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A B S T R A C T   

Aim: Revision hip arthroplasty has a less favorable outcome than primary total hip arthroplasty and an under
standing of the timing of total hip arthroplasty failure may be helpful. The aim of this study is to develop a 
combined deep learning (DL) and machine learning (ML) approach to automatically detect hip prosthetic failure 
from conventional plain radiographs. 
Methods: Two cohorts of patients (of 280 and 352 patients) were included in the study, for model development 
and validation, respectively. The analysis was based on one antero-posterior and one lateral radiographic view 
obtained from each patient during routine post-surgery follow-up. After pre-processing, three images were ob
tained: the original image, the acetabulum image and the stem image. These images were analyzed through 
convolutional neural networks aiming to predict prosthesis failure. Deep features of the three images were 
extracted for each model and two feature-based pipelines were developed: one utilizing only the features of the 
original image (original image pipeline) and the other concatenating the features of the three images (3-image 
pipeline). The obtained features were either used directly or reduced through principal component analysis. Both 
support vector machine (SVM) and random forest (RF) classifiers were considered for each pipeline. 
Results: The SVM applied to the 3-image pipeline provided the best performance, with an accuracy of 0.958 ±
0.006 in the internal validation and an F1-score of 0.874 in the external validation set. The explainability 
analysis, besides identifying the features of the complete original images as the major contributor, highlighted 
the role of the acetabulum and stem images on the prediction. 
Conclusions: This study demonstrated the potentialities of the developed DL-ML procedure based on plain ra
diographs in the detection of the failure of the hip prosthesis.   

1. Introduction 

Total hip arthroplasty (THA) is a highly effective treatment for 
several hip diseases in both young and elderly people and it is extremely 
widespread worldwide. In Italy, the number of primary hip re
placements increased from 66,560 in 2001 to 97,263 in 2016 with an 
average increase of 3.1% per year [1]. A further increase in primary 
prosthetic implants placement is foreseen within 2030, due to 

progressive population aging and the growing number of procedures in 
younger patients. For the same reasons, a significant increase of implant 
revisions has to be expected [2,3], thus, a properly conducted radio
graphic follow-up aims to ensure an earlier identification of potential 
complications and failure, associated with more likely manageable 
complications, conservative revisions and favorable functional out
comes. However, the early detection of THA failure still remains a 
challenge, and the final diagnosis is often confirmed at the time of 
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revision surgery. 
Artificial intelligence, particularly Deep Learning (DL) and Machine 

Learning (ML) can be used for the automatic evaluation of X-ray imaging 
for monitoring patients with hip arthroplasties, thus enhancing the 
diagnostic accuracy for THA failure. DL methods have already been 
applied to X-ray with a high degree of success in different orthopedic 
applications, such as identification of fractures [4] and classification of 
knee osteoarthritis [5]. A recent study has demonstrated the feasibility 
to automatically detect hip prosthetic failure through a DL approach, 
based on Convolutional Neural Networks (CNN) [6]. 

The aim of the present study is to develop a robust combined DL-ML 
pipeline for the automatic detection of hip prosthetic failure. In partic
ular, in addition to the original radiograph (i.e., the one comprising the 
entire prosthesis), two additional images, with the acetabulum only and 
with the stem only, were considered to enhance the classification per
formance. To test the aforementioned hypothesis, both the baseline end- 
to-end DL approach and the feature-based DL-ML approach (based on 
the original image or on 3 images) will be applied on the same dataset. 
Finally an explainability analysis will be performed to identify the main 
contributors of the model. 

2. Materials and methods 

2.1. Study population 

The study included two cohorts of patients who had undergone hip 
replacement surgery. 

The first cohort, consisting of 280 patients, was used to develop the 
model. This group was divided equally into two sub-groups: those who 
had experienced failure and underwent revision surgery (140 patients), 
and those who did not require revision surgery and served as control 
group (140 patients), clinical characteristics are shown in Table 1. 

In this study, failure included as loosening, bearing surface wear and 
osteolysis, malpositioning and dislocation. In particular, the THA failure 
in the two cohorts involved only the acetabular component in 48% of 
cases, the femoral component in 9% of cases and both the components in 
43% of cases. Almost all failures were due to aseptic loosening (95.4%), 
while a minority of patient prosthesis failed for polyethylene wear 
(3.6%), repetitive luxation (0.5%) and periprosthetic infection (0.5%). 

To be eligible for inclusion in the study, patients had to have one 
antero-posterior (AP) and one lateral (LAT) radiographic view of the 
implant before the revision surgery for the failed group or during post- 

operative follow-up for the non-failed group. Thus, the dataset used to 
develop the model included a total of 560 images. 

The second cohort of patients, which served as the external valida
tion group, consisted of 275 patients who had experienced failure and 77 
patients who had not experienced failure. This dataset included either 
AP or LAT images, with a total of 771 images available for analysis, 
comprising of 589 failed and 182 non-failed images. 

Patients included in this study were retrospectively collected from 
the digital medical records at Humanitas Research Hospital, Italy, be
tween 2009 and 2019. All the radiographic images were provided by the 
Clinical and Radiographic Arthroplasty Register of Livio Sciutto Foun
dation Biomedical Research in Orthopaedics – ONLUS. The study was 
approved by the Institutional Ethical Committee of Humanitas Research 
Hospital (prot. 408/19, approved on June25, 2019), Italy, and all pa
tients gave their written informed consent. 

2.2. Pre-processing 

In this work pre-processing was used for segmentation, to improve 
the resolution capability and ensure similar enough images. All images 
(DICOM format) were pre-processed to reduce noise and to have the 
same pixel range (between 0 and 1) and the same size. AP images were 
split vertically into two parts, each of them including only one limb 
(Fig. 1(a)). 

The following pre-processing steps were performed: i) the mist like 
effect was reduced and brightness was enhanced through a gamma 
power transformation (Fig. 1(b)) [7]; ii) a sigmoidal function was used 
to improve contrast (Fig. 1(c)), thus emphasizing the prosthesis with 
respect to bone structures; iii) contrast-limited adaptive histogram 
equalization (CLAHE) method enabled contrast enhancement (Fig. 1(d)) 
[8]; iv) a low pass-filtering was performed through a 2-D Gaussian 
smoothing kernel, so that all the frequencies above the cutoff frequency, 
representing noise, were eliminated. 

Finally, the image was resized to a standard input dimension 
(224x224) and standardized by z-score. After the above mentioned pre- 
processing of the X-rays images, a segmentation algorithm (based on 
Canny algorithm [9]) was used to identify the presence of the implant 
(some AP images had a unilateral implant). The segmentation of the 
prosthesis was also used to extract the image with only the acetabulum 
region (upper third of the image) and the one with the stem region. 

All the pre-processing steps were performed using MATLAB R2018b 
(MathWorks, USA). 

2.3. Baseline pipeline 

The Densenet169 [10] pretrained for Imagenet [11] was used as 
baseline end-to-end DL model (baseline model in the following). The 
Fully Connected layers of the original structure were replaced with a 
Global Average Pooling, a 128-Dense, a Dropout and a 2-Dense layers 
and transfer learning with a fine-tuning approach was performed. 

Data augmentation was applied enabling the resulting model to be 
more robust to non-relevant sources of variability, including suboptimal 
positioning of patients within the radiograph and suboptimal exposure 
settings. The deep model was compiled choosing the “binary cross en
tropy” as loss function and the training automatically stopped after 25 
epochs in which the validation loss did not decrease. Moreover, if the 
validation loss was not decreasing in 10 epochs, the learning rate was 
reduced by a factor of 0.1 until a minimum value of 1x10-9 was reached. 
A Dropout rate of 0.5 was set to avoid overfitting; the batch size was 32 
and the maximum number of epochs was 150. To assess the network 
performance, parallel evaluation of both accuracy and loss along epochs 
was considered. 

2.4. Feature-based DL-ML pipeline development 

Fig. 2 provides a schematic of the developed DL and DL-ML pipelines, 

Table 1 
Clinical characteristics of the study populations.   

Population Failed Non-failed 

Cohort 1    
Patients 280 140 140 
Age (years) 66 ± 11 67 ± 11 65 ± 12 
Sex (males) 104 (37%) 48 (34%) 56 (40%) 
Time from implant (months) – 16 (0.1–100) 42 (0.03–120) 
No Comorbidities 23 (8%) 13 (9%) 10 (7%) 
Dyslipidemia 16 (6%) 10 (7%) 6 (4%) 
Hypertension 47 (17%) 27 (19%) 20 (14%) 
Diabetes 9 (3%) 8 (6%) 1 (0.7%) 
Osteoporosis 7 (3%) 5 (4%) 2 (1%) 
Cardiomyopathy 16 (6%) 10 (7%) 6 (4%) 
Cohort 2    
Patients 352 275 77 
Age (years) 67 ± 13 68 ± 11 61 ± 18 
Sex (males) 125 (36%) 93 (34%) 32 (42%) 
Time from implant (months) – 17 (0.2 – 102) 41 (0.10–129) 
No Comorbidities 52 (15%) 42 (15%) 10 (13%) 
Dyslipidemia 19 (5%) 17 (6%) 2 (3%) 
Hypertension 65 (18%) 56 (20%) 9 (12%) 
Diabetes 9 (3%) 6 (2%) 3 (4%) 
Osteoporosis 7 (3%) 5 (4%) 2 (1%) 
Cardiomyopathy 16 (5%) 11 (4%) 5 (6%)  
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based on data from cohort 1. All the pipeline was performed using Py
thon 3.7 (TensorFlow and Scikit-learn). 

Starting from a baseline end-to-end DL pipeline, two combined DL- 
ML feature-based pipelines were developed, namely original-image 
and 3-image pipelines. A vector of 128 deep features (DFs) was extrac
ted from the 128-Dense layer output. These features, representing the 
compressed information used by the network for final classification, 
were fed into a ML model to develop the original-image pipeline and 
classify failed and non-failed images. 

The 3-image pipeline came from the intuition of using different 
image resolutions of DeepMedic [12]. Specifically, we considered the 
original image and the images containing the acetabular and the stem 
components, respectively. From these additional images, two distinct 
different deep models, with the same architecture as for the baseline 
model, were trained and 128 DFs were extracted similarly. Thus, a 
vector of 384 DFs was obtained combining the information of the three 
images, merging the DFs from the global original image with local 
information. 

For both DL-ML pipelines, two methods were employed, namely: i) 
considering all the features, and ii) reducing the dimensionality through 
Principal Component Analysis (PCA), keeping 90, 95 or 97% of 
explained variance. 

Finally, classification was performed with two ML models: a support 
vector machine (SVM) and a random forest (RF) model. 

A stratified data split procedure according to the patients was 
employed to the first cohort of patients to develop the model (80% of 
patients for the training and the remaining 20% for validation). Thus, 
the same proportion of the failed and non-failed groups was maintained 
in the two groups and each patient was included in only one subset. This 
procedure was repeated 50 times for cross-validating the results and for 
the optimal model choice. 

2.5. Model validation 

After testing the models with cross-validation, the final model was 
trained on the whole dataset of cohort 1 and externally validated on the 

Fig. 1. Pre-processing steps. (a): Initial image; (b) mist effect reduction; (c) contrast enhancement; (d) contrast-limited adaptive histogram equalization and low- 
pass filtering. 

Fig. 2. Workflow of the baseline DL and feature-based DL-ML pipelines.  
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771 images of cohort 2. 

2.6. Model explainability 

In order to interpret the ML models and their prediction, the SHapley 
Additive exPlanations (SHAP) method [13] was used. Starting from a ML 
model, the SHAP method calculates each feature contribution by 
determining the alteration in the model expected prediction based on a 
specific feature. Our features, being extracted from a deep model, do not 
have a direct association with the images. Nevertheless, the SHAP 
method is thought to be valuable in this scenario, potentially enabling us 
to examine which groups of DFs significantly impact the classification 
and the extent of their influence. 

2.7. Statistical analysis 

To compare the difference in the accuracy obtained by the proposed 
pipelines, the Mann-Whitney U test was applied in case of comparison 
between two groups. The statistical analyses were performed in Matlab. 

3. Results 

3.1. Model development 

3.1.1. Baseline pipeline 
Training and validation behaviors as a function of number of epochs 

for the baseline model are reported for a single repetition (over 50) in 
Fig. 3. The plateau reached in the accuracy during validation is very 
similar to the one obtained during training, meaning that overfitting was 
avoided. This model achieved a validation accuracy of 0.936 ± 0.010 
averaged on the 50 repetitions. 

3.1.2. Feature-based DL-ML pipeline 
In Table 2, the results in terms of accuracy on the validation set 

averaged on the 50 repetitions for the various feature-based approaches 
are shown. Since there were no observable differences in using different 
percentages of kept variance when using the PCA, only results with the 
90% of kept variance are presented. It could be observed that there was 
no degradation in the accuracy between the baseline model and the 
original-image pipeline that fed a ML model (either SVM or RF) with the 
128 DFs. Overall, the SVM slightly outperformed the RF, particularly in 
the 3-image pipeline. The 3-image pipeline (with and without per
forming PCA) with the SVM provided the best performance, with a 
significant difference in the obtained accuracy with respect to the 
baseline pipeline (p < 0.001) and the original-image pipeline (p <
0.001). Fig. 4 shows the ROC curves for the various feature-based 
approach for SVM and RF models. 

3.2. Model validation and explainability 

Given the higher performance of the 3-image pipeline using SVM and 
direct feature combination, this approach has been applied on the 

external validation set (cohort 2). The following performance metrics 
(mean and confidence interval obtained by bootstrapping) were ach
ieved: specificity 0.863 (0.815–0.917), recall 0.919 (0.895–0.937), 
precision 0.956 (0.941–0.974), AUC 0.961 (0.953–0.973), F1-score 
0.874 (0.850–0.897), balanced accuracy 0.861 (0.831 – 0.887). 

Table 3 shows the number and percentage of wrongly classified 
images as a function of location and cause of failure. It can be noted that 
the percentage of wrongly classified images is not dependent on the 
location of failure as the proportion of acetabular, femoral and both 
locations is similar (and not significantly different) in the whole image 
set and in the wrongly classified images. Although not statistically sig
nificant, the higher percentage of wrongly classified images with failure 
involving the femoral component with respect to the one in the complete 
dataset, might be related to lower number of cases with this location of 
failure: thus the algorithm may be not very well trained on this group. 
On the contrary, it might be observed that polyethylene wear is the 
cause of failure in only 10 images, they were all correctly classified by 
the algorithm. 

SHAP analysis was carried out to investigate the feature contribution 
for the classification on the 3-image pipeline using SVM and direct 
feature combination. Thus, the examined total feature vector was 
composed by 384 features (128 for every type of image). Fig. 5 displays 

Fig. 3. Trend of accuracy (a) and loss (b) in one fold for the baseline pipeline.  

Table 2 
Performance in the validation cohort.  

SVM Original 
image 

PCA original 
image 

3-image PCA 3- 
image 

Accuracy 0.945 ±
0.009 

0.939 ± 0.009 0.958 ± 
0.006 

0.957 ±
0.005 

Specificity 0.961 ±
0.009 

0.957 ± 0.014 0.948 ±
0.010 

0.948 ±
0.010 

Recall 0.929 ±
0.014 

0.921 ± 0.016 0.968 ±
0.010 

0.966 ±
0.010 

Precision 0.955 ±
0.009 

0.955 ± 0.014 0.949 ±
0.009 

0.949 ±
0.010 

F1 score 0.945 ±
0.009 

0.939 ± 0.009 0.958 ±
0.006 

0.957 ±
0.005 

AUC 0.982 ±
0.005 

0.981 ± 0.005 0.986 ±
0.003 

0.983 ±
0.005 

RF Original 
image 

PCA original 
image 

3-image PCA 3- 
image 

Accuracy 0.938 ±
0.009 

0.938 ± 0.009 0.943 ±
0.011 

0.943 ±
0.011 

Specificity 0.954 ±
0.012 

0.954 ± 0.014 0.945 ±
0.0125 

0.934 ±
0.011 

Recall 0.923 ±
0.016 

0.923 ± 0.016 0.941 ±
0.024 

0.952 ±
0.016 

Precision 0.947 ±
0.010 

0.952 ± 0.015 0.943 ±
0.013 

0.934 ±
0.013 

F1 score 0.938 ±
0.009 

0.938 ± 0.009 0.943 ±
0.011 

0.943 ±
0.011 

AUC 0.981 ±
0.005 

0.963 ± 0.013 0.986 ±
0.004 

0.979 ±
0.008 

SMV: support vector machine, RF: random forest, PCA: principal component 
analysis, AUC: area under the curve. 
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the SHAP values for the top 20 features that mostly contributed to the 
SVM model. Fig. 5(a) presents the features sorted in descending order of 
importance, with their corresponding average absolute SHAP value. In 
the summary plot (Fig. 5(b)), the importance of each feature is combined 
with its corresponding effects. Each point on the plot corresponds to a 
SHAP value of a feature for an instance, where the color indicates the 
feature value, ranging from low to high. Therefore, the relationship 
between the value of a feature and the impact on the prediction could be 
observed. The positive SHAP value indicates the contribution to the 
classification towards the failed class, negative towards the non-failed. 
As expected from the small difference in terms of results between the 
original image and the 3-images, the most impactful features identified 
by the SHAP analysis belong to the original image, and only two features 
not belonging to the original image were identified, namely (DF 255 
from the acetabulum and DF 370 from the stem). 

Fig. 5(c) and (d) show two plots that depict the 20 most significant 
features, sorted by their SHAP values, for one failed subject (Fig. 5(c)) 
and one non-failed subject (Fig. 5(d)). These plots show, locally, the 
relationships between the value of a specific DF of an instance and its 
contribution to the prediction. In these graphs, the value of the feature is 
represented next to its name. It can be observed that, coherently with the 
global analysis, for both the failed and non-failed cases, the major 
contribution to the prediction was given by features of the original 
image, but also some features belonging to the acetabulum and stem 
images were identified among the 20 most significant features. In both 
the failed and non-failed cases 13 over 20 features were common to the 
ones identified in the global analysis and their values was consistent 
with the global impact on the model output. For example, DF 17 was 
identified as the most impactful feature in both cases as in the global 
analysis, and its high/low value respectively in the failed/non-failed 
case is coherent with the relation reported in the summary plot of 

Fig. 5(b). Moreover, DF 255 for both the failed and non-failed cases and 
DF 370 for the failed case were identified to contribute to the prediction. 

4. Discussion 

In the clinical practice, the follow-up assessment of hip replacement 
is currently done with conventional X-rays, and it mainly aims to detect 
component malalignment, subsidence, prosthesis loosening and poly
ethylene wear (being the major causes of failure). However, the early 
detection of these complications on the basis of two-dimensional images 
(as X-rays are) can be highly challenging for clinicians. 

The use of DL methods on radiographs of hip arthroplasty implants 
has been recently successfully applied for discrimination between 
different implants [14,15] but only few studies have used it to 
discriminate healthy from pathologic implants after THA [6,16,17]. 
Accordingly, the objective of this study was to develop a combined DL- 
ML pipeline to discriminate failed from non-failed hip prosthesis im
plants through X-rays images. The results showed that the combination 
of the global features from the original image with local information 
extracted from the acetabulum and the stem improved the performance 
of the classifier, underlying the effectiveness of features concatenation. 
Furthermore, the proposed DL-ML pipeline reduced the dimension of 
image features, and their memory-consuming, without affecting the 
classification accuracy. The similarity of the results obtained from the 
models trained on the original images and on the 3-images, suggested 
that features extracted from the original images have a great role in 
failure identification. This hypothesis was confirmed by the SHAP 
analysis, which identified the features of the complete original images as 
the major contributor. Moreover, among the 20 most impactful features, 
there are one derived from the acetabulum and one from the stem, thus 
highlighting the role of the acetabulum and stem images on the 

Fig. 4. ROC curves for (a) random forest and (b) support vector machine models, for the different feature-based approaches in the validation set (cohort 1).  

Table 3 
Performance in the external validation set (cohort 2).   

Total number of images Wrongly classified images p-value Chi-square test 

Location of failure 
Acetabular 294 (50%) 17 (50%)  0.95 
Femoral 37 (6%) 5 (15%)  0.06 
Acetabular and femoral 258 (44%) 12 (35%)  0.33 
Cause of failure 
Aseptic loosening 577 (98%) 47 (98%)  0.98 
Polyethylene wear 10 (1.7%) 0 (0%)  0.36 
Repetitive luxation 2 (0.3%) 1 (2%)  0.09  
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prediction. 
Overall, a high accuracy (>94%) was obtained in the present study 

by both the baseline and the DL-ML pipelines, with the highest accuracy 
of 96% achieved by the 3-image feature-based pipeline. These results 
demonstrated that the developed DL-ML approach outperformed the 
diagnostic ability of the orthopedic surgeon in detecting THA implant 
mobilization on plain radiographs, that Temmerman et al. estimated to 
be respectively 81% and 74% with poor inter-observer agreement [18]. 
However, future studies are needed to compare the discriminating per
formance of the DL-ML approach vs. orthopedic surgeon expertise and to 
quantitatively evaluate the incrementing effect in detecting THA 
implant mobilization that the DL-ML approach can provide to the sur
geon, if used as a tool for decision support. 

Compared to the previous investigation [6], in this study a more 
comprehensive and robust analysis approach was proposed. Indeed, 
while in [6] data were not balanced and only the baseline pipeline on the 
original image was applied, herein (i) data were balanced in the 

development cohort, (ii) an external validation cohort of 352 patients 
was tested, (iii) a feature-based approach was proposed, by applying ML 
classification methods on the features extracted from the last DenseNet 
layer of the baseline pipeline, (iv) two feature-based DL-ML pipelines 
were developed, one considering the original image and one considering 
also the acetabulum and stem images, (v) the impact of PCA versus 
direct concatenation of the features was explored and (vi) an explain
ability analysis was performed. 

Similar to our studies, other investigations [16,17] confirmed the 
good performance of DL methods and their efficiency compared to 
manual classifications. However, compared to these studies, our work 
allowed either addressing some limitations or improving the perfor
mance. First, the study by Borjali et al. [16] had the serious limitation of 
using a very small dataset of 40 patients without an entirely separate 
dataset for testing and only AP images were used. Differently, the 
approach presented herein is more robust due to the larger dataset size, 
along with the use of the LAT images improving the flexibility of the 

Fig. 5. Mean SHAP values for Deep Features (DF) of SVM (a) and SHAP values with feature values (b). Example of SHAP values for DFs of SVM for a (c) failed and (d) 
non-failed images. 
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algorithm with the benefit of additional views, and the external dataset 
used for validation. Second, compared to the study by Shah et al. [17], 
herein a higher accuracy was obtained. Indeed, Shah et al. [17] reported 
an accuracy of 88%, reached by the model based on both x-ray image 
features and clinical information, whereas a decreased accuracy of 70%, 
obtained by the image-based model. Moreover, in the study by Shah 
et al. [17] an external validation cohort for model evaluation was 
lacking, while it was considered in this study. 

In clinical practice the output of this algorithm shall be considered as 
an additional tool for the orthopedic surgeon to be integrated in the 
patient’s clinical picture during THA follow-up. Indeed, a negative 
outcome of this algorithm in an asymptomatic patient shall not drive 
straightforward to a revision surgery but to a stricter follow-up. 

Indeed, future studies should investigate AI algorithms combining 
both radiological and clinical data as joint-specific and general health 
scores. This effort in improving our tools for the correct follow-up after 
THA should be put in the context of the significant advantages that an 
earlier identification of failure could give: that is to prevent extensive 
surgery in favor of less invasive ones, hence reduced complications, 
better clinical outcomes for the patients, lower costs and better post- 
operative recovery [19]. 

A limitation of this study is that all images were retrospectively 
collected from patients undergoing partial or total hip replacement 
revision and patients who underwent primary THA without any clinical 
or radiographic signs to suspect the failure of the implant. Therefore, the 
algorithm was not tested in patients who had a clinical or radiographic 
suspicion of failure but did not have surgery. Future efforts will be 
needed to confirm the ability of the network to classify those patients 
too. 

5. Conclusion 

A combined DL-ML approach allowed to detect the failure of the hip 
prosthesis from plain radiographs with a very high degree of precision. 
Moreover, including features extracted from the acetabular and the stem 
components improved the performance of the classifier. The proposed 
approach might be used in the follow-up of patients with hip replace
ment as a tool for the identification of implant failure. 

6. Summary table  

Problem The progressive population aging, and the growing number of 
hip prosthesis procedures call for the need of automatic 
detection of hip prosthetic failure to optimize the patient 
follow-up. 

What is already 
known 

Deep learning can successfully analyze x-ray images, and a 
preliminary study showed that the automatic detection of hip 
prosthetic loosening through a deep learning approach is 
feasible. 

What this paper 
adds 

A robust combined deep learning and machine learning 
approach can detect the failure of the hip prosthesis by 
enhancing the role of the stem and acetabular component 
analysis, with a recall of 0.92 in an external validation group 
of 352 patients.  
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