
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024 277

Integrating Bayesian Optimization and Machine
Learning for the Optimal Configuration

of Cloud Systems
Bruno Guindani , Graduate Student Member, IEEE, Danilo Ardagna , Senior Member, IEEE,

Alessandra Guglielmi , Roberto Rocco , Graduate Student Member, IEEE,
and Gianluca Palermo , Senior Member, IEEE

Abstract—Bayesian Optimization (BO) is an efficient method for
finding optimal cloud configurations for several types of applica-
tions. On the other hand, Machine Learning (ML) can provide
helpful knowledge about the application at hand thanks to its pre-
dicting capabilities. This work proposes a general approach based
on BO, which integrates elements from ML techniques in multiple
ways, to find an optimal configuration of recurring jobs running in
public and private cloud environments, possibly subject to black-
box constraints, e.g., application execution time or accuracy. We
test our approach by considering several use cases, including edge
computing, scientific computing, and Big Data applications. Results
show that our solution outperforms other state-of-the-art black-box
techniques, including classical autotuning and BO- and ML-based
algorithms, reducing the number of unfeasible executions and
corresponding costs up to 2–4 times.

Index Terms—Acquisition function, Bayesian optimization,
black-box optimization, machine learning.

I. INTRODUCTION

TODAY, Information and Communication Technology
(ICT) systems often exploit increasingly complex appli-

cations. These applications can execute in a distributed fashion
on computer networks or cloud systems and are often computing
intensive. This complexity allows little insight into their inner
workings, especially for system administrators who did not engi-
neer them. Examples of these systems include Big Data analytic
tools running on the cloud, scientific computing programs for
simulations requiring massive computational power, electronic
or mechanical devices operated by Artificial Intelligence, and

Manuscript received 13 February 2023; revised 2 January 2024; accepted
28 January 2024. Date of publication 1 February 2024; date of current version
8 March 2024. The work of Alessandra Guglielmi was supported by MUR,
Grant Dipartimento di Eccellenza 2023-2027. This work was supported by the
European Commission through the Horizon 2020 under Grant 956137 LIGATE:
LIgand Generator and portable drug discovery platform AT Exascale, as part
of the European High-Performance Computing (EuroHPC) Joint Undertaking
Program. Recommended for acceptance by D. Wu. (Corresponding author:
Bruno Guindani.)

Bruno Guindani, Danilo Ardagna, Roberto Rocco, and Gianluca Palermo
are with the Department of Electronics, Information, and Bioengineering,
Politecnico di Milano, 20133 Milano, Italy (e-mail: bruno.guindani@polimi.
it; danilo.ardagna@polimi.it; roberto.rocco@polimi.it; gianluca.palermo@
polimi.it).

Alessandra Guglielmi is with the Department of Mathematics, Politecnico di
Milano, 20133 Milano, Italy (e-mail: alessandra.guglielmi@polimi.it).

Digital Object Identifier 10.1109/TCC.2024.3361070

computing continuum systems for efficient distributed com-
putation. These systems require the configuration of software
settings or the available hardware resources (CPU, memory,
disk, network, etc.). However, a poor choice for such settings can
lead to application under-performance or additional costs for the
end users. The impact of incorrect configuration is potentially
paramount [1], [2], [3], and proper optimization prevents such
negative effects. For instance, running a big-data application
in the cloud without the correct configuration multiplies the
execution cost by a factor of three on average, up to ten in
the worst case [3]. This is especially true for recurring jobs,
i.e., applications that must execute multiple times, possibly with
regular frequency. In this case, the additional cost of suboptimal
configurations adds up over time.

Furthermore, it is often crucial that the execution of an ap-
plication complies with given requirements, either coming from
the service provider as part of its business model (e.g., providing
several performance targets/Service Level Objectives) or by the
customers’ needs. However, choosing the best configuration
that satisfies a-priori fixed constraints is challenging due to the
diverse behavior and resource requirements of cloud systems.

These limitations make it difficult to effectively employ white-
box methods such as Petri nets [4] and queueing networks [5]
to study software performance and compliance with constraints.
The low-level information and metrics required to parametrize
white-box models are often hard to measure, if not straight-up
impossible to access, for complex programs running in partially
accessible environments such as cloud data centers and High-
Performance Computing (HPC) infrastructures. Even if such
information were available, relations among input workloads,
program configurations, internal workflows, and specifics of
ICT systems would follow complex patterns, which would be
difficult to express with analytical models [3]. Regardless, it
would be impossible to formulate one single model to cover
all use cases. Therefore, one must create multiple individual,
domain-specific models, each requiring thorough domain ex-
pertise, extensive effort, and significant profiling costs [6]. Such
an approach is hardly scalable to large computing environments,
applications, and domains.

For these reasons, general approaches that do not require any
knowledge of the internal details of the system are becoming
popular. The literature generally refers to such approaches as

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-1710-3466
https://orcid.org/0000-0003-4224-927X
https://orcid.org/0000-0001-7005-7588
https://orcid.org/0000-0002-0223-2900
https://orcid.org/0000-0001-7955-8012
mailto:bruno.guindani@polimi.it
mailto:bruno.guindani@polimi.it
mailto:danilo.ardagna@polimi.it
mailto:roberto.rocco@polimi.it
mailto:gianluca.palermo@polimi.it
mailto:gianluca.palermo@polimi.it
mailto:alessandra.guglielmi@polimi.it

278 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

black-box techniques and the corresponding optimized quanti-
ties as black-box functions.

Bayesian Optimization (BO) has recently gained notoriety
as a powerful tool to solve global optimization problems that
involve expensive, black-box functions [7], [8], [9]. BO is a
sequential design strategy that only needs a few steps to get
sufficiently close to the true optimum and requires no derivative
information on the analyzed function. Most commonly, it starts
by choosing and evaluating a handful of starting points, and then
using them to fit a Gaussian Process model. The fitted model
estimates the function value at each point and the uncertainty
around the prediction. The BO method then iteratively chooses
new points at which to evaluate the function in such a way
as to balance exploration (large uncertainty) and exploitation
(best expected value) [7]. The traditional BO solution perfectly
suits black-box constrained optimization problems such as cloud
configuration. However, most existing approaches fail to ade-
quately take constraints into account, if at all, resulting in many
unfeasible configurations chosen.

Machine Learning (ML) models are another popular black-
box tool in ICT domains. Their remarkable predicting capabili-
ties can assist in accurately predicting resource usage, execution
times, etc., without a detailed knowledge of the system under
study. Indeed, previous work [10], [11], [12], [13] showed that
ML models usually can predict these target quantities with mini-
mal validation errors. In cloud systems, these predictive abilities
can enhance early detection (and prevention) of configurations
that breach constraints, potentially leading to substantial savings
in time, finances, and other valuable resources.

This work proposes MALIBOO (MAchine Learning In
Bayesian OptimizatiOn), a framework integrating BO algo-
rithms with ML techniques to minimize the execution costs
of recurring resource-constrained computing jobs. In particular,
we present an extension of an earlier work [14], which focused
exclusively on a class of one-dimensional optimization prob-
lems with a linear relationship between the constraint and the
target. New contributions include: 1) generalizing the theoretical
framework to fit almost any constrained optimization problem,
2) considering additional scenarios for our experimental cam-
paign, including some covered by this new generalization, and
3) broadening the comparison against the state of the art.

Our contribution is the introduction of a BO-based technique
for cloud optimization that supports both black-box constraints
and objectives. As shown in the literature review, existing works
on BO, cloud optimization, and constrained optimization have
restrictions that make them inapplicable to the scenarios we
consider. Previous attempts at integrating BO and ML also have
restrictions or exploit ML in a limited way. Our algorithm applies
to several optimization scenarios, including but not limited to
cloud optimization. However, it is especially suitable for the
cloud case, in which evaluation of a single configuration is
expensive and thus should be avoided if not strictly necessary.

We validate our approach in many scenarios of interest, on
both public and private cloud systems, to prove the generality
of our solution. The scenarios analyzed include Big Data ana-
lytics, edge computing, and scientific computing applications.
These applications act as representatives of systems commonly
employed in the industry. In the experimental campaign, we

compare our algorithm against state-of-the-art black-box tech-
niques, some based on BO and ML, some based on traditional
autotuning methods. We observe that the proposed BO algorithm
variants reduce both the unfeasible executions and the percent-
age of unfeasible costs compared to those techniques: up to 2–3
times compared to a classical BO approach and up to 3–4 times
to another prominent algorithm integrating BO and ML.

This paper is structured as follows. Section II surveys the
state-of-the-art techniques for cloud systems performance anal-
ysis and optimal configuration. In Section III, we formalize the
problem of optimal application configuration at hand. Section IV
presents an overview of BO and explains its key components.
Section V details our contributions involving the integration
of ML into BO. We explain the settings of our experimental
validation in Section VI, present results in Section VII, and
discuss them in Section VIII. Conclusive remarks follow in
Section IX.

II. RELATED WORK

This section reviews the state of the art for the automatic
configuration of general ICT and cloud-based systems.

Several autotuning software solutions allow the exploration
of search spaces with varying complexity, although they of-
ten cannot consider constraints. OpenTuner [15] is a popular
Python-based framework for building domain-specific multi-
objective program autotuners. It exploits an ensemble of search
techniques running simultaneously and sharing results, while
a root meta-technique (e.g., multi-armed AUC bandit) handles
the allocation of tests to the various approaches. Optuna [16] is
another commonly used software, implementing several kinds
of search algorithms (e.g., Random Search, NSGA-II, Quasi-
Monte Carlo) and allowing dynamic parameter space construc-
tion. However, it targets unconstrained optimization and does
not inherently support the presence of constrained resources.

We now examine BO literature for optimal configuration
selection and autotuning in Section II-A and ML literature for
predicting configuration behaviors in Section II-B. Then, in
Section II-C, we also review previous attempts at integrating
BO with ML techniques.

A. Bayesian Optimization

In the literature on BO and its application to optimal ICT
system configuration, the CherryPick framework [3] has been
proposed as a solution for cloud optimization. In particular, it
utilizes pure constrained BO to find optimal cloud configurations
for Apache Spark Big Data applications. Similarly, authors
of [2] leverage low-level performance metrics to enhance BO
efficiency in finding the best type of Virtual Machine (VM) on
the cloud. However, the proposed approach is only applicable
whenever such essential system metrics are available. Other
works use some BO variants to optimize cloud configuration
for automated laboratory instruments [17] and for microservice-
based applications [18] – but both approaches do not account for
constraints.

Another noteworthy example of cloud systems optimization
via BO is Google Vizier [19]. In this work, Google researchers

GUINDANI et al.: INTEGRATING BAYESIAN OPTIMIZATION AND MACHINE LEARNING FOR THE OPTIMAL CONFIGURATION 279

present the internal framework used in their data centers to con-
duct black-box optimization of physical and software systems
running in a production environment. Their default optimization
algorithm exploits BO techniques based on batched Gaussian
Process (GP) bandits. A work using similar methods is [20],
in which authors tackle the problem of selecting the optimal
configuration for a database management system. They present
an autotuning algorithm built on top of BO, exploiting contex-
tual GP bandits. Yet again, these techniques do not effectively
consider constraints. The former requires specifying a list of
feasible configurations before the optimization process, while
the latter uses a soft constraint approach by incorporating the
scarce resource into the objective function.

BO techniques also allow tuning the many hyperparameters of
large prediction models, such as Deep Neural Networks (DNN),
characterized by a black-box nature and hefty computational
costs. We discuss an example of such application in Section II-C.

Hyperopt [21] is a popular example among BO-based auto-
tuning solutions for hyperparameter tuning in ML libraries such
as Python Scikit-learn or Spark MLlib. It uses a custom BO algo-
rithm based on Trees of Parzen Estimators, replacing parametric
distributions for software configurations with non-parametric
densities. Other examples include Kernel Tuner [22], which is
specific to GPU applications, and SMAC3 [23], which features
both traditional GP-based algorithms and other approaches such
as Random Forest-based BO. These libraries do not support
constraints either.

Besides cloud optimization [24], BO has been successfully
applied to several black-box optimization problems [7] in an
unconstrained setting, from energy minimization in molecule
simulation [25] to laser-plasma particle accelerators [26]. The
topic of constrained BO has also received attention on its own,
including works on unknown or black-box constraints. For in-
stance, authors of [8] suggest the Expected Barrier acquisition
function, which combines convergence guarantees of numerical
local search methods with the global breadth of search provided
by BO. The ADMBBO algorithm in [27] turns a constrained
optimization problem into an unconstrained one via a Lagrange-
esque penalization for constraint violation, then divides it into
subproblems, each solved via unconstrained BO. Finally, [28] in-
troduces a probabilistic approach to compliance with constraint
functions. The core idea is to introduce a probability-weighted
expected improvement acquisition function, in which the user
can provide a confidence threshold for the probability of con-
straint compliance. However, all these methods assume indepen-
dence of their surrogate models on the target and the constrained
function, which is unrealistic in many scenarios, including the
ones in our experimental analysis (see, e.g., Section VI-A1).

As mentioned, most other works, especially those on cloud
optimization, do not consider constraints. CherryPick [3] does
allow them, but the assumptions on its underlying model restrict
it to a limited class of constrained optimization problems, as
discussed later.

B. Machine Learning

ML is a common tool for predicting the performance of
ICT systems, such as Big Data applications, training of deep

learning models, and Function-as-a-Service (FaaS) systems.
Overall, results found in the literature are promising in showing
the usefulness of ML in the context of cloud configuration.
For instance, [11] examines the performance of several ML
models in carrying out predictions of Apache Spark jobs ex-
ecution times with different types of workloads. Their results
outperform the models used by Spark creators. The Hemingway
framework [29] specializes in the modeling and identification
of optimal cluster configuration for Spark MLlib-based ap-
plications. Authors of [12] use several ML models alongside
anomaly detection techniques to properly configure a cloud-
based Internet of Things (IoT) device manager, while respecting
Quality of Service (QoS) constraints. Another recent work [10]
explores performance prediction of GPU-deployed neural net-
work training times starting from cloud specifications using
ML techniques and feature selection methods. Similarly, [13]
compares different popular ML techniques applied to a work-
load prediction analysis on HTTP servers, showing that they
all achieve good predicting capabilities. Finally, the Schedulix
framework proposed in [30] uses linear regression to estimate
execution latencies of serverless applications in a public cloud
FaaS setting.

In general, one must pair the performance prediction capabil-
ities of ML under a given configuration with an effective way
to explore and choose them, which is a challenging problem in
and of itself.

C. Integration of Bayesian Optimization and Machine
Learning

Recent BO works involving ML include [31], [32], and [33].
In particular, [31] presents the Paprika scheduler, which co-
optimizes hardware and software configurations for Spark work-
loads. This process uses a BO-based algorithm integrated with
ML elements, namely feature selection via Lasso regression.
Their model is one of the closest to our research goal, but it
requires offline training before deployment, which may only
sometimes be possible in practice. Furthermore, their exploita-
tion of ML is arguably limited in scope since they only use it
to choose among the existing features without any regression
strategy involved. In addition, it does not take constraints into
account.

The SVM-CBO algorithm [32] exploits ML to find opti-
mal configurations in a constrained setting, for instance, when
deploying DNNs to tiny microcontroller-based systems. Their
algorithm consists of two phases: the first phase approximates
the feasible domain via a Support Vector Machine (SVM) clas-
sification model, while the second phase applies pure BO to the
approximated domain found earlier. This approach is arguably
inefficient in exploiting the iteration budget since it handles the
domain approximation and optimization phases separately.

Finally, [33] introduces the Lynceus framework to jointly op-
timize software and hardware configuration of data analysis and
ML jobs on cloud platforms when subject to time constraints.
It simulates exploration paths to assess the long-term impact of
the choice of a configuration. It uses a BO method based on
an unconventional Decision Tree bagging ensemble as its prior
distribution to model the probability of satisfying the constraints.

280 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

However, literature shows that Gaussian Process-based BO (like
the one present in this work) usually performs better than other
BO variations for metrics such as execution time and cost [24].

III. PROBLEM FORMULATION

We aim to find the optimal configuration for cloud systems
under a black-box cost metric and subject to black-box perfor-
mance and resource constraints, such as execution time or quality
thresholds.

We consider the mathematical formulation for our con-
strained, noisy global optimization problem as follows. Let
x ∈ A denote the d-dimensional vector representing a configu-
ration for the system at hand, with A ⊂ Rd being the domain of
all possible configurations. The numerical vector x includes the
values of a (possibly large) number of software and hardware
configuration parameters, e.g., the buffer size, the number of to-
tal cores (potentially available on multiple homogeneous VMs or
physical servers) used for the job, and other application-specific
parameters such as algorithm iterations or simulated molecules
number. The black-box objective function f(x) : A → R to
minimize typically measures the performance or quality of
configuration x (e.g., a cross-validation error score), the running
time or cost of an application, and so forth. Therefore, in all
practical applications of interest, f(·) is always a lower-bounded
function. We also assume a scalar constraint function g(x) :
A → R, which is possibly independent of the objective function.
The constraintg(·) is also a black-box function whose expression
is unknown. Therefore, the feasible part of the domain, i.e.,
the one containing points that satisfy the constraint, is also
unknown. We represent such constraint on x with a potentially
unbounded closed interval, whose extrema Gmin and Gmax can
be infinite (i.e., Gmin, Gmax ∈ [−∞,+∞]). This assumption
is different from other works such as CherryPick [3], which
requires strict assumptions on its optimization problem (see also
Section VI-A1). The generality of the constraint is also one of
the main novel contributions to our previous work [14]. We then
have:

min
x∈A

f(x) + ε

s.t. g(x) ∈ [Gmin, Gmax], (1)

where ε is a noise term. Including noise in the model proves
necessary in a general formulation because of its usefulness
in some specific scenarios. For instance, in a cloud setting, it
accounts for the intrinsic variability of an application execution
time, even when the application runs multiple times with the
same configuration. This variability typically comes from exter-
nal causes, such as concurrent access to the underlying physical
resources or network congestion.

The problem formulation in equation (1) is general enough to
model a wide variety of cloud optimization scenarios, ranging
from neural network hyperparameter tuning to efficient energy
consumption. While we include a single constraint in equa-
tion (1), our approach can easily extend to an arbitrary number
of constraints [g1, . . . , gm].

IV. BAYESIAN OPTIMIZATION OVERVIEW

BO is a particularly efficient method within the setting de-
scribed in Section III because it approximates the minimum of
a given black-box objective function f(·) on its domain A by
using as few iterations as possible. Strong assumptions on f(·)
or A are not required; in particular, BO algorithms do not need
derivative information. For these reasons, several works use BO
methods to optimize expensive black-box objective functions,
that is, functions for which little information is available and
whose evaluation has significant time, resource, or monetary
costs [7].

We now give a brief overview of the main tools used by BO.
In particular, we explain the peculiarities of Gaussian processes
(Section IV-A) and acquisition functions (Section IV-B) in a BO
context, ending with a final overview (Section IV-C).

A. Gaussian Processes

In BO settings, the Gaussian process (GP) [34] is the preferred
choice for the prior distribution, or surrogate model, for f(·). For
any x ∈ A, this prior assigns to each value of f(x) a Gaussian
probability distribution which depends on x:

f(x) ∼ πx(·) = N (μ0(x), σ
2
0(x, x)). (2)

In equation (2), μ0(·) and σ2
0(·, ·) denote the mean and ker-

nel functions, respectively, and they constitute the GP model
hyperparameters. These functions serve as “initial guesses” on
values of f(·) and its uncertainty, a starting point for the BO
algorithm, which will update them with observed values. A
constant mean function μ0(·) ≡ μ0 is often adopted, whereas
the choice of the kernel is more delicate since it influences the
smoothness of the process. Common choices include the squared
exponential or Radial Basis Function (RBF) kernel and the
MatÃ©rn kernel [34]. In this work, we assume μ0(·) ≡ μ0, and
we use the MatÃ©rn kernel [7], parametrized by the smoothness
parameter ν. The RBF kernel is unsuitable for our case since
it gives the GP a substantial degree of smoothness, which is
unrealistic in many practical scenarios (see [35]).

We now examine the posterior distributions for these hyperpa-
rameters. Let H = {(x1, f(x1)), . . . , (xn, f(xn))} be the his-
tory of n past observations, which we also indicate as Hn when
emphasizing its cardinality. Specifically, observation i consists
of the configuration vector xi and the associated evaluation of
the objective function f(xi). Having observed values in H , one
can compute the posterior distribution of each f(x), starting
from the prior distribution in equation (2) and considering these
observations. The posterior is the conditional distribution of
f(x) given Hn, which, in this case, is a Gaussian distribution
with mean μn(·) and variance σ2

n(·) (see, for instance, [7]):

f(x)|Hn ∼ πx(·|Hn) = N (μn(x), σ
2
n(x)). (3)

Note the conditioning symbol | in equation (3). We can compute
the posterior mean and variance in closed form by well-known
properties of GPs [7]:

μn(x) = μ0(x) + σ2
0(x, x1:n)

T σ2
0(x1:n, x1:n)

−1·
· (f(x1:n)− μ0(x1:n)) , (4)

GUINDANI et al.: INTEGRATING BAYESIAN OPTIMIZATION AND MACHINE LEARNING FOR THE OPTIMAL CONFIGURATION 281

σ2
n(x) = σ2

0(x, x)− σ2
0(x, x1:n)

T σ2
0(x1:n, x1:n)

−1·
· σ2

0(x, x1:n). (5)

In equations (4) and (5), σ2
0(x, x1:n) indicates the column

vector of values of the σ2
0(·, ·) function applied to pairs

(x, x1), . . . , (x, xn), and similarly for f(x1:n) and μ0(x1:n).
Analogously,σ2

0(x1:n, x1:n) is the matrix of values ofσ2
0(xi, xj)

with i, j = 1, . . . , n. Given a configuration x, after n evalua-
tions, this probabilistic model allows us to attribute both the
current pointwise estimate of f(x) and a measure of uncertainty
on such estimate, represented by the posterior mean μn(x) and
variance σ2

n(x).

B. Acquisition Function

BO formulates a proxy problem at each step – the maximiza-
tion of the acquisition function. This function depends on the
history and on the GP model at the current algorithm iteration
n and measures the utility of evaluating the objective function
f(x) in a given configuration x. Formally, we denote this as
a(x|Hn) : A → R, or a(x) for short. The BO iterative algo-
rithm optimizes this function at each round instead of directly
optimizing the objective function itself.

Since the acquisition function is a measure of expected utility,
it has larger values in points in which the algorithm should eval-
uate the objective function to obtain the most information about
the optimum location. This means that the acquisition function
must strike a delicate balance – the exploration-exploitation
trade-off. On one side, we have points with large uncertainty
because they lie in a not yet explored domain region. Choosing
such points to evaluate the objective f(·) is appealing, especially
early on in the optimization procedure, because it would enable a
massive decrease in the overall uncertainty, i.e., an increase in the
amount of available information about the optimum. On the other
hand, the algorithm seeks to find the optimum of the objective
function; therefore, it should also choose to evaluate points that
most likely (according to the GP model) give small values of
f(·). This means exploiting the already available information
on the location of the optimum, especially in the late iterations
of the algorithm.

This work considers the Expected Improvement (EI) acqui-
sition function. The EI over the best value f ∗

n found by the
optimization process so far is:

EIn(x) := Eπx(·|Hn)[max(f ∗
n − f(x), 0)]

with f ∗
n = min

i≤n
f(xi). (6)

The expectation is taken under the current posterior distribution
π(· |Hn) of f(x), given history Hn. Equation (6) means that
we maximize the expected value of the improvement over the
current best point f ∗

n, based on information collected so far (i.e.,
the points in the history Hn).

We use the EI acquisition function because it is the most
widely used within the BO literature. The proposed approach is
generally compatible with any other acquisition function, such
as the Lower Confidence Bound [7], [35].

Algorithm 1: Generic Bayesian Optimization Algorithm.
1: choose n0 initial points
2: evaluate f(·) in the initial points, add all evaluations to

history H
3: for iterations n = 1 : N do
4: update the current posterior distribution of the GP

model with data in H
5: find point xn+1 which maximizes the acquisition

function a(·) under the current model
6: evaluate f(xn+1), add performed evaluation to H
7: end for
8: return estimated optimum x̂

In constrained optimization scenarios, the acquisition func-
tion also considers constraints. In particular, the literature has
proposed [9] a generalization of EI to the constrained setting. It
is the Expected Improvement with Constraints (EIC) acquisition
function, which accounts for the probability of a point satisfying
the constraints:

EICn(x) := EIn(x) · Pπx(·|Hn) (g(x) ∈ [Gmin, Gmax]) .
(7)

This method requires a probabilistic model for the constraint,
e.g., a GP on the values of g(x). This GP can be either inde-
pendent of the one placed on f(x), or derived from it (like in
CherryPick, see Section VI-A1). Note that a constraint-aware
acquisition function may only discourage the selection of un-
feasible points rather than straight up forbidding it: this is the
case for the EIC presented in equation (7).

C. Summary of Bayesian Optimization

Algorithm 1 summarizes the core procedure for a BO algo-
rithm (both constrained and unconstrained), while Fig. 1(a) and
(b) present a visual summary of how BO works. In Fig. 1(a),
the gray line represents the actual objective function f(·) to
minimize under a constraint. We represent the unfeasible portion
of the optimization domain by using a dashed line for the
corresponding part of the objective function. Since the constraint
has a black-box nature, this unfeasible portion is unknown. In
Fig. 1(a), we also plot the GP estimates of f(·) in terms of its
mean function (dashed blue line) and 95% credible intervals
(light blue area). The three red dots represent sampled points,
which have reduced uncertainties compared to other domain
points (or zero uncertainty if not accounting for noise in ob-
servations of f(·)). As previously explained, the GP model
attaches a Gaussian probabilistic estimate to f(x) for each x.
In Fig. 1(a), the Gaussian curve in light gray represents this
estimate when x = 2.5. In the bottom part of the figure, we plot
the values of the acquisition function for each value of x. We
will evaluate the crossed red point in the next round since it
has the largest expected utility among all points in the domain.
Fig. 1(b) represents the subsequent BO iteration after the new
point evaluation and the computation of a new maximizer of the
acquisition function.

282 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 1. Illustrative examples of (constrained) Bayesian Optimization: classical (1a, 1b) and ML-integrated version (1c, 1d).

V. ENCODING INFORMATION FROM MACHINE LEARNING IN

BAYESIAN OPTIMIZATION

Our main contribution is the integration of ML techniques
into the BO framework. ML methods can be helpful in opti-
mization problems because of their predicting capabilities. This
is especially true in a setting where information on the objective
f(·) and the constraint g(·) is scarce, given that both of them are
black-box, expensive-to-evaluate functions. For instance, it is
possible to convey information about the violation of constraints
by guiding the search towards points x ∈ A that most likely
satisfy them. The BO algorithm benefits from this approach,
as our goal is ultimately to find optimal configurations that are
also feasible, i.e., points x such that g(x) ∈ [Gmin, Gmax] (see
equation (1)). Unfeasible points represent a waste of resources
and computational time in a recurring job setting, providing
additional unnecessary costs.

ML models provide benefits especially considering their ac-
curacy in predicting the execution times of the applications
of interest. Besides the promising results on the matter in the
literature (see [10], [11], [12], [13]), our preliminary analysis
shows good prediction capabilities on the target applications,
as we mention in Section VI-C. The idea of BO incorporating
information independent of its GP model was first considered
in [36].

A. Modifying the Acquisition Function

The core contribution of MALIBOO is integrating the BO
acquisition function with information from ML models. The
acquisition function is the centerpiece of the BO algorithm, as
it single-handedly drives the optimization process by selecting
new configurations and managing the exploration-exploitation

trade-off. Thus, it is a crucial element for improving a BO
algorithm.

Let ĝ(x) : A → R be a predicting function for g(x), that is, a
function which outputs a prediction on the constrained resource
from equation (1) given configuration x. In our case, ĝ(·) is the
estimate of g(·) from an ML regression model, which uses data
{x1, . . . , xn} collected up until the current BO iteration n, and
that we train in an online fashion. From a formal perspective,
we can characterize an ML-integrated acquisition function as
follows:

ã(x) = F (a(x), ĝ(x)). (8)

The F (·, ·) : A2 → R function in equation (8) encodes the rela-
tion between the original acquisition function a(·) and the ML
model ĝ(·). We provide two examples of such relation:
� ã1(x) = a(x) · exp(−k ĝ(x)), the latter term being a [0,1]-

valued weight called nascent minima distribution func-
tion [37] of degree k. Through this exponential term, ĝ(x)
becomes an acquisition-like function of its own. That is,
it has values closer to 1 if the predicted value of the
constrained resource ĝ(x) is small and closer to 0 if such
prediction is large. This solution handles scenarios where
a lower value of the constrained resource is desirable, like
for execution time or bandwidth. Instead, if we aim for
a higher value, it is possible to use the similarly defined
coefficient ã1(x) = a(x) · [1− exp(−k ĝ(x))];

� ã2(x) = a(x) · I{ĝ(x) ∈ [Gmin, Gmax]}, with I being the
indicator function. In this case, the acquisition function
is zero in areas where we predict that g(x) violates the
constraints (i.e., we exclude these areas from the search).
We, therefore, use the ML model ĝ(x) to approximate the
feasible domain at the current iteration.

GUINDANI et al.: INTEGRATING BAYESIAN OPTIMIZATION AND MACHINE LEARNING FOR THE OPTIMAL CONFIGURATION 283

Fig. 2. MALIBOO architecture.

We can also combine these factors, creating an ML-integrated
acquisition function that accounts for the magnitude of values
and feasibility. Since the ML model carries information about
the violation of constraints, the new acquisition function is
likely to consider fewer unfeasible configurations, improving
the algorithm performance.

The proposed algorithm is agnostic to the choice of the
original acquisition function a(·), predicting function ĝ(·), and
encoding function F (·, ·). In particular, we may adopt any other
ML model for ĝ(·), ranging from Random Forests to XGBoost,
which are commonly used for performance prediction in ICT
domains [11], [38].

Introducing an ML model may sometimes lead to the acquisi-
tion function becoming non-convex or no longer having a closed-
form expression. In this case, we rely on traditional non-convex
optimization techniques, such as Nelder-Mead heuristics [39],
to find the maximum of the acquisition function.

We represent the potential impact of ML integration and the
usage of the ã2(x) acquisition function in Fig. 1(c) and (d). They
depict a similar example as Fig. 1(a) and 1(b), but this time
we take the feasibility of the points into account. Indeed, if the
ML model can detect the left part of the optimization domain
as unfeasible, then it will set the corresponding values of the
acquisition function to zero (see the bottom part of Fig. 1(c)).
This impacts the choice of the BO algorithm, which in this
example chooses a feasible point instead of an unfeasible one
(unlike in Fig. 1(a)). In this way, we prevent the exploration of
an unfeasible configuration.

B. Proposed Approach

Fig. 2 offers an overview of the implementation architecture
of MALIBOO to optimize cloud configuration. Furthermore, we
summarize the procedure we propose to integrate BO and ML
in Algorithm 2. MALIBOO adopts a first-in-first-out memory
queue for discrete features to prevent exploration of already
visited values, as suggested by the taboo search meta-heuristic
methods [40]. In this memory queue, we save the last q config-
uration vectors visited by the algorithm. We exclude configura-
tions currently in the queue from being selected again until they
have shifted out, i.e., after q iterations.

Algorithm 2: MALIBOO Algorithm.
1: choose n0 initial points
2: evaluate f(·) in the initial points, add all evaluations to

history H
3: for iterations n = 1 : N do
4: update the current posterior distribution of the GP

model with data in H
5: train model ĝ(·) with data in H
6: find point xn+1 which maximizes the acquisition

function ã(·) under the current model
7: evaluate f(xn+1), add performed evaluation to H
8: update memory queue with xn+1

9: if stopping criteria (if any) are met then
10: terminate the algorithm
11: end if
12: end for
13: return estimated optimum x̂ = argminx∈Hf(x)

Similarly to regular BO, at each round, we maximize (see
algorithm 2, step 6) one of the acquisition functions presented in
Section V-A, which incorporates the ML model trained at step 5.
Then, we evaluate the new configuration (step 7) as usual, and
we update the memory queue (step 8). Finally, we may employ
a termination criterion (steps 9-11) for our algorithm based on
the observed values of the constrained resource g(·) and its
relation to its bounds Gmin and Gmax. The presence of this
criterion and its specific implementation are heavily dependent
on the optimization problem and application under scrutiny,
since values of g(·) have different significance in each scenario.
Suppose, for instance, that there is a contrasting relationship
between g(·) and the target function f(·), like in the case of
minimizing a budget (money, fuel, etc.) while meeting a time
threshold. In this case, using more resources (i.e., having larger
values of f(·)) results in a lower execution time – meaning that
a time that is just under the threshold likely consumes the least
amount of resources for that configuration to be feasible. In such
a scenario, we would choose to employ a termination criterion,
and we could design it as follows: the algorithm continues until
the evaluated running time at the current iteration is sufficiently
close to the time threshold, i.e., g(xn) ∈ [αGmax, Gmax], with
α ∈ (0, 1). In case we use a stopping criterion, after termination,
we have likely found the optimal configuration or at least a
near-optimal one. Therefore, we execute all subsequent runs
using such a configuration. On the contrary, we would not use
any termination criteria in unconstrained optimization scenarios,
or any in which the relation between the objective and the
constrained resource is unclear. In these cases, the MALIBOO
algorithm continues until it reaches the prescribed maximum
number of iterations, similar to regular BO.

VI. EXPERIMENTAL SETTINGS

In this section, we present our experimental setup for validat-
ing MALIBOO. In Section VI-A, we describe the approaches
on which we compare our algorithm with the literature. In
Section VI-B, we describe the specific applications we consider

284 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

and the algorithm parameters we use in Section VI-C. The results
themselves are instead detailed in Section VII.

A. Reference Comparison Approaches

We now describe the different methods we compare with
MALIBOO: CherryPick, SVM-CBO, and OpenTuner. They
represent a varied range of approaches: in particular, they are
the reference BO approach for cloud systems, a hybrid BO-ML
approach, and a widely used non-BO black-box autotuner, re-
spectively.

1) Cherrypick: CherryPick [3] is one of our reference ap-
proaches for constrained BO-based cloud optimization, as well
as one of the seminal works on cloud systems optimization pro-
posed in the literature that handles the constrained case. Hence,
we consider the model used in CherryPick as a competitor for
several of our validation experiments. In this case, the goal is to
find the optimal configuration of a Spark application running in
a cloud system to minimize its execution cost. The model used
by CherryPick is the following:

min
x∈A

P (x)T (x) + ε

s.t. T (x) ≤ Tmax, (9)

withP (x), T (x) > 0∀x ∈ A. In particular, f(x) = P (x)T (x),
where P (x) is the variable cost per unit of time T (x) given
configuration x. This cost model is realistic in many cloud
computing scenarios, where users pay, e.g., for the number
of parallel cores or VMs they wish to use. CherryPick also
assumes the deterministic price functionP (x) to be proportional
to the number of VMs or cores used by the application job,
which is always included in the configuration vector x. In our
general model in equation (1), this corresponds to setting the
constraint function g(·) ≡ T (·) and the bounds Gmin = 0 and
Gmax = Tmax. In this way CherryPick introduces a relation
between f(·) and g(·), an assumption which our general model
does not make.

In particular, CherryPick considers the Expected Improvement
with Constraints (EIC) acquisition function presented in Sec-
tion IV-B:

EICn(x) := EIn(x) · Pπx(·|Hn) (T (x) ≤ Tmax)

= EIn(x) · Pπx(·|Hn) (f(x) ≤ P (x)Tmax) . (10)

In the last equality, the constraint T (x) ≤ Tmax is expressed
as a function of f(x) = P (x)T (x) since, in BO methods, the
GP prior is placed on the target function f(·), not on T (·).
For our comparison, based on the ã1(·) and ã2(·) described
in Section V-A, we develop several variants of the acquisition
function:
� gA(x) = EIC(x) (or EI(x) in unconstrained scenarios),

the original acquisition function, which we use as baseline;
� gB(x) = gA(x) · exp(−k T̂ (x)), with the nascent minima

distribution function coefficient;
� gC(x) = gA(x) · I{T̂ (x) ≤ Tmax}, with the indicator

function;
� gD(x) = gA(x) · exp(−k T̂ (x)) · I{T̂ (x) ≤ Tmax}, the

combination of cases B and C.

Because CherryPick is limited to constrained minimization,
we cannot use the same acquisition functions in the uncon-
strained case. In such scenarios, we can use a similar acquisi-
tion function using regular EI: gB(x) = EI(x) · exp(−k f̂(x)),
namely replacing T̂ (x) with f̂(x) in the exponential compo-
nent. This acquisition function guides the optimization process
towards points the ML model deems promising, e.g., with small
values of f(·).

2) Svm-Cbo: The second competing approach we focus on
is SVM-CBO [32] since it is one of the algorithms from the liter-
ature combining BO and ML models, and hence one of the most
comparable approaches to ours. In this work, authors attempt to
find the hyperparameter set that maximizes the accuracy score
of a DNN while subject to black-box deployability constraints.

As anticipated in Section II, the SVM-CBO algorithm con-
sists of two phases. In phase 1, starting from a pool of evenly
distributed points, it initializes a Support Vector Machine (SVM)
classification model. This model aims to approximate the feasi-
ble domain of the problem, by distinguishing between feasible
(i.e., the DNN is deployable on a memory-constrained device)
and unfeasible configurations. The algorithm then iteratively
collects new configurations using a non-BO-based acquisition
method that considers the SVM separation surface and a mea-
sure of the search space coverage. The DNN is compiled on
the target device at each new configuration, and the algorithm
updates the SVM model with the feasibility information of such
configuration. This phase ends after a fixed number of iterations.

In phase 2, the algorithm performs pure BO to find the DNN
configuration, which maximizes the accuracy score. In this
phase, the algorithm restricts the optimization domain to the
approximated domain from phase 1. Again, the BO algorithm
continues until the fixed iteration budget runs out.

Similarly to MALIBOO, this approach exploits ML to esti-
mate the feasible domain. However, in SVM-CBO, this estima-
tion takes place separately from the optimization rather than
jointly. For this reason, MALIBOO can exploit the iteration
budget better than SVM-CBO. Our experimental results in Sec-
tion VII support this claim.

3) Opentuner: Finally, we compare against OpenTuner [15],
a popular open-source autotuner. It uses an ensemble of multiple
search techniques to conduct black-box constrained or uncon-
strained optimization of the given application. A meta-search
algorithm guides the exploration process, allocating more tests to
techniques which perform well. The techniques coordinated by
the meta-algorithm include classical optimization methods such
as differential evolution and greedy mutation variants. Individual
techniques share results through a common database, so that
improvements made by one of them can also benefit the others.
This sharing occurs in technique-specific ways; for example,
evolutionary techniques add results found by other techniques
as members of their population. The default meta-algorithm in
OpenTuner is the “multi-armed bandit with sliding window, area
under the curve credit assignment”, also known as AUC Bandit.
The ensemble of several different methods allows extensive ex-
ploration of the optimization domain, while the clever allocation
of tests by the meta-technique encourages the exploitation of
promising paths.

GUINDANI et al.: INTEGRATING BAYESIAN OPTIMIZATION AND MACHINE LEARNING FOR THE OPTIMAL CONFIGURATION 285

TABLE I
SUMMARY OF OPTIMIZATION PROBLEMS

The library includes classes for constrained and unconstrained
autotuning, named MinimizeTime and ThresholdAccuracyMin-
imizeTime, respectively. Despite their name, one can implement
derived classes to account for any objective and constraint
functions.

B. Experiment Setting

In this context, we test the MALIBOO algorithm in several
scenarios, on both public and private cloud systems. The first
three scenarios involve the Apache Spark Big Data analytics
framework [41]. Other scenarios involve the Stereomatch edge
computing application [42] and the BFS and MD GPU bench-
marks. Finally, we test our technique on LiGen [43], a real-world
scientific computing application.

The applications mentioned above represent several system
types commonly employed in the industry. Big data applications
often run on cloud servers because they offer easy access to pow-
erful analysis frameworks such as Apache Spark. On the other
hand, an edge computing application such as Stereomatch rep-
resents an emerging access pattern to cloud resources, in which
data collection happens at the IoT layer while processing takes
place in the cloud. GPU applications are prevalent in tasks that
can use acceleration for parallelizable code, ranging from neural
networks [44] to large-scale image processing programs [45].
The usage of scientific computing applications is widespread in
most science and engineering areas, from spacecraft trajectory
simulation to molecule simulation [46].

We summarize the optimization problems described in the
next sections in Table I.

1) Big Data Applications: We now describe the three Apache
Spark applications, which we optimize on the number x of
parallel cores used to run them (x is therefore one-dimensional):
� Query26 is an interactive query from the TPC-DS industry

benchmark,1 and represents SQL-like tasks. We execute it
with input datasets I of varying sizes, specifically 250 GB,
750 GB, and 1000 GB.

� Kmeans is a well-known statistical clustering technique
and a typical example of an iterative task. We execute it on
Spark-Bench2 by providing it as input datasets I with 100
features (columns) and varying sizes (rows): 5, 10, 15, and
20 million.

� SparkDL Transfer Learning3 is a Big Data analytic tool
that applies transfer learning to deep learning applications

1https://www.tpc.org/tpcds
2https://codait.github.io/spark-bench
3https://github.com/databricks/spark-deep-learning

by relying on the Spark MLlib for the last layer and on
TensorFlow for the featurization part. This work considers
an image binary classification task with input datasets I
containing 1000, 1500, and 2500 images.

We performed the Spark experiments on two computing
environments: the Microsoft Azure public cloud and a private
IBM Power8 cluster. In particular, we executed Query26 and
SparkDL on Microsoft Azure using the HDInsight service with
workers based on 6 D13v2 VMs, each with 8 CPU cores and
56 GB of memory. Additional Query26 experiments involve
up to 26 VMs of 5 different flavors provided by Azure, each
with 2 to 16 CPU cores and 2 to 90 GB of memory, each
characterized by a different memory size. We ran Kmeans on
an IBM Power8 deployment, including 4 VMs, each with 12
cores and 58 GB of RAM, for a total of 48 CPU cores available
for Spark workers, plus a master node with 4 cores and 48 GB
of RAM. These two systems are representatives of different
computing environments. The Microsoft Azure public cloud
can suffer from resource contention, and application execution
times might experience more variability. On the other hand, the
private IBM Power8 cluster is fully dedicated to our experiments
without any other concurrent activity, i.e., with no resource
contention.

For all three Spark applications, we perform one separate
experiment for each input dataset I , for a total of 10 exper-
iments. We also carry out one extrapolation experiment with
additional data for each of the three applications. In each of
these experiments, for the largest input dataset I available for
each application (1000 GB, 20 million rows, and 2500 images,
respectively), we give additional profiling data to the ML model
T̂ (·) estimating the performance (see Sections V-A and VI-A).
These additional profiling data consist of all previous runs with
smaller input datasets I (250-750 GB, 5-10-15 million rows,
and 1000–1500 images, respectively), which we assume are
available from previous application runs and are used in the
training phase of the regression model T̂ (·), in addition to the
points visited by the BO algorithm. This kind of experiment is
tailored for Big Data settings, which often require running mul-
tiple data analysis tasks or prediction models, on input datasets
with increasing size. The goal of such experiments is to check
whether we can save on exploratory runs with the larger datasets,
which are usually much more expensive than the ones with small
datasets. Indeed, if the ML model can extrapolate the perfor-
mance with large input datasets by using data from small ones,
the MALIBOO optimization process would be more efficient.
According to preliminary analysis in [11], ML models show
good extrapolation capabilities on the applications of interest,
which motivates us to conduct the extrapolation experiments.

Finally, we show the results of an additional experiment
with the Query26 application. This experiment is similar to
the previous ones, but we choose both the VM type and the
number of VM instances. We therefore have a two-dimensional
optimization problem of configuration x = (x1, x2), in which
x1 ∈ {2, . . . , 90} represents the amount of memory (in GB)
which characterizes the VM (choosing among Azure A3, A4,
D12v2, D13v2, and D14v2), andx2 ∈ {1, . . . , 26} is the number
of VMs used.

https://www.tpc.org/tpcds
https://codait.github.io/spark-bench
https://github.com/databricks/spark-deep-learning

286 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

2) Edge Computing Application: Another scenario we con-
sider for validation uses Stereomatch [42], an image-processing
edge computing application. Stereomatch evaluates the disparity
value between a pair of stereo images (i.e., coming from the same
scene but observed by two cameras), which can then be used to
calculate the depth of objects in that scene. This application uses
adaptive-shape local support windows for each pixel based on
color similarity. In this case, x = (x1, x2, x3, x4) ∈ N4 consists
of four independent parameters which influence its execution
time: x1 is the number of parallel threads, x2 is the color
similarity confidence, x3 is the granularity of the disparity
hypotheses to test, and x4 is the support window arm length.
This parameter space is much larger and higher-dimensional
than in the previous experiments. We execute this application
with a fixed input dataset I containing 40 pairs of images. Since
we use a single input dataset for Stereomatch, we perform a
single experiment with it.

3) GPU-Based Benchmarks: BFS and MD4 are two GPU
benchmark applications from the HPC community. The for-
mer implements Breadth-First Search on a tree-like structure,
while the latter is a Molecule Dynamics simulator. They both
have a four-dimensional parameter space. These parameters
are the block size x1 ∈ N used for launching the application
kernel, the amount x2 ∈ N of work per thread, and two other
algorithmic-specific knobs related to texture memory (x3 ∈ N)
and floating-point precision (x4 ∈ {32, 64}). For each applica-
tion, we perform one experiment of unconstrained optimization.

4) Molecular Docking Application: LiGen is a molecular
docking application part of the EXSCALATE drug discovery
platform [43]. This framework runs in a scientific computing
private cloud environment and conducts extreme-scale virtual
screening campaigns to quickly obtain information for the drug
discovery pipeline. Indeed, the reduction of the time required
to find a therapeutic cure is of vital importance, as seen in the
outbreak of the COVID-19 pandemic. Within the EXSCALATE
platform, the LiGen code simulates the multiple ligand-pocket
interactions, finding promising docking poses of the ligand
within the pocket through multiple restarts of a gradient descent
algorithm. After a clustering analysis, the application chooses
several representative poses and evaluates them with a scoring
function [47]. One can validate the quality of the docking so-
lution by measuring the average Root Mean Square Distance
(RMSD) for 100 ligand-proteins pairs with a known optimal
crystal position.

Despite this application exposing several software knobs, in
this experimental campaign, we selected the eight most signif-
icant ones. Six of these parameters influence the accuracy of
the docking algorithm and, consequently, its performance, while
the other two only influence the performance. In particular, in
the former category, we have the number of gradient descent
restarts x1 ∈ {1, . . . , 5} and three other quantities (x2, x3, x4)
controlling the degree of thoroughness of the process. The other
two accuracy-related parameters are the clustering distancex5 ∈
{1, . . . , 4} of the algorithm and the number x6 ∈ N of chosen
poses to evaluate. The last two parameters that only influence the

4https://github.com/NTNU-HPC-Lab/BAT

performance are the number x7 ∈ N of CUDA threads in each
block and the reading buffer size x8 ∈ N. The tuning of these
parameters is critical to obtaining a better performance-accuracy
trade-off, but the total number of configurations in this parameter
space amounts to over 60 million, which mandates the need for
a sensible tuning approach.

5) Applications Hardware Configuration: We execute all
four non-Spark-based applications, i.e., Stereomatch, BFS, MD,
and LiGen, in a VM on a private 32-core server with 64 GB of
memory and Ubuntu 20.04. The underlying physical node of
this server has two AMD EPYC 7282 processors, with 16 cores
and 32 threads, and a clock speed of 2.8 GHz. It also has two
NVIDIA A100 GPUs with 40 GB of memory each.

We performed one experiment for each of the four non-Spark
applications. For each application, we also show average metrics
computed over several runs of the algorithm. In particular,
for Spark-based applications, we average over executions with
10 different time thresholds and different input data sizes (as
described in Section VI-B1); in Stereomatch (which has a fixed
input dataset) only over 10 time thresholds; for GPU bench-
marks, we average over executions with 10 different random
sets of initial configurations; lastly, for LiGen we average over
both 10 thresholds and 10 sets of initial points.

C. Algorithm Settings and Comparison

We use the applications described in the previous section
to compare all MALIBOO variants (B-D, see Section VI-A)
against CherryPick pure BO (represented by variant A), SVM-
CBO, and OpenTuner. For SVM-CBO we rely on an adaptation
of the original authors’ code,5 while for OpenTuner we run
the original library after implementing appropriate objective
function objects.

The algorithms run on an Ubuntu 20.04 machine with 16 GB
RAM for 30 or 60 maximum iterations for each experiment,
depending on the variability in the application performance and
the search space size. Besides the execution time of the job,
the computation time for a single MALIBOO iteration is about
1.5 seconds, with a maximum of 5 seconds for late iterations
(for larger ML models), and up to 10 seconds for extrapolation
experiments.

For a fair comparison, in each experiment, we use the same
n0 = 3 initial configurations (or n0 = 11 in the LiGen case due
to the larger search space) for all algorithms. Moreover, in the
constrained scenarios, we choose a grid of 10 evenly spaced
resource thresholds and repeat the experiments for each of them.
This process represents an increasingly difficult optimization
problem as the threshold decreases since the feasible domain
keeps shrinking. For SVM-CBO, we keep the same initial
points and number of iterations as variants A-D, and we split
the total iteration budget with a similar proportion to the one
recommended by the authors in [32] (namely, about 10% of
initial points, 60% for optimization phase 1, and 30% for phase
2). Finally, to compare with OpenTuner we used its default
signature meta-technique, the AUC Bandit coordinating the

5https://github.com/ricky151192/SVMCBO

https://github.com/NTNU-HPC-Lab/BAT
https://github.com/ricky151192/SVMCBO

GUINDANI et al.: INTEGRATING BAYESIAN OPTIMIZATION AND MACHINE LEARNING FOR THE OPTIMAL CONFIGURATION 287

DifferentialEvolutionAlt, UniformGreedyMutation, Normal-
GreedyMutation, and RandomNelderMead search techniques.

For our MALIBOO algorithm, we use a Ridge linear re-
gression model as the predicting function ĝ(·) described in
Section V-A. We use default settings for Ridge, as provided by
the Scikit-learn Python library [48]: a regularization penalty of 1,
and a solution method based on a Singular Value Decomposition
(SVD). For the Stereomatch case only, the default value resulted
in poor accuracy, and hence, we chose a penalty of 10 after hy-
perparameter tuning. This ML model is computationally cheap,
widely used in many data analysis scenarios, and performs better
in predicting the performance of the applications of interest
when compared to other alternative methods (see also [11]).
In particular, we measure its predicting accuracy by computing
the Mean Absolute Percentage Error (MAPE) of the model:

MAPE(y, ŷ) =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ ,

where y is the vector of true values and ŷ is the vector of
predicted values by the ML model. According to our analysis
of the full profiling datasets, the test-set MAPE of the chosen
model is almost always lower than 9%. Even when just a handful
of training points are available, errors are mostly within 20%.
As for the GP hyperparameters, we choose a constant mean
function and a MatÃ©rn kernel, as described in Section IV,
with smoothness parameter ν = 5/2. We set k = 2 as the ex-
ponential term described in Section V-A) and q = 5 as the
memory queue length. Furthermore, we employ the termination
criterion described in Section V-B in all constrained experiments
except LiGen since the target and the constrained resource have
a contrasting relation in these experiments. Note that in these
cases, the unit time cost P (x) (see equation 9) has a much
larger impact on the objectivef(x) than the execution timeT (x),
therefore a small f(x) still generally implies a large T (x), as
argued in Section V-B. When using the stopping criterion, we
choose α = 0.9 as the lower bound parameter.

Finally, for the maximization of the non-convex acquisition
functions, we use Nelder-Mead heuristics [39] with multiple
starting points, to ensure that the method converges to a good
local optimum.

VII. EXPERIMENTAL RESULTS

In this section, we compare our proposed algorithm variants
with the presented state-of-the-art techniques, in terms of the
number of unfeasible runs and their cumulative costs. Each
subsection covers a specific type of application: the three Spark-
based applications in Section VII-A, the Stereomatch edge
computing application in Section VII-B, the GPU benchmarks
in Section VII-C, and the LiGen molecular docking application
in Section VII-D.

A. Big Data Applications

We describe the results for the three Big Data applications,
which represent the simplest cases of optimization experiments
we cover. In particular, Section VII-A1 presents the basic

TABLE II
MEASURED METRICS FOR SPARK EXPERIMENTS

mono-dimensional cases whose goal is to identify the optimal
total number of cores, while Section VII-A2 presents the ex-
trapolation case. Section VII-A3 describes an extension to a
bi-dimensional case in which we choose both the VM flavor
and the number of VM instances to use. We recall that in this
case, we minimize cloud costs while subject to a constraint on
execution time (see equation 9).

1) Total Cores Analysis: Table II summarizes the average
results on the Apache Spark Big Data applications described
in Section VI-B1 over the varying input data sizes and time
thresholds. In particular, we report: (i) the average number of
executions that have selected an unfeasible configuration, (ii)
the percentage of costs (the f(x) in equation (9)) coming from
unfeasible configurations with respect to the total costs over the
entire 30 iterations, and (iii) the average cost among feasible
configurations, normalized over the cost of variant A (i.e., Cher-
ryPick). SVM and OT stand for SVM-CBO and OpenTuner,
respectively. For the Query26 application, our algorithm variants
reduce the unfeasible executions and the ratio of unfeasible costs
two to three times compared to the CherryPick pure BO (variant
A). We also reduce the average cost of a feasible configuration.
In the three Spark applications, we see an average improvement
of 2.2 times in the number of unfeasible runs and twice in the
total unfeasible cost. The cost of feasible runs improves by 10%
on average, and it is always at least competitive with CherryPick
in the worst case. On the other hand, in these experiments,
SVM-CBO performs considerably worse than any MALIBOO
variant. This may be explained by an over-allocation of resources
devoted to learning the feasible domain, for a relatively sim-
ple optimization problem. Indeed, SVM-CBO allocates some
iterations exclusively to train its SVM model (phase 1) and,
therefore, has fewer iterations of BO (phase 2), which is a more
effective optimization strategy. The comparison with OpenTuner
gives an overall positive result too. OpenTuner shows similar
performance as MALIBOO for Query26, but performs much
worse with the other two applications, finding up to twice the
number of unfeasible configurations in the Kmeans case.

Fig. 3 shows a representative example for a run of all algo-
rithms on the Query26 scenario. The left panel shows the number
of cores chosen at each algorithm iteration. The green horizontal
line is the true optimum of the constrained optimization prob-
lem, which we identified by inspection through an exhaustive
application profiling. The vertical, dashed red line indicates the

288 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 3. Spark Query26: comparison of CherryPick pure BO (variant A),
MALIBOO variants B, C, and D, SVM-CBO, and OpenTuner, respectively,
from top to bottom.

run at which the stopping criterion kicks in and after which we
stick to the best configuration found so far by the algorithm (for
SVM-CBO in the bottom row, it represents instead the separa-
tion between phases 1 and 2). In the center panel, a rectangle
represents a single run, with its sides being the execution time

of the job (horizontal side) and the number of cores (vertical
side). Therefore, the area of a rectangle is proportional to the
execution cost f(x) for that particular run (see equation (9)).
We highlight in red the rectangles corresponding to unfeasible
configurations. The right panel displays the signed percentage
errors of the ML model for the execution time, or the model
accuracy score in the SVM-CBO case (we do not show any
plot for OpenTuner since it does not train any ML models). In
particular, at each iteration, MALIBOO performs the training of
the model with all data from previous iterations and evaluates the
error on the new configuration chosen by the algorithm. Results
show that after one initial run with a significant error, our ML
models quickly converge to errors close to zero. This initial spike
may be explained by the considerable distance between the n0

initialized points and the first point selected by the algorithm.
Indeed, in this particular experiment, the initial points have a
small number of cores. Therefore, the algorithm, which is still
in the exploration phase, selects a configuration with a large
number of cores (as seen in the leftmost spike of the number
of cores) because it lies in a region of the domain that is still
unexplored. After that, the ML model has enough information
to achieve good predicting capabilities, even with few training
data points.

As also shown in Table II, from Fig. 3, it is clear that our
algorithm drastically reduces the number of unfeasible runs
compared to the competing algorithms (from 10-15 to only
1-2) while still achieving the optimum. Overall, our algorithm
variants converge to an optimal or feasible near-optimal (i.e.,
one more or one less than the optimum) number of cores within
the given iteration budget over 54% of the times, usually before
the 10th execution.

2) Extrapolation Experiments: We also perform extrapola-
tion experiments with the three Apache Spark applications:
Query26, Kmeans, and SparkDL. We recall that these experi-
ments correspond to the customary need to run the same Big
Data analysis on datasets of increasing size and that, in this
case, the ML model receives additional profiling data from
smaller datasets in the training phase (see Section VI-B1). In
Fig. 4(b), we show a representative extrapolation result for
Query26, while Fig. 4(a) reports the corresponding case with
the regular algorithm, i.e., without feeding the ML models
with additional training data. We do not report SVM-CBO or
OpenTuner because it is not possible to perform extrapolation
experiments with them.

Table III collects the results of all runs averaged on the varying
time thresholds of these extrapolation experiments. In general,
the algorithm with additional data has a more aggressive search
behavior, trading off a small number of unfeasible runs (usually
no more than 2-3) for a lower average cost of individual runs
(6 to 26%). A possible explanation is the increased accuracy
of the ML model, as seen, for example, in the rightmost plots
of Fig. 4(b). The model guides the domain exploration of BO
towards more promising points, either because of their lower
predicted execution time (variant B), their predicted feasibility
(variant C), or both (variant D). Recall that this is a case in
which the objective function and the constrained resource are in
contrast with one another (see Section V-B). These new points

GUINDANI et al.: INTEGRATING BAYESIAN OPTIMIZATION AND MACHINE LEARNING FOR THE OPTIMAL CONFIGURATION 289

Fig. 4. Query26: comparison between regular (4a) and extrapolation (4b) experiments. From top to bottom, each row represents variants B, C, and D, respectively.

TABLE III
MEASURED METRICS FOR EXTRAPOLATION EXPERIMENTS

are thus more likely to be on the boundary of the feasibility
region of the optimization problem, where we have a higher
risk of stepping out of the feasibility region. However, these
boundary points also give smaller costs (i.e., objective function
values). Therefore, the extrapolation version of MALIBOO is
best suited for a user with a lower risk aversion.

3) VM Flavor and Number of Instances Analysis: Finally,
we perform two-dimensional optimization experiments with the
Query26 application, using an input dataset I of size 500 GB.
We optimize the execution time on the number of used VMs
to run the application and the type of VM. Each VM type has
different features, including the type and number of CPUs and
the amount of RAM available. Specifically, the RAM uniquely
identifies each VM type (see Section VI-B1), and it is the value

TABLE IV
MEASURED METRICS FOR VM FLAVOR EXPERIMENTS

we include in the vector optimization x (alongside the number
of VMs) to encode the choice between different types.

Table IV summarizes the results of the experiments, averaging
over the different time thresholds used. We can see that MALI-
BOO variant B performs much better than CherryPick pure BO
(variant A), slashing the number of unfeasible executions and the
corresponding costs by about 25%. Variants C and D perform
analogously or slightly better than CherryPick, and unlike all
other experiments, SVM-CBO shows results comparable to
variant B. OpenTuner does achieve slightly fewer unfeasible
configurations and costs, although the average cost of feasible
executions is larger than all BO-based methods.

We further analyze these results by showing a representative
example of a run in Fig. 5. Note that since we no longer deal with
a uni-dimensional optimization domain, the scatter plot of the
chosen configurations does not accurately depict the distance
from the optimum. For this reason, in the center panel, we
show instead the percentage of simple regret (i.e., the distance
between values of the target function) of the current best solution
compared to the true optimum (which is again obtained by

290 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 5. Query26 extended case: comparison of CherryPick pure BO (variant
A), MALIBOO variants B, C, and D, SVM-CBO, and OpenTuner, respectively,
from top to bottom.

inspection with an exhaustive search in the parameter space),
that is:

r̂n = min
i≤n

f(xi)−min
x∈A

f(x) (11)

The figure shows that we are dealing with a surprisingly tricky
optimization problem despite being less complex and lower-
dimensional than the ones in the following sections. In particular,
as seen in this and other plots we examined, finding feasible
iterations is challenging, and the margin of improvement is

TABLE V
MEASURED METRICS FOR STEREOMATCH EXPERIMENTS

minimal, both in regret and feasible iteration cost. Moreover,
all ML models (both in MALIBOO and SVM-CBO) are less
accurate in this particular experiment than in most other cases.
The MALIBOO models still manage to lower the regret and find
feasible configurations. Instead, CherryPick pure BO (variant
A) is stuck on an apparent optimum, which is unfeasible and
thus cannot improve further on the current best. Also, the com-
parison with OpenTuner suggests that this particular problem
may be less suited for BO-based approaches, instead requiring
exploration to a much larger extent.

In conclusion, considering results in Section VII-A1, VII-A2,
and VII-A3, our algorithm variants (B-D) outperform CherryP-
ick (here represented by variant A) and SVM-CBO concerning
the number of unfeasible runs and the total unfeasible costs
(2 to 4 times less), as well as the average cost of feasible
configurations (13 to 40% less). MALIBOO also performs better
than OpenTuner, or equally as good, in most cases.

B. Edge Computing Application

We now show the results related to the Stereomatch appli-
cation, in which we again optimize application costs while
subject to an execution time constraint. Table V and Fig. 6 show
the results for the Stereomatch edge computing application.
Similarly to Fig. 5 in the last subsection, we show the bar plot of
execution costs, the simple regret, and the prediction errors of
the employed ML models for each algorithm iteration. Note that,
despite the ML model being less accurate on the Stereomatch
application than other workloads, results are still similar to the
ones achieved in the other cases. In particular, as summarized in
Table V, the improvements of variants B-D compared to variant
A are in line with the three Spark scenarios, with a reduction
on average feasible costs of about 25%. Once again, we also
note that the SVM-CBO algorithm here performs worse than
CherryPick or our proposed variants. OpenTuner also performs
worse in terms of average feasible cost, and slightly worse in
terms of unfeasible executions compared to variants C and D.

C. GPU-Based Benchmarks

In the previous sections, we showed the promising perfor-
mance of our hybrid BO algorithm on constrained optimization
problems in the form of equation (9). We also want to check
whether the algorithm brings any benefits in an unconstrained
optimization scenario. The BFS and MD applications described
in Section VI-B3 are ideally suited for the unconstrained case.
Since both of them are GPU-only applications, they do not
have the number of cores among the optimization variables,
and therefore, we are minimizing their running time directly:
f(x) = T (x). In this context, we focus on variant B, which can

GUINDANI et al.: INTEGRATING BAYESIAN OPTIMIZATION AND MACHINE LEARNING FOR THE OPTIMAL CONFIGURATION 291

Fig. 6. Stereomatch: comparison of CherryPick pure BO (variant A), MALI-
BOO variants B, C, and D, SVM-CBO, and OpenTuner, respectively, from top
to bottom.

TABLE VI
MEASURED METRICS FOR GPU EXPERIMENTS

still be used in an unconstrained minimization scenario if the
baseline is regular EI, as explained in Section VI-A. We cannot
use variants C or D, as there is no constraint to compute the
indicator function. For the same reason, we cannot compare
against SVM-CBO, as the algorithm only performs constrained
optimization. Finally, we do not employ any termination crite-
rion in this experiment.

We show the average cost of feasible configurations in
Table VI. Fig. 7 displays the results for an example MALIBOO
run for both GPU applications. Since we are not minimizing
core- or VM-related costs, nor is there any constraint in this
particular scenario, we do not show the bar plot for cumulative
costs. In the BFS application (Fig. 7(a)), the simple regret of the
proposed algorithm is competitive compared to variant A (pure

BO) and OpenTuner at around 10%, whereas in MD (Fig. 7(b))
it converges to 5% much faster than pure BO, similarly to
OpenTuner. Moreover, the absolute error of the ML models stays
within 15% for over 80% of all algorithm iterations. The results
of these applications show that our algorithm also successfully
applies to unconstrained optimization scenarios.

D. Molecular Docking Application

With the LiGen application, we tackle a more complicated
optimization problem, for which the assumptions of the Cher-
ryPick approach do not hold. In this case, we use a complex
objective function to minimize multiple relevant quantities si-
multaneously. Given the configuration vector x, suppose that
R(x) is the average RMSD metric of the resulting solution (as
described in Section VI-B4), and T (x) is the execution time of
the application. We can formulate this optimization problem as
follows:

min
x∈A

R3(x)T (x) + ε

s.t. R(x) ≤ Rmax (12)

In this case, the constraint function is g(·) ≡ R(·), which we
want to keep under a certain threshold Rmax to guarantee a
minimum degree of quality of the solution found. However,
the non-linearity of the target function f(x) = R3(x)T (x) in
equation (12) forbids the use of the CherryPick model, which re-
quires a linear relationship between f(·) and R(·), and therefore
a Gaussian probability distribution on the values of the latter.
In some cases, authors assume another Gaussian Process for
the constraint function, which is independent of the one for the
objective function [8], [27], [28]. However, this approach is not
viable in this case because of the explicit dependence of f(·) on
R(·).

Therefore, we compare pure BO with the Expected Improve-
ment (EI) acquisition function described in equation (6) with an
ML-integrated acquisition function implemented in MALIBOO.
In particular, we model the RMSD R(·) with an ML regressor
R̂(·), and we multiply regular EI by the indicator function
I{R̂(x) ≤ Rmax}. This is the gC(·) acquisition function de-
scribed in Section VI-A1 when gA(·) is the regular EI function.
As always, we initialize all algorithms with the same points. We
run this comparison with 10 representative Rmax values ranging
from 2.00 to 2.90 (which are relevant values for the LiGen ap-
plication domain) and 10 different sets of initial points. We then
average the results of the corresponding 100 tests. Comparison
with SVM-CBO and OpenTuner is possible since they do not
hold any particular assumption on the optimized function or the
constraints. As mentioned, we do not use termination criteria
for MALIBOO given the large size of the optimization domain,
which requires extensive exploration.

Fig. 8 shows a representative example of a graphical compar-
ison. We also collect the average metrics for the experiments
in Table VII. The overall results of our LiGen experiments
indicate that MALIBOO reduces the average number of un-
feasible configurations by almost half. This is a consequence
of properly including information from the constraint into the

292 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 7. Unconstrained optimization: comparison of pure BO (variant A, top row), MALIBOO variant B (middle row) and OpenTuner (bottom row) in the BFS
(7a) and MD (7b) GPU applications.

TABLE VII
MEASURED METRICS FOR LIGEN EXPERIMENTS

acquisition function. The average regret of feasible executions
also decreases compared to pure BO. These statistics show the
benefits of a proper ML-integrated approach, which is usable
even when we do not fulfill the assumptions of the CherryPick
model. Indeed, the ML models are reasonably accurate in pre-
dicting the RMSD of chosen configurations, as evidenced by
the prediction MAPE rarely exceeding 15%. On the other hand,
the SVM-CBO algorithm often struggles to get closer to the
optimum despite a decent performance of its SVM model and is
stuck to an average regret of about 200%. Similar considerations
hold for OpenTuner, with an average regret of about 150%.

Note that the optimal configuration used in this analysis when
evaluating the regret refers to the best configuration we found
by testing 3142 configurations running the LiGen application for
three weeks. Indeed, the LiGen parameter space is too large for
the true best configuration to be known. With each application
execution taking about 5 to 10 minutes, the full exploration of
the configuration space would need at least 580 years’ worth of
computing time.

VIII. DISCUSSION

The experimental evidence of the previous sections shows the
robustness of the proposed approach, especially in the LiGen

case, in which we have complex software, a challenging op-
timization problem, and a vast search space. The predicting
capabilities of ML can help in guiding the exploration process
of BO in several ways, for instance, by encouraging points with
promising values of the objective function (as in ã1 / variant
B), or by excluding points which are projected to be unfeasible
(as in ã2 / variant C). In particular, variant B is suitable for
unconstrained and constrained optimization scenarios, while
other variants do not apply to the unconstrained case.

In cases where we can use multiple acquisition functions, they
have varying degrees of performance, although they all outper-
form the benchmark techniques from the literature. Specifically,
according to the figures of merit reported in Table II, for the
Query26 and Kmeans Spark applications, variant B achieves
overall better results, while variant C stands out in the SparkDL
case. For the Stereomatch edge computing application, variants
C and D perform significantly better than B (see Table V). This
fact is consistent with a well-known empirical observation in the
ML community: the performance of any data-driven approach
is often dependent on the specific task at hand, with different
models faring better than others when used in different scenarios.

The ML-integrated acquisition functions also outperform
pure BO in the other scenarios. In particular, variant B is superior
in terms of simple regret in the unconstrained optimization of
GPU benchmarks. In contrast, variant C is superior in the LiGen
case, where we have a more complex optimization function and
a massively large search space.

An overall comparison with the other literature methods
SVM-CBO and OpenTuner reveals that the VM flavor analysis is
the only case in which MALIBOO variants do not stand out, with
SVM-CBO having comparable performance and OpenTuner

GUINDANI et al.: INTEGRATING BAYESIAN OPTIMIZATION AND MACHINE LEARNING FOR THE OPTIMAL CONFIGURATION 293

Fig. 8. LiGen: comparison of pure BO, MALIBOO, SVM-CBO, and Open-
Tuner, respectively, from top to bottom.

achieving slightly better results. In all other cases, SVM-CBO
and OpenTuner are considerably less effective regarding unfea-
sible executions and costs, which are larger by up to a factor of
3–4 compared to MALIBOO.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we presented MALIBOO, an approach combin-
ing the BO algorithm with ML techniques, to find an optimal
configuration of recurring jobs running in public or private
clouds for a wide range of applications when subject to resource
constraints. Results on the tested applications, including scien-
tific computing and Big Data software, show that our algorithms
significantly reduce the number of unfeasible executions com-
pared to competing approaches, including the pure BO-based
CherryPick, the ML-based SVM-CBO, and the ensemble-based
OpenTuner, and decrease the average cost of the chosen config-
uration. Overall, each of our algorithm variants outperforms the
state-of-the-art techniques used for comparison.

Future works are towards exploring algorithm hyperparame-
ters and acquisition functions when dealing with large comput-
ing environments, thus enabling parallel exploration of alterna-
tive configurations.

REFERENCES

[1] L. Wang et al., “Morphling: Fast, near-optimal auto-configuration for
cloud-native model serving,” in Proc. ACM Symp. Cloud Comput., 2021,
pp. 639–653.

[2] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Arrow: Low-
level augmented Bayesian optimization for finding the best cloud
VM,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst., 2018,
pp. 660–670.

[3] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M.
Zhang, “CherryPick: Adaptively unearthing the best cloud configurations
for Big Data analytics,” in Proc. 14th USENIX Symp. Netw. Syst. Des.
Implementation, 2017, pp. 469–482.

[4] E. Barbierato, M. Gribaudo, and M. Iacono, “Modeling apache hive based
applications in Big Data architectures,” in Proc. 7th Int. Conf. Perform.
Eval. Methodol. Tools, 2013, pp. 30–38.

[5] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla,
“Performance evaluation of NoSQL databases,” in Proc. 11th Eur. Work-
shop Comput. Perform. Eng., Springer, 2014, pp. 16–29.

[6] E. Gianniti, M. Ciavotta, and D. Ardagna, “Optimizing quality-aware Big
Data applications in the cloud,” IEEE Trans. Cloud Comput., vol. 9, no. 2,
pp. 737–752, Second Quarter, 2021.

[7] P. I. Frazier, “A Tutorial on Bayesian Optimization,” 2018, arXiv:
1807.02811.

[8] T. Pourmohamad and H. K. Lee, “Bayesian optimization via barrier
functions,” J. Comput. Graphical Statist., vol. 31, no. 1, pp. 74–83, 2022.

[9] M. Schonlau, W. J. Welch, and D. R. Jones, “Global versus local search
in constrained optimization of computer models,” IMS Lecture Notes-
Monograph Ser., vol. 34, pp. 11–25, 1998.

[10] M. Lattuada, E. Gianniti, D. Ardagna, and L. Zhang, “Performance predic-
tion of deep learning applications training in GPU as a service systems,”
Cluster Comput., vol. 25, no. 2, pp. 1279–1302, 2022.

[11] A. Maros et al., “Machine learning for performance prediction of spark
cloud applications,” in Proc. IEEE 12th Int. Conf. Cloud Comput., 2019,
pp. 99–106.

[12] P. Nawrocki and P. Osypanka, “Cloud resource demand prediction using
machine learning in the context of QoS parameters,” J. Grid Comput.,
vol. 19, no. 2, pp. 1–20, 2021.

[13] D. F. Kirchoff, M. Xavier, J. Mastella, and C. A. De Rose, “A preliminary
study of machine learning workload prediction techniques for cloud appli-
cations,” in Proc. 27th Euromicro Int. Conf. Parallel, Distrib. Netw.-Based
Process., 2019, pp. 222–227.

[14] B. Guindani, D. Ardagna, and A. Guglielmi, “MALIBOO: When machine
learning meets Bayesian Optimization,” in Proc. IEEE 7th Int. Conf. Smart
Cloud, 2022, pp. 1–9.

[15] J. Ansel et al., “OpenTuner: An extensible framework for program auto-
tuning,” in Proc. 23rd Int. Conf. Parallel Archit. Compilation Techn., 2014,
pp. 303–316.

[16] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proc. 25th ACM
Int. Conf. Knowl. Discov. Data Mining, 2019, pp. 2623–2631.

[17] T. S. Frisby, Z. Gong, and C. J. Langmead, “Asynchronous parallel
Bayesian optimization for AI-driven cloud laboratories,” Bioinf., vol. 37,
no. Supplement 1, pp. i451–i459, 2021.

[18] Q. Li et al., “RAMBO: Resource allocation for microservices using
Bayesian optimization,” IEEE Comput. Archit. Lett., vol. 20, no. 1,
pp. 46–49, Jan./Jun. 2021.

[19] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proc. 23rd ACM
Int. Conf. Knowl. Discov. Data Mining, 2017, pp. 1487–1495.

[20] S. Cereda, S. Valladares, P. Cremonesi, and S. Doni, “GPTuner: A con-
textual Gaussian process bandit approach for the automatic tuning of
IT Configurations under varying workload conditions,” in Proc. VLDB
Endowment, vol. 14, no. 8, pp. 1401–1413, 2021.

[21] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vi-
sion architectures,” in Proc. Int. Conf. Mach. Learn., PMLR, 2013,
pp. 115–123.

[22] F.-J. Willemsen, R. Van Nieuwpoort, and B. Van Werkhoven, “Bayesian
optimization for auto-tuning GPU kernels,” in Proc. Int. Workshop Per-
form. Model. Benchmarking Simul. High Perform. Comput. Syst. Super-
comput., 2021, pp. 106–117.

[23] M. Lindauer et al., “SMAC3: A Versatile Bayesian Optimization Package
for Hyperparameter Optimization,” J. Mach. Learn. Res., vol. 23, no. 54,
pp. 1–9, 2022.

294 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

[24] M. Bilal, M. Serafini, M. Canini, and R. Rodrigues, “Do the best cloud
configurations grow on trees? An experimental evaluation of black box
algorithms for optimizing cloud workloads,” in Proc. VLDB Endowment,
vol. 13, no. 12, pp. 2563–2575, 2020.

[25] L. Fang, E. Makkonen, M. Todorović, P. Rinke, and X. Chen, “Efficient
amino acid conformer search with Bayesian optimization,” J. Chem.
Theory Comput., vol. 17, no. 3, pp. 1955–1966, 2021.

[26] S. Jalas et al., “Bayesian optimization of a laser-plasma accelerator,” Phys.
Rev. Lett., vol. 126, no. 10, 2021, Art. no. 104801.

[27] S. Ariafar, J. Coll-Font, D. H. Brooks, and J. G. Dy, “ADMMBO: Bayesian
optimization with unknown constraints using ADMM,” J. Mach. Learn.
Res., vol. 20, no. 123, pp. 1–26, 2019.

[28] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with
unknown constraints,” in Proc. 30th Conf. Uncertainty Artif. Intell., 2014,
pp. 250–259.

[29] X. Pan, S. Venkataraman, Z. Tai, and J. Gonzalez, “Heming-
way: Modeling distributed optimization algorithms,” in Proc.
Workshop ML Syst. NeurIPS, 2016. [Online]. Available: https:
//arxiv.org/abs/1702.05865 for the reference and https://web.archive.
org/web/20170329170507/https://sites.google.com/site/mlsysnips2016/
home for the event

[30] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid cloud
scheduling for cost-efficient execution of serverless applications,” in Proc.
IEEE 13th Int. Conf. Cloud Comput., 2020, pp. 609–618.

[31] Y. Ding, A. Pervaiz, S. Krishnan, and H. Hoffmann, “Bayesian learning
for hardware and software configuration co-optimization,” Univ. Chicago
Dept. Comput. Sci., Tech. Rep. TR-2020–13, 2020.

[32] R. Perego, A. Candelieri, F. Archetti, and D. Pau, “Tuning deep neural
network’s hyperparameters constrained to deployability on tiny systems,”
in Proc. Int. Conf. Artif. Neural Netw., Springer, 2020, pp. 92–103.

[33] M. Casimiro, D. Didona, P. Romano, L. Rodrigues, W. Zwaenepoel, and D.
Garlan, “Lynceus: Cost-efficient tuning and provisioning of data analytic
jobs,” in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst., 2020, pp. 56–66.

[34] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine
Learning, vol. 2. Cambridge, MA, USA: MIT Press, 2006.

[35] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization
of machine learning algorithms,” Adv. Neural Inf. Process. Syst., vol. 25,
pp. 2951–2959, 2012.

[36] P. Hennig and C. J. Schuler, “Entropy search for information-efficient
global optimization,” J. Mach. Learn. Res., vol. 13, no. 6, pp. 1809–1837,
2012.

[37] X. Luo, “Minima distribution for global optimization,” 2018, arXiv:
1812.03457.

[38] B. Guindani, M. Lattuada, and D. Ardagna, “AMLLibrary: An AutoML
approach for performance prediction,” in Proc. 37th Int. Conf. Modelling
Simul., vol. 37, pp. 241–247, 2023.

[39] J. A. Nelder and R. Mead, “A simplex method for function minimization,”
Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[40] D. Cvijović and J. Klinowski, “Taboo search: An approach to the multiple-
minima problem for continuous functions,” in Handbook of Global Opti-
mization, Berlin, Germany: Springer, 2002, pp. 387–406.

[41] M. Zaharia et al., “Apache spark: A unified engine for Big Data process-
ing,” Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[42] E. Paone et al., “An exploration methodology for a customizable OpenCL
stereo-matching application targeted to an industrial multi-cluster architec-
ture,” in Proc. IEEE/ACM/IFIP 8th Int. Conf. Hardware/Softw. Codesign
Syst. Synth., 2012, pp. 503–512.

[43] D. Gadioli et al., “EXSCALATE: An extreme-scale virtual screening
platform for drug discovery targeting polypharmacology to fight SARS-
CoV-2,” IEEE Trans. Emerg. Topics Comput., vol. 11, no. 1, pp. 170–181,
First Quarter, 2023.

[44] G. Chen, H. Meng, Y. Liang, and K. Huang, “GPU-accelerated real-time
stereo estimation with binary neural network,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 31, no. 12, pp. 2896–2907, Dec. 2020.

[45] F. Filippini, M. Lattuada, M. Ciavotta, A. Jahani, D. Ardagna, and E.
Amaldi, “A path relinking method for the joint online scheduling and
capacity allocation of DL training workloads in GPU as a service sys-
tems,” IEEE Trans. Services Comput., vol. 16, no. 3, pp. 1630–1646,
May/Jun. 2023.

[46] G. H. Golub and J. M. Ortega, Scientific Computing: An Introduction With
Parallel Computing. Amsterdam, The Netherlands: Elsevier, 2014.

[47] E. Vitali, D. Gadioli, G. Palermo, A. Beccari, C. Cavazzoni, and C. Silvano,
“Exploiting OpenMP and OpenACC to accelerate a geometric approach to
molecular docking in heterogeneous HPC nodes,” J. Supercomput., vol. 75,
no. 7, pp. 3374–3396, 2019.

[48] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

Bruno Guindani (Graduate Student Member, IEEE)
received the MSc degree in mathematical engineer-
ing from the Politecnico di Milano, Italy, in 2021.
He is currently working toward the PhD degree in
computer science with the Department of Electron-
ics, Information, and Bioengineering, Politecnico di
Milano, Italy. He currently works in the context of
the LIGATE EuroHPC project. His research interests
include the application of Bayesian statistical models,
e.g., Bayesian optimization, and machine learning
techniques for the optimization of HPC systems.

Danilo Ardagna (Senior Member, IEEE) received
the PhD degree in computer engineering from Politec-
nico di Milano, in 2004. He is associate professor with
the Department of Electronics, Information, and Bio-
engineering, Politecnico di Milano, Italy. His work
focuses on performance modeling and the design,
prototype, and evaluation of optimization algorithms
for resource management of cloud computing sys-
tems.

Alessandra Guglielmi received the PhD degree in
mathematics from the University of Milano, Italy,
in 1997. She is full professor in statistics with Po-
litecnico di Milano. Her recent research interests are
Bayesian mixture models for density estimation and
clustering and Bayesian Optimization. From the ap-
plication point of view, her work concerns statistics
for medicine, environmental applications, Bayesian
optimization for cloud systems, and Big Data appli-
cations.

Roberto Rocco (Graduate Student Member, IEEE)
received the MSc degree in computer science engi-
neering from Politecnico di Milano, Italy in 2020.
He is currently working toward the PhD degree with
the Department of Electronics, Information, and Bio-
engineering, Politecnico di Milano, Italy. His research
interests include fault tolerance and software adaptiv-
ity in HPC, focusing on the autotuning scenario.

Gianluca Palermo (Senior Member, IEEE) received
the MSc degree in electronic engineering, in 2002,
and the PhD degree in computer engineering, in 2006,
from Politecnico di Milano, Italy. He is currently full
professor with the Department of Electronics, Infor-
mation, and Bioengineering, Politecnico di Milano,
Italy. His research interests include design method-
ologies and architectures for embedded and HPC
systems, focusing on autotuning and high-throughput
molecular docking.

Open Access funding provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

https://arxiv.org/abs/1702.05865 ignorespaces for ignorespaces the ignorespaces reference ignorespaces and ignorespaces https://web.archive.org/web/20170329170507/https://sites.google.com/site/mlsysnips2016/home ignorespaces for ignorespaces the ignorespaces event
https://arxiv.org/abs/1702.05865 ignorespaces for ignorespaces the ignorespaces reference ignorespaces and ignorespaces https://web.archive.org/web/20170329170507/https://sites.google.com/site/mlsysnips2016/home ignorespaces for ignorespaces the ignorespaces event
https://arxiv.org/abs/1702.05865 ignorespaces for ignorespaces the ignorespaces reference ignorespaces and ignorespaces https://web.archive.org/web/20170329170507/https://sites.google.com/site/mlsysnips2016/home ignorespaces for ignorespaces the ignorespaces event
https://arxiv.org/abs/1702.05865 ignorespaces for ignorespaces the ignorespaces reference ignorespaces and ignorespaces https://web.archive.org/web/20170329170507/https://sites.google.com/site/mlsysnips2016/home ignorespaces for ignorespaces the ignorespaces event

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

