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Abstract. The aging of bridges, coupled with increased traffic and the
imperative for sustainable practices, has sparked a growing interest in
Structural Health Monitoring (SHM). Modal parameters, recognized as
key indicators of the structural performance of bridges and viaducts,
possess the capability to unveil changes in their physical and mechani-
cal properties resulting from damage occurrence. In this context, Auto-
mated Operational Modal Analysis (AOMA) emerges as a powerful tool
for continuously identifying structural modal parameters and tracking
their evolution over time. This paper proposes a robust method, based
on Covariance-driven Stochastic Subspace Identification (SSI-COV) al-
gorithm, designed for the continuous extraction of modal parameters
from a Warren truss railway bridge. A permanent SHM system has been
installed on the bridge, enabling the monitoring of environmental ef-
fects on the estimated modal parameters. The algorithm takes bridge
free-decay responses following train passage as input, yielding promis-
ing results. These results are compared with the findings presented in a
previous study that employed a peak-picking strategy.

Keywords: Operational Modal Analysis · Warren truss bridge · railway
bridge · SSI-COV · free-decay.

1 Introduction

Transportation infrastructure is subject to aging and deterioration, while experi-
encing, nowadays, an increase in terms of daily traffic frequency and intensity [1,
2]. In this framework, a growing number of bridges and viaducts is reaching the
limit of their service design lives [3]. However, due to budget constraints and sus-
tainability targets [4], rebuilding all of them is not feasible. Consequently, the
current scenario necessitates proactive measures to prevent sudden structural
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failures, aiming to extend the service lives of these bridges and viaducts. In-
frastructure managers are actively seeking enhanced condition-based techniques
capable of complementing visual inspections, which in some cases could exhibit
limitations [5, 6]. Structural Health Monitoring (SHM), a powerful tool that has
witnessed widespread adoption over the last two decades, plays a crucial role
in supporting bridge condition monitoring alongside visual inspections. SHM
can be defined as a continuous process for damage identification and evaluation,
aiming to facilitate and optimize maintenance procedures for engineering infras-
tructures [7–10], among which it is possible to find bridges and viaducts. Direct
bridge SHM systems rely on the deployment and installation of a mesh of sen-
sors, with the goal to extract meaningful diagnostic information, by recording
structural response resulting from the action of operational and environmental
inputs. An established and effective set of damage-sensitive features is recognized
in modal parameters, capable of reflecting the health condition of the structure
and its changes due to damage occurrence. When dealing with Vibration-based
SHM, Operational Modal Analysis (OMA) [11, 12] represents a popular tool to
extract bridge modal parameters from structure dynamic response recorded in
different positions. This paper presents an automated OMA procedure, based on
an SSI-COV algorithm, applied to a sixteen-month dataset from a permanent
monitoring system installed on a Warren truss bridge belonging to the Italian
regional railway line. Employing the algorithm developed by Pasca et al. [13],
it was possible to track frequencies, damping ratios and mode shapes behavior
on a daily basis throughout the observed period. The outcomes, compared to
the analogous outputs provided by the algorithm presented in [14], run in the
same time interval and provide interesting insights in terms of modal parame-
ters behavior against temperature for the structure under analysis. The paper
is organized as follows: the next section will present the case study, consisting
of the bridge under analysis and the employed sensors mesh. Subsequently, the
SSI-COV algorithm will be briefly introduced along with its input parameters.
Following that, results will be presented and discussed. Finally, conclusions will
be drawn.

2 Case study

The subject of the present work is on a double-span Warren truss bridge (see
Fig. 1), designed in 1946, and currently in service on the Italian railway line. The
bridge configuration consists of two twin structures enabling train circulation in
opposite directions. The spans, sustained by hinge supports at the entrance and
sliders at the exit, are not directly connected, except for the track system and
a discontinuity pier. The primary focus is on the 60.5 m main span (span A in
Fig. 2).

A permanent monitoring system, equipped with resistance temperature de-
tectors and velocimeters, captures the dynamic response of the structure through
the latter (Fig. 2), and makes it possible, by the former, to analyze the effect
played by temperature on modal parameters time trend.
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Fig. 1. A view of the
bridge object of study,
on the left, and its twin
structure, on the right.
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Fig. 2. Positioning of sensing devices (velocimeters and tem-
perature sensors) along spans A and B.

In the present work, OMA employs signals collected from six velocimeters
(whose recordings are converted into accelerations), symmetrically positioned
on both sides of the bridge, along the lower chord members for ease of access
and installation. The sensors are placed at mid-span and approximately at one-
quarter and three-quarter of the length of the considered span. Upstream sensors
measure in both lateral and vertical directions, while downstream sensors mea-
sure only in the vertical direction. Additionally, the mid-span sensor on the
upstream chord also measures in the longitudinal direction, but it is disregarded
in subsequent analyses due to its limited amplitude. The utilization of lateral
and vertical channels allows for the estimation of lateral bending modes, verti-
cal bending modes, and torsional modes, given the presence of sensors on both
sides of the bridge. Finally, this sensor placement enables sufficiently accurate
estimation of vibration modes up to the third order.

A dedicated acquisition system distinguishes between continuous and trig-
gered acquisition. During the latter, the system stores data — with a sampling
rate of 256 Hz — only during events in which the measured signal overcomes a
predefined magnitude threshold, requiring pre-trigger and post-trigger duration
settings. The post-trigger length, crucial for capturing the free decay response
after train crossings, is set to 60 seconds in the present case. The presented anal-
yses exploit a sixteen-month dataset of triggered signals, due to trains passages
over the studied bridge.

This study selectively focuses on a subset of train passages occurring between
12 pm and 6 pm on a daily basis. This time window aligns with that used in [14],
to enable a comparison of the results obtained. However, in this study, ten train
passages during this time slot were utilized, characterized by the lowest possible
thermal excursion, to minimize the variation in modal behaviors (during the
same day).

As mentioned in the introduction, for each measuring channel, the SSI-COV
algorithm does not take the entire triggered acceleration signal as input, but
only its free-decay part. This approach enables proper extraction of modal pa-
rameters, which could be significantly hindered when considering train transits
(forced motion).
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3 SSI-COV algorithm

SSI-COV, which stands for covariance-driven stochastic subspace identification,
belongs to the family of subspace identification methods [15]. It performs modal
parameters identification through the application of a stochastic state-space
model, defined as follows in its discrete form:{

xk+1 = Axk + wk

yk = Cxk + vk
(1)

where xk is the state vector of the system evaluated at time instant tk, while yk
is the output vector. The matrices A and C correspond to the state matrix and
output matrix, respectively. Finally, wk and vk stand for the noise attributed to
disturbances and modeling errors, as well as measurement noise [16, 17]. Modal
parameters are extracted once the matrices A and C are estimated, and these
parameters can then be represented on the stabilization diagram.

Two crucial input parameters must be defined before running the algorithm:
the order of the model and the number of correlation points for covariance cal-
culation. This operation is critical since there are no rules to determine their
setting a priori. The model order, which is an unknown parameter for real civil
and engineering structures [17], should be conservatively set, typically exceeding
two times the expected number of vibration modes in the frequency range of
interest. Then, attention must be put on the settings of the number of corre-
lation points, which strongly influence the quality of the obtained stabilization
diagram [16].

In this work, similarly to what was done by the authors in [17], the algo-
rithm takes as input time histories of bridge free-decay responses collected syn-
chronously at different measuring points (see Fig. 2) after train passage. This
choice is based on the following consideration: free-decays can be treated as a
response to an impulsive input, which, akin to white noise, excites the system
across a theoretically infinite frequency range.

The algorithm employed in this work, developed by Pasca et al. [13], uses a
maximum model order of 200, and the number of block rows for the Toeplitz
matrix is set to 40. Evaluation of stable and spurious poles is based on three
criteria imposed on frequencies, damping ratios, and mode shapes, as expressed
in the following equations:

fp+1 − fp
fp

< 1% (2)

ξp+1 − ξp
ξp

< 2% (3)

1−MAC({ϕp+1} {ϕp}) < 2% (4)

where fp, ξp, and {ϕp} are respectively the frequency, damping ratio, and mode
shape associated with a pole of the p-th order system. As mentioned earlier,
the algorithm processes bridge free-decays following train transits, isolating the
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free-decay response from forced motion through an automated procedure that
exploits fast and slow-moving time windows, as described in [14].

4 Results and comparison

The main natural frequencies of the bridge, obtained by running both the SSI-
COV and peak-picking algorithms over a period ranging from April 2022 to
August 2023, are shown in Fig. 3, plotted as a function of temperature. Blue
points correspond to the outcomes of the peak-picking approach [14], while or-
ange ones refer to the results of the SSI-COV algorithm. This figure provides a
qualitative assessment of the differences between the two methods, in terms of
estimated frequencies dispersion around the linear trend caused by the temper-
ature variation over the sixteen-month observation period. To better quantify
this variability, three statistical indicators are utilized, namely standard devia-
tion (STD), median absolute deviation (MAD), and interquartile range (IQR),
the last two widely recognized as robust measures of scale [18].

In Fig. 4, on the left, the ratios between dispersion indicators computed
from the outcomes of the SSI-COV, and the analogous indicators provided by
the peak-picking approach, are shown. The majority of bridge modes show a
reduction in the dispersion of associated frequencies when transitioning from
the approach used in [14] to the SSI-COV one. For most frequencies, the ratio
is smaller than one across different statistical indicators.

However, the real focus is on the dispersion around the linear trend that
characterizes the distribution of frequencies as a function of temperature. In
other words, the variability of natural frequencies once the temperature effect
is removed. To do so, a linear regression analysis can be performed between
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Fig. 3. Bridge natural frequencies plotted as a function of temperature, computed with
SSI-COV methodology (orange) and peak-picking technique [14] (blue).
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Fig. 4. Ratio between various dispersion indices (STD, MAD, and IQR) evaluated
using the SSI-COV and peak-picking strategies, respectively. This ratio is determined
for all analyzed natural frequencies of the bridge.

temperature and the estimated frequency for each vibration mode. The residual,
denoted as ei, is then evaluated using Equation 5, where fi represents the raw
frequency computed by the automated OMA procedure, and f̂i is the predicted
frequency for the i-th mode obtained through linear regression:

ei = fi − f̂i (5)

This process is applied to both the outlined OMA methodologies, and the
dispersion of residuals is subsequently assessed using the same dispersion param-
eters mentioned before (STD, MAD, and IQR). In Fig. 4, on the right, the ratios
between dispersion indicators calculated from the residuals of the SSI-COV are
presented, divided by those obtained from the peak-picking approach. The find-
ings suggest that, with the SSI-COV methodology, the dispersion of residuals,
for most of the modes, is generally smaller than using peak-picking. In fact, most
of the stems decrease in height compared to the analogous on the left.

Fig. 5(a) illustrates the distribution of MAC parameters with a box plot
representation. For each frequency, MAC over the year is calculated with respect
to a reference mode shape that is computed in the first 30 days of acquisition.
In particular, this reference mode shape is found with the following procedure:

– one estimation per day of the single mode shape is computed during the first
30 days;

– for each day, MAC is computed between the daily mode shape estimate and
the ones from the remaining 29 days leading to a MAC symmetrical matrix



Automated OMA of a railway bridge exploiting free decay response 7

as follows:

[MAC] =


MAC1,1 MAC1,2 · · · MAC1,30

MAC2,1 MAC2,2 · · · MAC2,30

...
...

. . .
...

MAC30,1 MAC30,2 · · · MAC30,30

 (6)

– the sum over rows of the matrix is computed;
– the reference mode shape (for the 30-day period) is the one with the max-

imum value of the sum, that corresponds to the most similar compared to
the remaining 29 mode shapes.

This approach effectively enables the tracking of mode shape evolution in
time, in regard to an initial baseline. Fig. 5(a) reveals a low dispersion of MACs
throughout the year for all lateral modes, and slightly greater dispersion for
vertical and torsional modes.

Furthermore, with the SSI-COV approach, it is possible to overcome the
impossibility of the peak-picking method in computing the damping ratio. In
particular, in Fig. 5(b) the distribution of damping coefficients along the observed
period is reported, for each frequency of interest. It is possible to observe that
the mode shape featured by the highest dispersion is the vertical one, followed
by the torsional and first lateral modes. Narrower populations are observed for
the rest of the frequencies.

One last point to highlight is that, with the algorithm used in this study, both
the trend of MACs and damping ratios do not show a noticeable correlation with
temperature. Instead, they exhibit a random trend for all examined frequencies.

5 Conclusions

In this work, the authors investigate the performances of an SSI-COV algo-
rithm in determining the modal parameters of the main span of a Warren truss
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Fig. 5. Box plot representation of the MACs (a) damping ratios (b) distribution over
the observed period, for each vibration mode.
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railway bridge, exploiting free decay responses subsequent to train passage. The
obtained results, regarding a sixteen-month dataset, are then compared with the
outcomes of the algorithm proposed in [14]. Notably, the SSI-COV algorithm, in
addition to providing estimates of modal frequencies, offers the capability to de-
termine modal damping ratios — a feature not achievable with the methodology
described in [14]. The SSI-COV algorithm proves to be highly effective, enabling
the extraction of modal parameters within the targeted frequency range. Impor-
tantly, it achieves this with a reduced requirement for input data compared to
the peak-picking-based methodology.
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