1 if 𝝂𝑇calc𝑖,𝑗
𝒄3 > 0

−1 otherwise
(29)

where 𝒄3 is the camera boresight unit vector. According to 𝐽cw def-
nition, features move clockwise if 𝐽cw > 0 and counterclockwise

otherwise. The two correct solutions are selected as the ones providing
the same rotation direction when projected on the camera boresight.

At this stage, two solutions are still feasible and the correct one must
be determined. To do so, two heuristic approaches are investigated. If a
coarse first guess is available on board, the correct solution is selected
as the one with the smallest angular error between the two. Otherwise,
the second heuristic is exploited: the correct axis is the one initializing
the majority of the points between the camera and the rotation center
estimated in Section 4. It is worth noting that the circle plane has not
been estimated yet as the direction of the circle plane normal defines a
sheaf of parallel planes where the circle could lie. It is thus necessary to
select a point to uniquely define where the circle plane is. By knowing
the axis direction and a point on the axis, i.e., the previously-calculated
rotation center 𝒓RC, the circle can be fully reconstructed [55]. The
equation of the 𝑗th 3D circle is written as:

𝑈 (𝑢, 𝑣) 𝜌2𝑗 + 𝑉 (𝑢, 𝑣) 𝜌𝑗 +𝑊 (𝑢, 𝑣) − 𝑅2
𝑗 = 0 (30)

where 𝜌𝑗 is the distance between the rotation center 𝒓RC and 𝑗th circle
center in the direction of the rotation axis, 𝑅𝑗 is the 𝑗th circle radius,
and 𝑈 (𝑢, 𝑣), 𝑉 (𝑢, 𝑣) and 𝑊 (𝑢, 𝑣) are computed as in Appendix. The
parameter 𝜌𝑗 uniquely defines the plane in the sheaf, whereas 𝑅𝑗
uniquely identifies the circle size on that plane. Note that the pixel
coordinates (𝑢, 𝑣) are used for this optimization step.

This geometrical situation is depicted in Fig. 5 for two possible
circle solutions colored according to the respective rotation axis. In
the figure, empty green squares in the image are the tracked features
and the turquoise dotted lines represent their backprojections. These
backprojections intersect the two 3D circles in the full dots colored
according to the intersected circle color code. The rotation direction is
shown on each circle to provide information about the beginning and
the end of the 3D landmark movement. Note that the rotation center is
the intersection of the two possible rotation axes. Moreover, 3D circles
parameters 𝑅𝑗 and 𝜌𝑗 are shown only for the blue circle for the sake of
completeness. Furthermore, it is worth noting that all the colored full
dots on the circle are associated with one 3D point at different times
during tracking.
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To determine the parameters 𝑅𝑗 and 𝜌𝑗 , the following cost function
is minimized:

𝐽◦,𝑗 =
𝑁𝑗
∑

𝑖=1

(

𝑈
(

𝑢𝑖, 𝑣𝑖
)

𝜌2𝑗 + 𝑉
(

𝑢𝑖, 𝑣𝑖
)

𝜌𝑗 +𝑊
(

𝑢𝑖, 𝑣𝑖
)

− 𝑅2
𝑗

)2
(31)

Once this procedure is performed for all tracks, an estimate of the
parameters 𝑅𝑗 and 𝜌𝑗 ∀𝑗 is determined. This enables the determination
of the plane where the 3D circle lies and the 3D circle radius. It is
now necessary to understand where the landmark has been detected
at feature initialization. This is performed by computing the initializa-
tion angular position 𝛽𝑗 of the 3D landmark on the 𝑗th circle at the
beginning of the observational period.

Let 𝝂̂𝑖 be the reference frame centered in the rotation center 𝒓RC
and with the vertical axis directed as 𝝂̂𝑖, i.e., one of the remaining
solution for the rotation axis. The other two unit vectors are arbitrary.
The position of the 𝑗th 3D landmark 𝝂̂𝑖 𝒓LM𝑗

in the 𝝂̂𝑖 frame at time 𝑡
is:

𝝂̂𝑖 𝒓LM𝑗
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑅𝑗 cos
(

𝛽𝑗 +
2𝜋
𝑇rot

𝛥𝑡
)

𝑅𝑗 sin
(

𝛽𝑗 +
2𝜋
𝑇rot

𝛥𝑡
)

𝜌𝑗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(32)

where 𝛥𝑡 = 𝑡 − 𝑡init is the interval between 𝑡 and the initialization
time 𝑡init and 𝑇rot is the small body rotational period. By starting from
𝛽𝑗 = 0, the 𝑗th 3D landmark is projected in the image for all the
vailable tracking times and the reprojection error is minimized to find
𝑗 . Note that this optimization step could be easily removed by simple
ackprojection of the initial feature location and the intersection of the
eature ray with the 3D circle plane, as proposed by Bissonnette et al.
23]. This solution has not been investigated in the present paper, but
t could be a valuable option to reduce computational costs.

These last two steps, i.e., the determination of the 3D circle and the
ngular position at the beginning of the tracking, are computed for all
llipses and the two remaining feasible orientation axis solutions. Then,
y counting how many landmarks are initialized between the camera
nd the rotation center, it is possible to select the rotation axis solution
s the one providing the higher number of point initialization closer to
he camera.
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Fig. 7. The estimation of the rotation axis for the perpendicular-axis case.
6.4. Rotation axis perpendicular to camera boresight

6.4.1. Lines fitting
If the rotation axis is detected to be perpendicular to the camera

boresight, the 3D circle projections degenerate into a sheaf of parallel
lines as outlined in Section 6.1. It is worth noting that the tracked
features do not form perfect lines because of tracking errors. Moreover,
since the projection of the rotation axis on the camera boresight is null,
only two rotation axis candidates are possible.

In this section, the same notation of Section 6.3 is used for sake of
simplicity. Let 𝑀 be the number of lines to be estimated. A sheaf of
parallel lines is characterized by having the same orientation among
all the lines. The equation of the 𝑗th line is given by Eq. (20). Note
that the parameters 𝐷 and 𝐸 are constant for all the lines in the sheaf
by construction.

Thus,
(

𝜉𝑖,𝑗 , 𝜂𝑖,𝑗
)

, i.e., the 𝑗th feature location in the 𝑖th image, must
verify the line equation in Eq. (20). By defining the parameter vector
𝒂 =

(

𝐷, 𝐸, 𝐹1, … , 𝐹𝑀
)𝑇 and the matrix

[

𝐷sheaf
]

:

[

𝐷sheaf
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉1,1 𝜂1,1 1 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜉𝑁1 ,1 𝜂𝑁1 ,1 1 0 0 0
𝜉1,2 𝜂1,2 0 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜉𝑁2 ,2 𝜂𝑁2 ,2 0 1 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝜉1,𝑀 𝜂1,𝑀 0 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜉𝑁𝑀 ,𝑀 𝜂𝑁𝑀 ,𝑀 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(33)

the sheaf fitting problem is rewritten as
[

𝐷sheaf
]

𝒂 =
[

0𝑀×1
]

(34)

It is solved by solving through Singular Value Decomposition [51]. An
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example of this procedure is reported in Figs. 6(a) and 6(b)
6.4.2. Computation of the rotation axis candidates
As lines are the degenerate projection of the planes where the 3D

circles lie, the rotation axis projection on the image is given by the
line perpendicular to the sheaf of parallel lines and passing through the
rotation center. This geometrical configuration is shown in Fig. 6(b).
Therefore, the 2D vector perpendicular to the sheaf must be backpro-
jected in the 3D space as shown in Fig. 7. Let the vectors 𝑳⟂ and
𝑳∥ be respectively the normal and parallel vectors to the sheaf. These
vectors can be computed from the line equation after proper rescaling
of the equation in pixel coordinates. Therefore, the two solutions for
the rotation axis are:

𝝂̂ = ± 𝝂
‖𝝂‖

where 𝝂 = 𝒓SC1
×
(

[𝐾] −1ℎ𝑳∥
)

(35)

6.4.3. Rotation axis pruning and selection
To exclude the spurious solution, a heuristic similar to the one in the

previous section is introduced. If a coarse guess exists, the solution is
chosen to be the closest one to the initial guess. Otherwise, it is possible
to determine which is the correct solution by determining how features
move in the image on average.

Let  =
{

𝑙, 𝒍1, 𝒍2, 𝒍3
}

be a reference frame centered in the image
center and with unit vectors 𝒍1 =

(

𝒍⟂, 0
)𝑇 , 𝒍2 =

(

𝒍∥, 0
)𝑇 , and the

perpendicular to define a right-handed reference frame. Let ‘‘in front’’
and ‘‘behind’’ be the subsets of the image defined by an observer
looking in the direction of 𝒍∥ while standing on the image. If the
rotation axis is projected as 𝒍⟂, the majority of the 3D points are
moving from ‘‘behind’’ to ‘‘in front’’; from ‘‘in front’’ to ‘‘behind’’ if
projected as −𝒍⟂. Indeed, as the majority of the 3D landmarks are
initialized between the camera and the rotation center, the feature
mean movement respects this motion. As in the non-degenerate conic
case, shorter tracks are considered with a parameter 𝛾heur = 0.2 to
increase the statistical relevance of the heuristic.

The movement vector 𝒎𝑖,𝑗 in the direction of 𝒍2 of 𝑗th feature in the
𝑖th image is computed as

𝒎 =
(

𝜩 − 𝜩
)𝑇 𝒍 𝒍 (36)
𝑖,𝑗 ℎ 𝑖+1,𝑗 ℎ 𝑖,𝑗 2 2
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Fig. 8. Examples of synthetic images for Bennu and Itokawa with different illumination angles.
Table 1
Numerical values for the camera parameters.

Camera FoVa [◦] 𝑓 b [mm] 𝑠𝑥 = 𝑠𝑦c [

μm
]

Image size [px] 𝑪d [

px
]

OSIRIS-REx’s MapCam 3.99 125 8.5 1024 × 1024 (512, 512)𝑇

Hayabusa’s AMICA 5.8 121 12 1024 × 1024 (512, 512)𝑇

a FoV is the camera field of view.
b 𝑓 is the camera focal length.
c 𝑠𝑥 and 𝑠𝑦 are the pixel physical size in 𝑥 and 𝑦 components.
d 𝑪 is the camera center.
Finally, the mean movement direction index 𝐽dir is computed as:

𝐽dir =
𝑀
∑

𝑗=1

𝑁𝑗−1
∑

𝑖=1
𝐽dir𝑖,𝑗 where 𝐽dir𝑖,𝑗 =

{

1 if 𝒍𝑇3
(

𝒍1 ×𝒎𝑖,𝑗
)

> 0

−1 otherwise
(37)

The value of 𝐽dir gives information about whether the landmarks move
from ‘‘in front’’ to ‘‘behind’’ or the other way around. If 𝐽dir > 0, the
rotation axis is projected in the image in the same direction of 𝒍⟂; the
opposite otherwise. Thus, the sign of 𝐽dir uniquely defines the rotation
axis orientation in the inertial reference frame.

7. Numerical results

7.1. Test cases description

To test the proposed algorithm, numerical simulations have been
performed. In the simulations, the spacecraft is in close approach to
the small body. The considered scenarios foresee a spacecraft trajectory
to simulate the approach to asteroids Bennu or Itokawa. The spacecraft
starts observing the small body from about 9 km (i.e., about 60 asteroid
radii for Itokawa and 36 asteroid radii for Bennu), implying that the
asteroid gravity is negligible. The spacecraft velocity points towards the
asteroid and its magnitude are selected to be consistent with approach
velocity from SPICE kernels. As the probe is not under the influence
of the small body gravity field, the trajectory has been simulated with
a dynamics dominated by Solar Radiation Pressure (SRP) in the Sun-
small-body rotating frame. Note that the spacecraft is orbiting the Sun
but the swept arc of the conic is so short that it can be approximated
by a straight line, so as to ignore the Sun gravity in the equations of
motion. The small body rotates around an inertially-fixed axis with
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constant angular velocity. The spacecraft orientation in the inertial
frame  is considered known and the camera points to the small
body center of mass. More details about the dynamical model and the
simulation set-up can be found in Section 3.6 of Panicucci [20].

The mapping camera, like Hayabusa’s AMICA [56] or OSIRIS-REx’s
MapCam [57] (see Table 1), is constantly observing the small body.
The two cameras are selected among the OSIRIS-Rex and Hayabusa’s
instruments because their characteristics ensure to observe respectively
Bennu and Itokawa letting the asteroid occupy hundreds of pixels
at the approach distance. Images are simulated with the SurRender
software [58]. Small-body shapes, Bennu and Itokawa in this study,
are taken from the Planetary Data System - Small Body Node by
downloading the highest resolution polyhedral shape model. The shape
model is input to SurRender together with the small-body bulk optical
properties, like albedo, reflectivity, and diffusivity, and assuming the
Hapke BRDF (Bidirectional Reflectance Distribution Function) [59] to
obtain high-fidelity simulated images. A texture is added to the small
body to take into account the small-body surface albedo. The camera
optics is represented with a Gaussian Point Spread Function (PSF) and
a pin-hole projection model. The KLT tracker Themis processes images
every 60 s for Bennu and 180 s for Itokawa to account for realistic
image processing operational constrains. Numerical values, including
3D meshes, are taken from operational missions scenario [56,57,60–
62]. Note that in this study no real images are considered because of
unavailability of finding frequent and successive images to provide to
the KLT algorithm.

Two main test cases are presented hereafter: Bennu and Itokawa.
To study the performance of the proposed algorithm the approach
direction is kept constant and 3 different illumination angles are con-
sidered: 10◦, 45◦, and 75◦. After having defined the Sun-small-body
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Fig. 9. Probability Density Function (PDF) of the origin estimation error. The distributions in the figures are the best-fit Gamma distribution. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
and the approach directions, the rotation axis must be defined to fully
determine the observational geometry during the approach (see Fig. 1).
To characterize the algorithm performance, the rotation axis is varied
over the entire celestial sphere by changing the right ascension 𝛼 and
the declination 𝛿 with respect to the approach direction. Note that
𝛼 = 0◦ and 𝛿 = 0◦ means that the rotation axis is pointing towards
the spacecraft during the approach. Moreover, all cases with 𝛼 = 90◦ or
𝛿 = 90◦ imply that the rotation axis is perpendicular to the approach
direction. The discretization of the (𝛼, 𝛿) grid is 30◦ as each point of
the grid implies the rendering of 250 images. By considering that only
one case is simulated for 𝛿 = ±90 as 𝛼 is not defined and that 𝛿 =
±180 are the same orientation for all 𝛼, 134 simulations are performed
per illumination angle and asteroid leading to 804 simulations and
more than 200,000 images. This rendering and simulation effort has
been performed to push towards the validation and the performance
assessment of the algorithm when illumination changes, shape varies,
or the rotation axis orientation is unforeseeable. Examples of synthetic
images for both asteroids with different illumination angles are shown
in Figs. 8(a) and 8(b) for the sake of completeness.

7.2. Origin estimation

The first analyzed results deal with the small-body-fixed reference
frame estimation. To assess the performance in estimating the origin,
the origin error is defined as the norm between the estimated origin
and the true one.

Note that the origin error is mainly influenced by the center of
brightness computation, as the distance to the small body is considered
know (see Section 3). The probability density functions (PDFs) of the
origin error are reported in Figs. 9(a) and 9(b) for different values of the
illumination angle. Recall that Bennu and Itokawa have a best-fitting-
ellipse semiaxes of 252 m × 246 m × 228.3 m and 267.5 m × 147 m
× 104.5 m, respectively. As known from the literature [35–37], the
center of brightness deviates from its true value when the illumination
angle increases. Thus its backprojection deviates from the true origin
accordingly. For very high illumination angle the performance degrades
and the origin is estimated to be far from the true value. This is even
more important for an highly concave and oblate body as Itokawa. It is
worth noting that this error can influence the rotation axis estimation
as the origin determination is necessary for the determination of the
3D circle parameter. Despite this behavior, the rotation axis estimation
shows good performance for the majority of the simulated scenarios,
implying that the origin estimation play a minor role. For the sake of
completeness, Table 2 shows the mean and the standard deviation of
the best Gamma distribution fitting the origin estimation error data.
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Table 2
Mean and standard deviation of the best-fit Gamma distribution of the origin estimation
error.

Test-case Bennu Itokawa

Illumination angle [◦] 10 45 75 10 45 75

Mean [m] 6.38 121.05 214.22 13.12 34.07 82.98
Variance [m] 3.93 53.09 112.18 73.05 975.18 1998.88

The Gamma distribution is preferred with respect to other distribution
as the PDF support is limited to the positive real numbers. The means
and the standard deviations confirm the previous interpretation of
the error. The performance degrades when increasing the illumination
angle as shown by the errors means, but this effect is more relevant
for the Itokawa test-case where the variability of the results due to
selfshadowing implies higher standard deviations with respect to the
Bennu test-case. As stated in Section 4, algorithms were designed in
the past to compensate for this effect implying a possible reduction of
the origin error and its influence on the rotation axis estimation.

7.3. Detection of degenerate solutions

In this section, the results of the degenerate solutions detection
are presented. To evaluate the performance of the detection, note that
two classes are present: ‘‘Tilted Rotational Axis’’ and ‘‘Perpendicular
Rotational Axis’’. For each class it is possible to define precision 𝑃𝑟,
recall 𝑅𝑒, and the F-score 𝐹1:

𝑃𝑟 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(38)

𝑅𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(39)

𝐹1 =
2𝑃𝑟𝑅𝑒
𝑅𝑒 + 𝑃𝑟

(40)

where 𝑇𝑃 is the true positive number, 𝐹𝑃 is the false positive number,
and 𝐹𝑁 is the false negative number. These metrics are selected as
precision 𝑃𝑟 provides information about how many detections within
a class are correct, recall 𝑅𝑒 states how many samples are correctly
detected in the considered class, and the F-score 𝐹1 is a mix of precision
and recall which is high when both are high. For the two considered
classes, the considered metrics are reported in Table 3. The precision of
the ‘‘Tilted Rotation Axis’’ class is 1 which implies that all the solutions
labeled within the class belong to this class. Its recall is always above
0.85 which implies that more than 85% of the tilted axis cases are
identified correctly. Figs. 10(a)–10(f) show the detection results by
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Fig. 10. Degenerate solutions detection performance varying the rotation axis orientation with respect to the camera boresight. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
varying the right ascension and declination. It is worth noting that no
false detection of the tilted rotation axis is present. Finally, the F-score
for the ‘‘Tilted Rotation Axis’’ is high implying that a good balance
between precision and recall is achieved.
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Regarding the ‘‘Perpendicular Rotation Axis’’ class, its recall is 1
which means that all the perpendicular rotation axis are correctly iden-
tified. The precision is lower implying that some of the found solutions
do not belong to the class. By looking at Figs. 10(a)–10(f), all the false
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Fig. 11. Zoom of the CDFs of the rotation axis estimation error with the heuristic based on onboard guess. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
Table 3
Metrics for the degenerate solution detection.

Test-case Bennu Itokawa

Illumination angle [◦] 10 45 75 10 45 75

Tilted Rotation Axis precision 1 1 1 1 1 1
Tilted Rotation Axis recall 0.9636 0.9272 0.8818 0.9454 0.9818 0.9545
Tilted Rotation Axis F-score 0.9814 0.9622 0.9372 0.9719 0.9908 0.9767

Perpendicular Rotation Axis precision 0.92 0.8518 0.7796 0.8846 0.9583 0.9019
Perpendicular Rotation Axis recall 1 1 1 1 1 1
Perpendicular Rotation Axis F-score 0.9583 0.92 0.876 0.9387 0.9787 0.9484
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detections are close to the perpendicular case in the right-ascension-
declination plane. This is because tracks are almost linear and the
algorithm classifies them as lines. This problem could be avoided by
increasing the conditioning number parameter 𝛾CN, but this could cause
the presence of false detection of perpendicular rotation axis as tracks
could be detected as ellipses due to tracking errors. Otherwise, 𝛾sheaf
ould be increased to have a more stringent selection .when labeling
curve as a line. Nevertheless, the proposed numerical values show

ood performance in terms of precision and recall, implying that the
etection of the degenerate solution is performed correctly. The F-
core is high also for this class which implies a good balance between
recision and recall.

Note that results are similar for both asteroids meaning that per-
ormance is similar despite the different onboard cameras. It is worth
oting that the Bennu test case has more false detection of the perpen-
icular axis which is probably due to the low concavity of the asteroid
see Figs. 10(a)–10(f) and Table 3). Indeed, when the body is convex,
t is harder to detect tracks that deviate from a line for high approach
ngles. Moreover, the performance is not affected by the illumination
ngle variation for the Itokawa test case. This is not true for the Bennu
est case where the performance metrics decrease with the illumination
ngle increase. This is mainly due to the difference in shadowing.
he performance of the Itokawa test case is mainly influenced by
elf-shadowing, whereas the tracking performance is governed by the
erminator line shadows for the Bennu test case. As self-shadowing is
resent even for low illumination angles, the tracks have generally the
ame length for all the simulations in the Itokawa test case. This is not
appening in the Bennu test case where features are initiated close to
he terminator line and are tracked for more time when the illumination
ngle is low.
191

t

.4. Rotation axis estimation

The last result to be analyzed is the performance of the rotation
xis estimation. As explained in Section 7.1, the rotation axis is varied
y defining a spaced grid in the right-ascension-declination plane to
over all the geometrical configurations that the probe could encounter
uring the approach. To assess the algorithm performance, the angular
rror with respect to the true rotation axis is used as the performance
ndex. Moreover, two different simulations are reported hereafter in
ccord with the two heuristics proposed in Section 6: the final selection
ased on onboard guess or the one based on the point initialization.

First, the results for the rotation axis estimation based on the
vailable onboard guess are analyzed. This means that the final rotation
xis is selected as the closest one to a coarse estimation of the rotation
xis available on board. The coarse first guess is simulated in this
tudy by applying a rotation of 20 degrees to the true axis in a
andom direction. A compact visualization of the results is reported in
he Cumulative Density Function (CDFs) in Figs. 11(a) and 11(b) for
arious illumination angles and the two studied asteroids. Note that
he CDFs are cropped at 30◦ to have a detailed look close to the low
rror solutions. In both cases, the angular error is below 10◦ for 80% of
he cases and it is below 20◦ for 90% of the cases. This implies that the
roposed method estimates correctly the 4 solutions and identifies the
orrect one. Note that the illumination does not seem to play a major
ole for the Itokawa test case (see Fig. 11(b)), while the performance
egrades degrade for the Bennu test case when the illumination angle
ncrease (see Fig. 11(a)). As stated in Section 7.3, this is due to the
ifferent shadows present in the two test cases. A more detailed view
f the results is reported in Figs. 12(a)–12(f) where the angular error
s shown in the right-ascension-declination plane. In the figures, the
ectors with the white contours are associated with rotation axes per-
endicular to the camera boresight. Moreover, the white sectors label

he solutions where the algorithm has not converged. This is mainly
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Fig. 12. Rotation axis estimation performance with the heuristic based on onboard guess. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
due to the impossibility of detecting a series of ellipses all with the
same orientation leading to the detection of a conic family with an
eccentricity greater than 1. Finally, the yellow sectors are associated
with very high errors which are due to wrong detection among the four
192
solutions. It is worth noting that the perpendicular cases have generally
low errors and higher errors are present when the rotation axis is
parallel to the approach direction. Note that the wrong classifications
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Fig. 13. Zoom of the CDFs of the rotation axis estimation error with the heuristic based on landmark initialization. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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outlined in 7.3 do not show high errors because they occur when the
rotation axis is almost perpendicular.

Second, the results for the rotation axis estimation based on the
landmark initialization are studied. Results are similar with respect to
the previous ones with small performance degradation, mainly because
the correct axis is selected less often. The performance reduction is
anyway low as shown in Figs. 13(a) and 13(b). Indeed, the angu-
lar error is below 10◦ for 75% of the samples for all asteroids and
illumination angles and it is below 20◦ for 85% of the cases. Note
hat the performance reduction is not due to a change in the angular
rror, which is the same as the tracked features are the same, but to
he higher number of samples in the distribution tails. This is visible
n Figs. 14(a)–14(f) where the angular error is shown in the right-
scension-declination plane. The number of yellow sectors increases
ecause the heuristic fails in detecting the correct solution more often
han the onboard guess heuristic. However, it is worth noting that this
euristic does not rely on a previously-computed guess and the rotation
xis estimation is performed fully autonomously from images.

. Conclusion

This paper outlines an algorithm to autonomously determine the
otational state of a small body during the approach phase. Under the
ssumption of knowing the rotational period, the algorithm determines
he rotation axis orientation of a small body exploiting images during
he approach phase. The spacecraft camera acquires images of an
nknown small body and extracts features from these images. The long-
racked features are the projection of 3D landmarks whose movement
s due to the small body rotation. By exploiting the 2D feature tracks,
he algorithm fits a family of conics which are the projection of the
andmark 3D circle. By backprojecting the found conics in 3D, the al-
orithm finds all the possible solutions for the small body rotation axis.
he correct one is selected by ensuring coherence with the movement of
he features in the image and by exploiting a heuristic approach leading
o identifying the right rotation axis. Moreover, the center of rotation
s determined from the first image by backprojecting the small body
enter of brightness.

Numerical simulations are performed with a concave and a convex
steroid over a wide range of illumination angles and pole orien-
ations. The simulations underline that the algorithm can efficiently
etect the case in which the rotation axis is perpendicular to the
pacecraft approach direction. Moreover, the rotation axis estimation is
193
performed with limited error in most cases. Indeed the error between
the true rotation axis and its estimation is below 10◦ for 80% of the
considered test cases. The computed rotation axis is a valuable first
guess of the rotation axis to enable spacecraft localization around an
unknown small body. The proposed rotation axis estimation and the
origin determination are valuable tools to define the small-body-fixed
reference frame during the approach phase. This is an important and
preliminary task to be fulfilled before performing insertion maneuvers,
shape determination, or small-body-fixed localization.
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Appendix. The computation of 𝑼 (𝒖, 𝒗), 𝑽 (𝒖, 𝒗) and 𝑾 (𝒖, 𝒗)

The functions 𝑈 (𝑢, 𝑣), 𝑉 (𝑢, 𝑣) and 𝑊 (𝑢, 𝑣) introduced in
ection 6.3.3 are computed as follows:

(𝑢, 𝑣) = 𝑈2
1 (𝑢, 𝑣) +𝑊 2

1 (𝑢, 𝑣) (A.1)

(𝑢, 𝑣) = 2𝑈1 (𝑢, 𝑣)𝑉1 (𝑢, 𝑣) + 2𝑊1 (𝑢, 𝑣) 𝑌1 (𝑢, 𝑣) (A.2)

(𝑢, 𝑣) = 𝑉 2
1 (𝑢, 𝑣) + 𝑌 2

1 (𝑢, 𝑣) (A.3)

𝑈1 (𝑢, 𝑣) = 𝑈1,1 (𝑢, 𝑣)𝑊1 (𝑢, 𝑣) + 𝑉1,1 (𝑢, 𝑣) (A.4)

1 (𝑢, 𝑣) = 𝑈1,1 (𝑢, 𝑣) 𝑌1 (𝑢, 𝑣) +𝑊1,1 (𝑢, 𝑣) (A.5)

here (𝑢, 𝑣) are pixel coordinates. By defining the projection matrix
[𝑃 ] between the 3D world homogeneous coordinates to the 2D ho-
mogeneous image coordinates, the needed quantities are computed:

𝑊1 (𝑢, 𝑣) =

(

[𝑃 ]2,1 − [𝑃 ]3,1 𝑣
)

𝑉1,1 + [𝑃 ]2,3 − [𝑃 ]3,3 𝑣
( ) (A.6)

[𝑃 ]3,1 𝑣 − [𝑃 ]2,1 𝑈1,1 + [𝑃 ]3,2 𝑣 − [𝑃 ]2,2



Acta Astronautica 213 (2023) 177–196P. Panicucci et al.
Fig. 14. Rotation axis estimation performance with the heuristic based on landmark initialization. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
𝑌1 (𝑢, 𝑣) =

(

[𝑃 ]2,1 − [𝑃 ]3,1 𝑣
)

𝑊1,1 + [𝑃 ]2,4 − [𝑃 ]3,4 𝑣
(

[𝑃 ]3,1 𝑣 − [𝑃 ]2,1
)

𝑈1,1 + [𝑃 ]3,2 𝑣 − [𝑃 ]2,2
(A.7)

𝑈1,1 (𝑢, 𝑣) =
[𝑃 ]1,2 − [𝑃 ]3,2 𝑢 (A.8)
194

[𝑃 ]3,1 𝑢 − [𝑃 ]1,1
𝑉1,1 (𝑢, 𝑣) =
[𝑃 ]1,3 − [𝑃 ]3,3 𝑢
[𝑃 ]3,1 𝑢 − [𝑃 ]1,1

(A.9)

𝑊1,1 (𝑢, 𝑣) =
[𝑃 ]1,4 − [𝑃 ]3,4 𝑢 (A.10)

[𝑃 ]3,1 𝑢 − [𝑃 ]1,1
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where [𝑃 ]𝑘,𝑙 is the 𝑘th row and 𝑙th column element of the matrix.
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