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Abstract. In this paper we begin the study of Schur analysis and of de
Branges–Rovnyak spaces in the framework of Fueter hyperholomorphic
functions. The difference with other approaches is that we consider the
class of functions spanned by Appell-like polynomials. This approach
is very efficient from various points of view, for example in operator
theory, and allows us to make connections with the recently developed
theory of slice polyanalytic functions. We tackle a number of problems:
we describe a Hardy space, Schur multipliers and related results. We
also discuss Blaschke functions, Herglotz multipliers and their associated
kernels and Hilbert spaces. Finally, we consider the counterpart of the
half-space case, and the corresponding Hardy space, Schur multipliers
and Carathéodory multipliers.
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1. Introduction

Two important function theories that allow to extend complex analysis and
operator theory results to higher dimensions are the so-called monogenic and
slice monogenic functions with values in a Clifford algebra. In the case of
quaternions these two theories are known as Fueter hyperholomorphic and
slice regular or slice hyperholomorphic functions, respectively, see [32,38,39,
61,63]. For the necessary preliminaries on quaternions, we refer the reader
to Sect. 2. An interesting problem is to investigate the possible relations and
intersections between these two different theories. We note that it is always
possible to construct Fueter hyperholomorphic functions starting from slice
regular ones using different techniques such as the Fueter mapping theorem
[36,37], or using the Radon and dual Radon transforms, see [35]. But in
general, the slice monogenicity does not imply, nor is implied by monogenicity.
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However, in [14,15] the authors extended the notion of slice regular functions
to higher order by considering the so-called slice polyanalytic functions. These
functions can be considered from three different points of view. The first
approach consists of viewing the space of quaternions H as union of complex
planes and to see these functions as a subclass of null solutions of the n-th
power of the Cauchy-Riemann operator with respect to each complex plane.
The second approach is based on the so-called poly-decomposition which
allows us to consider such functions as sums of the form

n−1∑

k=0

xkfk(x), x ∈ H

with all the components fk which are slice regular functions and n is the
order of poly-analyticity. The third approach consists in considering slice
polyanalytic functions as subclass of the null solutions of the n-th power of
a global operator with non-constant coefficients, see [13]. The study in this
paper is in the quaternionic context and it is based on some polynomials
(Pn(x))n≥0 where

Pn(x) =
n∑

j=0

Lj,nx̄jxn−j , n ≥ 0,

that are at the same time Fueter hyperholomorphic and slice polyanalytic
functions of order n + 1, for suitable real coefficients Lj,n (see [34,54] and
Sect. 2). These polynomials are very special since they belong to the in-
tersection of two different non-commutative function theories, namely the
classical Fueter theory and the slice polyanalytic theory, moreover they have
nice properties with respect to multiplication and derivation. Another impor-
tant feature, see Theorem 3.10 in [12], is that any Fueter hyperholomorphic
function f of axial type admits a power series expansion in terms of the
polynomials Pn of the form

f(x) =
∞∑

n=0

Pn(x)un, un ∈ H.

This fact allows to embed the space of Fueter hyperholomorphic functions of
axial type, denoted by AR, into a space consisting of series of slice polynalytic
functions that we denote here by

SP∞ := SP1 + SP2 + · · · + SPn+1 + · · · ,

where SPn denotes the set of slice polyanalytic functions of order n. More
precisely we consider the subspaces of slice polyanalytic functions associated
with the polynomials (Pn)n≥0 defined by

Pn := {Pn(x)λ, λ ∈ H}
and

P∞ :=
∞⊕

n=0

Pn.
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Then, since the Pn are the unique hyperholomorphic extensions of axial type
of the real valued functions (3x0)n, it is possible to show that the space of
hyperholomorphic functions of axial type AR corresponds to the space P∞,
i.e.

AR = P∞.

The previous subspaces of slice polyanalytic functions Pn were considered be-
fore from a different point of view and using a different terminology, namely
they were called spaces of homogeneous special monogenic polynomials of
degree n, see for example Lemma 1 in [3]. Using these ideas and identifica-
tions we show that it is always possible to embed this interesting subclass
of special monogenic functions in a more general framework of slice polyana-
lytic functions. We use techniques from slice polyanalytic function theory to
prove results on such special monogenic functions. In particular, in Proposi-
tion 2.18 we prove a Representation Formula in the monogenic setting using
a slice polyanalytic approach.

Furthermore, we note that these slice polyanalytic (and Fueter hy-
perholomorphic) polynomials (Pn)n≥0 are just a particular case of a more
general interesting construction which makes use of the classical Cauchy-
Kovalevskaya extension theorem as we explain here. Consider an entire real
analytic and quaternionic-valued function h of the real variables x1, x2, x3.
The Cauchy-Kovalevskaya theorem guarantees the existence of a hyperholo-
morphic function H, its CK-extension. We have, with hn = hn and Hn =
H�n (where � denotes the Cauchy-Kovalevskaya product)

CK(hn) � CK(hm) = CK(hm+n) (1.1)

and so

Hn = Hn�
1 .

We can see already here that obstructions occur; if we take quaternions u and
v, the CK-product CK(hnu) � CK(hmv) will not be in general be equal to
CK(hn+muv) since hm and u do not commute. As a consequence, the CK-
product will not be, in general, translated into convolution of the coefficients
of the expansions along the Hn. In spite of this, with this new variable H1

it is possible to define a number of counterparts of the classical reproducing
kernel Hilbert spaces, with reproducing kernel of the form

K(x, y) =
∑

n∈I

Hn(x)Hn(y)
αn

, αn > 0, I ⊂ N0,

converging in some neighborhood of the origin in R
4. We already mention at

this point that the CK-product is not a law of composition for the Hardy
space (defined below), and more generally, for series in the functions Hn.

The choice I = N0 and αn = 1 for every n ∈ N0 corresponds to the
underlying Hardy space, consisting of functions of the form

f(x) =
∞∑

n=0

Hn(x)fn
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where f0, f1, . . . ∈ H and satisfy
∑∞

n=0 |fn|2 < ∞. These functions are hyper-
holomorphic in

Ω =
{
x ∈ R

4 ; |H1(x)| < 1
}

since the radius of convergence of Cauchy-Kovalevskaya product satisfies
ρ(Hn) ≤ (ρ(H1))n; see [23, Proposition 2.9, p. 131].

A corresponding Schur analysis would consist in particular of the fol-
lowing problems:

• Characterize the contractive multipliers of this Hardy space. The def-
inition has to be adapted to the present situation, where we lack the
convolution of the coefficients and the CK-product is not a law of com-
position.

• Study interpolation problems for these multipliers.
• Study the de Branges–Rovnyak spaces. These are families of Hilbert

spaces of analytic functions, with reproducing kernels of various forms;
see [40,41,43,44,51,52,57,58]. Here we will focus on the counterpart of
H(s) and L(Φ) spaces, whose reproducing kernel are of the form

1 − s(z)s(w)
1 − zw

and
Φ(z) + Φ(w)
2(1 − zw)

(1.2)

respectively.

These various definitions and corresponding results need to be adapted
to the present case, where we do not have a law of composition. We note that
the theory can be developed easily as in the classical way when the coefficients
are real, but this is of course restrictive. On the other hand, the theory using
Fueter variables works well because these variables are real when restricted
to x0 = 0 where x0 denotes the real part of a quaternion.

There are important differences between the present treatment of Fueter
hyperholomorphic functions and the treatment using Fueter variables; in the
first case, the kernel functions are eigenvectors of the backward shift, in the
case of Fueter variables the kernel functions are eigenvectors of the three
underlying backward-shift operator. Here the kernel functions are not eigen-
vectors of the backward-shift operator.
However, the present approach allows to make connections with the theory of
slice polyanalytic functions, in particular with slice hyperholomorphic func-
tions, and will also allow a simpler functional calculus. Moreover, Toeplitz
operators do appear in a natural way and play an important role.
In both cases, it is possible to develop a Schur type analysis. On the other
hand, specific choices of the approach allow to make connections with slice
hyperholomorphic functions. We here consider the cases

h(x) = x1e1 + x2e2 + x3e3 and w(x) = (1 − h(x))(1 + h(x))−1

(1.3)

and relate the underlying analysis with the Appell polynomials setting. Note
that w(0) = 1 �= 0.
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A key fact used in the paper is that the hyperholomorphic functions
considered are of axial type, and hence uniquely determined by their values
on the real line.

We shall prove that the CK-extension of x1e1 + x2e2 + x3e3 is

CK(x1e1 + x2e2 + x3e3) = x1e1 + x2e2 + x3e3 + 3x0

= ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3 (1.4)

where ζi = xi − x0ei, i = 1, 2, 3 are the Fueter variables. Moreover we have

CK((x1e1 + x2e2 + x3e3)m) � CK((x1e1 + x2e2 + x3e3)n)

= CK((x1e1 + x2e2 + x3e3)m+n),

so that we set

CK((x1e1 + x2e2 + x3e3)m) =
Qm(x)

cm

def.= Pm(x),

where Qm denotes the m-th quaternionic Appell polynomial (see [12, (3.8)]
and [49]). The coefficients cm will be specified in Sect. 2. We are thus looking
at a theory of hyperholomorphic functions of the variable

P1(x) = ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3 =
Q1(x)

c1
, (1.5)

equipped with the CK-product. In our discussion it is crucial that

Pn�
1 = Pn. (1.6)

We associate in a natural way to a Schur multiplier in the present set-
ting a slice hyperholomorphic Schur multiplier; this allows to develop Schur
analysis in the present setting.

The de Branges–Rovnyak space associated with a Schur multiplier S
allows in the cases considered up to now to get a coisometric realization
of the multiplier. In the complex setting, this is the celebrated backward-
shift realization (see [60]). Here, the situation is a bit different. We can still
associate to S a coisometric operator matrix, in the form (in the current
setting) of the backward-shift realization, but the realization is on the level
of the coefficients (like in [56] in the finite dimensional case).

We have given, or outlined, proofs of some classical results, for instance
the extension result in Theorem 2.21 and the closely related Theorem 2.22.
The reason is that the results play a key role in this paper and some of the
arguments are not necessarily well known in the Clifford analysis community.
We apply them in the quaternionic setting in particular in Theorem 4.21 and
in Step 2 in the proof of Theorem 4.15.

The paper contains twelve sections, besides this Introduction. Section 2
contains some preliminary results. Section 3 contains results on reproducing
kernel spaces and Toeplitz operators. In Sect. 4 we define the Hardy space
in this framework, the backward-shift operator, Schur multipliers and their
characterization. The Schur algorithm is presented in Sect. 5. Section 6 is
focused on intrinsic functions, among which the polynomials Pn and a de-
scription of Fueter hyperholomorphic functions of axial type which are also
intrinsic. In Sect. 7 we consider de Branges–Rovnyak spaces while in Sect. 8



38 Page 6 of 63 D. Alpay et al. IEOT

we show how to define Blaschke functions, and the corresponding operator
of multiplication which turns out to be an isometry. In Sect. 9 we consider
the counterpart of Herglotz functions and multipliers and their associated
kernels and Hilbert spaces. The next three sections concern the half-space
case of Schur and Carathéodory multipliers. In Sect. 13 we summarize in a
table a comparison between the various quaternionic settings.

2. Preliminaries

This section contains three subsections: the first one introduces the map χ;
the second one introduces the Fueter variables and the polynomials obtained
via the Appell polynomials which will be the basis of our treatment. Finally,
the third one shortly reviews positivity, analytic extensions and Toeplitz op-
erators in the classical complex setting.

2.1. Quaternions and the Map χ

We will work in the skew field of quaternions, which is defined to be

H = {x = x0 + x1e1 + x2e2 + x3e3 ; x0, x1, x2, x3 ∈ R}
where the imaginary units satisfy the multiplication rules e2

i = −1, i = 1, 2, 3,
e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2. The conjugate
and the modulus of x ∈ H are defined by

x = Re(x) − x where Re(x) = x0, x = x1e1 + x2e2 + x3e3

and

|x| =
√

xx =
√

x2
0 + x2

1 + x2
2 + x2

3,

respectively. The set of all imaginary units is given by S = {q ∈ H; q2 = −1}.
We note also that a domain Ω of H is called a slice domain if Ω∩R is nonempty
and for all I ∈ S, the set ΩI := Ω ∩CI is a domain of the complex plane CI .
If moreover, for every x = u + Iv ∈ Ω, the whole sphere

[q] := {u + Jv; J ∈ S},

is contained in Ω, we say that Ω is an axially symmetric slice domain.
We can write a quaternion as x = z + we2 with z = x0 + x1e1 and

w = x2 + x3e1 ∈ C. The map χ defined by

χ(z + we2) =
(

z w
−w z

)

allows to transfer a number of problems from the quaternions to matrices in
C

2×2. We recall the following result, whose proof is immediate and will be
omitted.

Lemma 2.1. A matrix M ∈ C
2×2 belongs to the range of χ if and only if it

satisfies the symmetry

E−1ME = M, (2.1)

where E =
(

0 1
−1 0

)
.
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For matrices and operators, there are various ways to define χ. Let
X = A + Be2 ∈ H

r×s. We set

χ(X) =
(

A B
−B A

)
.

We define for a block matrix (Xjk) with Xjk ∈ H
r×s,

(χ(X))jk = χ(Xjk).

For matrices M1, M2 possibly infinite, with block entries in H
r×s and H

s×t,
respectively, we have the property

χ(M1M2) = χ(M1)χ(M2). (2.2)

We note that χ will not be compatible with the CK-product. An important
tool in the paper consists of bounded block Toeplitz operators, with blocks
in the range of χ:

T = (χ(Xj−k))∞
j,k=0 .

and we will need the following result, set for general operators.

Proposition 2.2. The operator τ

τ = (Xjk)∞
j,k=0 (2.3)

is bounded from �2(N0,H
s) into �2(N0,H

r) if and only if the operator T de-
fined by

T = (χ(Xjk))∞
j,k=0 , (2.4)

where the Xjk are matrices in H
r×s is bounded from �2(N0,C

2s) into
�2(N0,C

2r), and both operators have same norm.

Proof. One direction is clear: If τ is bounded, there is a constant K > 0 such
that

∞∑

i,j,k=0

q∗
i XijX

∗
jkqk ≤ K

∞∑

i=0

q∗
i qi, for any qi ∈ H

r.

Applying χ we get
∞∑

i,j,k=0

χ(qi)∗χ(Xij)χ(Xjk)∗χ(qk) ≤ Kχ

( ∞∑

i=0

q∗
i qiI2

)
, (2.5)

where I2 denotes the identity matrix of order 2. Multiplying this inequality
by
(
1 0
)

on the left and by its transpose on the right, we get the result.
Conversely, if T is bounded there exists K > 0 such that for all u1, v1, . . .

∈ C
r,

∞∑

i,j,k=0

(
u∗

i v∗
i

)
χ(Xij)χ(Xjk)∗

(
uk

vk

)
≤ K

( ∞∑

i=0

u∗
i ui + v∗

i vi

)
(2.6)

and
∞∑

i,j,k=0

(−vt
i ut

i

)
χ(Xij)χ(Xjk)∗

(−vk

uk

)
≤ K

( ∞∑

i=0

u∗
i ui + v∗

i vi

)
. (2.7)
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Set
e∗ =

(
u∗

1 v∗
1 u∗

2 v∗
2 · · ·)

f∗ =
(−vt

1 ut
1 −vt

2 ut
2 · · ·)

and denote by M the bounded linear operator with i, k block equal to Mik =
χ(Yik), with Yik =

∑∞
j=1 XijX

∗
jk, i, j = 1, . . .. We have

(
e∗

f∗

)
M
(
e f
)

=
(

e∗Me e∗Mf
f∗Me f∗Mf

)
≤ ‖M‖(e∗e + f∗f)I2. (2.8)

On the other hand, setting

q∗
i = u∗

i + v∗
i e2, i = 1, 2, . . .

we rewrite (2.6)–(2.7) as

(
e∗

f∗

)
M
(
e f
)

=
(
χ(q1)∗ χ(q2)∗ · · ·)

⎛

⎜⎜⎜⎝

χ(Y11) χ(Y12) · · ·
χ(Y12)∗ χ(Y22) · · ·

...
. . .

⎞

⎟⎟⎟⎠

⎛

⎜⎝
χ(q1)
χ(q2)

...

⎞

⎟⎠ .

Comparing with (2.8) we get

(
χ(q1)∗ χ(q2)∗ · · ·)

⎛

⎜⎜⎜⎝

χ(Y11) χ(Y12) · · ·
χ(Y12)∗ χ(Y22) · · ·

...
. . .

⎞

⎟⎟⎟⎠

⎛

⎜⎝
χ(q1)
χ(q2)

...

⎞

⎟⎠ ≤ ‖M‖χ(e∗e + f∗f)

and hence the result, since χ preserves order.
The claim on the norms being the same follows from the previous in-

equality and (2.5). �

2.2. Various Notions of Hyperholomorphy and Homogeneous Polynomials

In this section we briefly review the setting of Fueter variables and the
Cauchy-Kovalevskaya product. We recall that left-hyperholomorphic func-
tions (we will usually just say hyperholomorphic in the sequel) are solutions
of the equation Df = 0, where D denotes the Cauchy-Fueter operator

D =
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
. (2.9)

These functions are widely studied in the literature. They are, in particular,
harmonic functions in four real variables. Unfortunately, the monomials xn

in the quaternionic variable x are not in the kernel of the Cauchy-Fueter
operator, not even when n = 1. However, hyperholomorphic functions admit
a series expansion in terms of the so-called Fueter variables, as we shall see
below. We point out that, in this paper, we shall provide only the notions
and results needed in the sequel, and for further information on this class of
functions we refer the reader to [38,63].

In view of the Cauchy–Kovalevskaya theorem, a linear system of first
order differential equations satisfied by the real components of f has a unique
solution when the function ϕ(x1, x2, x3) = f(0, x1, x2, x3) is pre-assigned (and
assumed real analytic). The function f with this initial condition and solution
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of Df = 0 is called the Cauchy-Kovalevskaya extension of ϕ (here written as
CK(ϕ) and abbreviated as CK-extension).

Among the important solutions of the equation Df = 0 there are the
Fueter variables

ζj(x) = xj − ejx0, j = 1, 2, 3, (2.10)

corresponding respectively to ϕj(x) = xj , j = 1, 2, 3, and their symmetric
products

ζν = ζν1×
1 × ζν2×

2 × ζν3×
3 , ν = (ν1, ν2, ν3) ∈ N

3
0, (2.11)

with, for a1, . . . , an ∈ H

a1 × a2 × · · · × an =
1
n!

∑

σ∈Sn

aσ(1)aσ(2) · · · aσ(n).

We note that ζν = CK(xν) with xν = xν1
1 xν2

2 xν3
3 . A direct proof that ζν

given by (2.11) is hyperholomorphic (and hence is the CK-extension of xν)
is not trivial and can be found in [46, Sect. 3], [59]. The argument works also
in the split quaternion setting. See [18, p. 333–334]. It is important to note
that every function hyperholomorphic in a neighborhood of the origin can be
written as a convergent power series in the form of a Fueter series

f(x) =
∑

ν∈N3
0

ζνfν (2.12)

where the coefficients fν belong to H. See [32]. A proof based on the Gleason
problem can be found in [23].

Using the CK-extension one can define a product that preserves the
hyperholomorphicity, the so-called CK-product denoted by �. The idea to
compute the CK-product is the following: if f and g are two hyperholomor-
phic functions, we take their restriction to x0 = 0, which are real analytic
functions, and consider their pointwise multiplication. Then, we take the
Cauchy-Kowalevskaya extension of this pointwise product, which exists and
is unique, to define

f � g = CK(f(0, x1, x2, x3)g(0, x1, x2, x3)), (2.13)

see [63]. Moreover, we note that the following formula holds

CK[ϕ(x )](x) = exp (−x0∂x ) [ϕ(x )](x).

For power series of the form (2.12) the CK-product is a convolution on
the coefficients along the basis ζν , and in particular

ζνp � ζμq = ζν+μpq, p, q ∈ H, μ, ν ∈ N
3
0, (2.14)

where ν + μ is defined componentwise, see [32,82].
We now turn to a bound for the CK-product; see also [23, pp. 132–133].

Lemma 2.3. Let ρ > 0. There exists ε > 0 such that:

x2
0 + x2

j < ε, j = 1, 2, 3, =⇒
∑

α∈N
3
0

α�=(0,0,0)

|ζ(x)α||fα| < ρ.
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Then
∣∣∣∣∣∣∣∣∣

⎛

⎜⎜⎜⎝
∑

α∈N
3
0

α�=(0,0,0)

ζ(x)αfα

⎞

⎟⎟⎟⎠

�n∣∣∣∣∣∣∣∣∣

< ρn, n = 1, 2, 3, . . . (2.15)

Proof. We first note that for ν ∈ N
3
0

|ζν(x)| ≤ ε|ν|, where x2
0 + x2

j < ε, j = 1, 2, 3. (2.16)

The existence of ε follows from the dominated convergence theorem, and the
first assertion follows. Then, setting g(x) =

∑
β∈N3

0
ζ(x)βgβ we have

|(f � g)(x)| ≤ |
∑

γ∈N3
0

|ζγ(x)| · |
∑

α,β∈N
3
0

α+β=γ

fαgβ |

≤
∑

α,β∈N3
0

ε|α|+|β||fα| · |gβ |

≤
⎛

⎝
∑

α∈N3
0

ε|α||fα|
⎞

⎠

⎛

⎝
∑

β∈N3
0

ε|β||bβ |
⎞

⎠ ,

from which (2.15) follows. �

Lemma 2.4. The CK-extension of x1e1 +x2e2 +x3e3 to a Fueter hyperholo-
morphic function is

x1e1 + x2e2 + x3e3 + 3x0 = ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3 (2.17)

where ζ1, ζ2, ζ3 are the Fueter variables.

Proof. It suffices to note that the function

ζ1(x)e1+ζ2(x)e2+ζ3(x)e3 = (x1 − e1x0)e1 + (x2 − e2x0)e2 + (x3 − e3x0)e3

= x1e1 + x2e2 + x3e3 + 3x0

is Fueter hyperholomorphic and its restriction to x0 = 0 is the given function.
�

Let us now introduce another type of Fueter hyperholomorphic homo-
geneous polynomials, see [33,49,53]:

Definition 2.5. The polynomials

Qm(x) =
m∑

j=0

Tm
j xm−j x̄j (2.18)

where

Tm
j =

2(m − j + 1)
(m + 1)(m + 2)

, m = 0, 1, . . . ,

are called the m-th quaternionic Appell polynomials.
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The polynomials (Qm)m≥0 are Fueter regular. Moreover, a generalized
Fueter regular exponential function associated to these polynomials was con-
sidered in the literature, see for example [33]. Another interesting feature of
the quaternionic Appell polynomials is that they can be obtained by applying
the Fueter mapping applied to the standard quaternionic monomials xm. In
particular, in [49] the following formula is proved

Qm(x) = − Δ(xm+2)
2(m + 1)(m + 2)

, m = 0, 1, ... (2.19)

We then define another kind of Fueter hyperholomorphic polynomials by

Pm(x) def.=
Qm(x)

cm
,

where

cm =
m∑

j=0

(−1)jTm
j .

We have the following relation between the polynomials Pm and the
CK-extension of x1e1 + x2e2 + x3e3 in (2.17):

Proposition 2.6. The following equality holds:

CK((x1e1 + x2e2 + x3e3)m) = Pm(x). (2.20)

Proof. The proof is simple and it is based on the fact that at both hand sides
there are monogenic functions which coincide on x0 = 0:

(x1e1 + x2e2 + x3e3)m =
1

cm

m∑

j=0

Tm
j xm−j(−x)j =

1
cm

m∑

j=0

(−1)jTm
j xm = xm.

�
Remark 2.7. The polynomials Qm are called Appell since they satisfy the
Appell property

1
2
DQm = mQm−1, m ≥ 1;

the Pm do not respect such a property, since
1
2
DPm = m

cm−1

cm
Pm−1, m ≥ 1,

however, they behave better with respect to the CK-product, as we shall see
below. In particular, for even indexes of the form m = 2k, the Appell property
is still satisfied by the polynomials (P2k)k≥0 since we have cm−1 = cm in this
case.

In what follows, we are looking at a theory of hyperholomorphic func-
tions of the variable

P1(x) =
Q1(x)

c1
= ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3, (2.21)

with the CK-product. Moreover, note that

P1(x0) = 3x0. (2.22)
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The �-product is not a convolution on the coefficients of the Pn: in
opposition to (2.14) we have, in general,

Pnp � Pmq �= Pn+mpq, n,m ∈ N, p, q ∈ H. (2.23)

In particular, in general

(1 − P1q)−� �=
∞∑

n=0

Pnqn (2.24)

for q ∈ H in a neighborhood of the origin.
This obstruction is the source of the main difficulties and new results

in the present paper. Still, we have the following simple result, which plays
a key role in the computations [see in particular (3.11)].

Lemma 2.8. It holds that

(Pn � Pm)(x) = Pn+m(x), (2.25)

and, in particular,

Pn(x) = (P1(x))�n, n = 1, 2, . . . (2.26)

Furthermore, for n,m, k ∈ N0 and u ∈ H
r

(Pn � (Pm � Pku)) = Pn+m+ku = Pn+m � Pku. (2.27)

Proof. We have
CK((x1e1 + x2e2 + x3e3)n) � CK((x1e1 + x2e2 + x3e3)m)

= CK((x1e1 + x2e2 + x3e3)n+m)

= (ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3)
�(n+m)

,

where we used (2.20) in the last equality. In particular, by iteration, we obtain
(2.26). The last claim follows from restricting the equalities for x0 = 0, and
checking that they are equal to (x1e1 + x2e2 + x3e3)n+m+ku. �

Corollary 2.9. For every ρ > 0 there exists ε > 0 such that

x2
0 + x2

j < ε, j = 1, 2, 3, =⇒ |Pn(x)| < ρn.

Proof. This follows by induction from Lemma 2.3 with f = P1 and g = Pn,
n ∈ N. �

We have (see e.g. [23, (2.19) p. 135] with Au = eu, u = 1, 2, 3)

(ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3)m� =
∑

|ν|=m

ζνeν |ν|!
ν!

(2.28)

where ζν is defined in (2.11).

Remark 2.10. One could take the CK-extension of another linear combina-
tion such as t1x1e1 + t2x2e2 + t3x3e3, namely

t1ζ1e1 + t2ζ2e2 + t3ζ3e3

= t1x1e1 + t2x2e2 + t3x3e3 + (t1 + t2 + t3)x0 (2.29)

and develop a similar theory.
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Let f(x0) =
∑∞

n=0 xn
0an (with a0, a1, . . . ∈ H) be a real analytic function

near the origin. It does not have a unique hyperholomorphic extension of
course, as seen by taking

ζ1(x)e1 and ζ2(x)e2,

in fact both functions are equal to x0 on the real line. However the extension
becomes unique by requiring that it is of a special form:

Lemma 2.11. Let f(x0) =
∑∞

n=0 xn
0an, an ∈ H be a real analytic function

near the origin. It has a unique (left) hyperholomorphic extension of the form
f(x) =

∑∞
n=0 Pn(x)bn, namely

f(x) =
∞∑

n=0

Pn(x)
an

3n
. (2.30)

Similarly, its unique right hyperholomorphic extension is

g(x) =
∞∑

n=0

an

3n
Pn(x).

Proof. The function f(x) is indeed an extension of the required form. If there
is another one, say f̃(x) =

∑∞
n=0 Pn(x)dn we get when setting x1 = x2 =

x3 = 0
∞∑

n=0

(3x0)nbn =
∞∑

n=0

(3x0)ndn

and so bn = dn, n = 0, 1, . . .. A similar reasoning works for g. �
Remark 2.12. We note that the polynomials Pm and Qm are both left and
right hyperholomorphic and in fact Pm(x) corresponds to both the left and
right CK-extension of (x1e1 + x2e2 + x3e3)m.

Actually, the previous result is a particular case of a more general result
that holds for Fueter hyperholomorphic functions of axial type, whose defini-
tion which comes from the more general case of axially monogenic functions,
see [47], is the following:

Definition 2.13. A Fueter hyperholomorphic function is of axial type (or ax-
ially hyperholomorphic) if it is of the form

A(x0, |x|) +
x

|x|B(x0, |x|),
where A, B are quaternionic valued.

The condition that a function f of axial type is in the kernel of the
Cauchy-Fueter operator D translates into the Vekua system

∂x0A − ∂ρB =
2
ρ
B, ∂x0B + ∂ρA = 0, ρ = |x|.

Starting from any real analytic function A(x0) it is possible to construct its
unique Fueter hyperholomorphic extension of axial type.

We will say that a matrix-valued hyperholomorphic function is of axial
type if all its entries, as matrix, are of axial type.
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Remark 2.14. Functions of the form (2.30) are quaternionic special mono-
genic according to the terminology in [3]. Any quaternionic special mono-
genic function in a neighborhood of the origin is of axial type. In fact any
polynomial Pm(x) is the sum of terms of the form

(x2
0 + |x|2)k(x0 ± x)h, 2k + h = m, k ≥ 0, h ≥ 0

which are evidently of axial type. This fact was already noted in [33], Property
2. A Fueter regular function represented by a uniformly convergent series of
the form (2.30) is such that
∑

m≥0

Am(x0, |x|) +
x

|x|Bm(x0, |x|) =
∑

m≥0

Am(x0, |x|) +
x

|x|
∑

m≥0

Bm(x0, |x|)

= A(x0, |x|) +
x

|x|B(x0, |x|)
where the pair A, B satisfy the Vekua system. Conversely, any function of
axial type is of the form (2.30), by Theorem 3.10 in [12].

We recall the notion of slice polyanalytic functions, see [14].

Definition 2.15. A real differentiable function f : Ω −→ H of the form

f(x) = α(u, v) + Iβ(u, v), x = u + Iv ∈ Ω

with α(u,−v) = α(u, v) and β(u,−v) = −β(u, v) is called left slice polyan-
alytic of order N , if for all I ∈ S, fI is left polyanalytic of order N on ΩI ,
namely if

∂I
N

f(u + Iv) :=
1

2N

(
∂

∂u
+ I

∂

∂v

)N

fI(u + Iv) = 0.

When N = 1 the notion coincides with that one of slice hyperholomor-
phicity (slice regularity).

We have the following characterization, see [14, Proposition 3.6]:

Proposition 2.16. A function f defined on a domain Ω ⊆ H is slice polyana-
lytic of order N on Ω if and only if it can be written as

f(x) :=
N−1∑

k=0

xkfk(x) (2.31)

where f0, ..., fN−1 are slice regular functions in Ω.

As a consequence:

Corollary 2.17. The polynomial Pm is slice polyanalytic of order m + 1.

Proof. For all 0 ≤ k ≤ m, we set fk(x) =
Tm

k

cm
xm−k. It is clear that all fk are

slice regular functions on Ω, being polynomials in the variable x. Moreover,
we note that

Pm(x) =
m∑

k=0

xkfk(x),∀x ∈ Ω.

Hence, the thesis follows using Proposition 2.16. �
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In the definition of the polynomials Pm we note that to write the mono-
mials as xj x̄� or x̄�xj does not make any difference since xx̄ = x̄x.
A Representation Formula for Fueter hyperholomorphic functions of axial
type is immediately deduce from the fact that they are slice functions, see
[62], so we have:

Proposition 2.18. Let f : Ω ⊂ H → H be a Fueter hyperholomorphic function
of axial type where Ω is an axially symmetric slice domain. Let J ∈ S, then
for any x = u + Ixv ∈ Ω the following equality holds :

f(u + Ixv) =
1
2

[fJ (u + Jv) + fJ(u − Jv)] +
IxJ

2
[fJ (u − Jv) − fJ(u + Jv)] .

Proof. We note that the Fueter hyperholomorphic polynomials (Pm)m≥0 are
slice polyanalytic of order m + 1 thanks to Corollary 2.17. Thus, the Repre-
sentation Formula is an immediate consequence. �

Remark 2.19. An alternative proof of the previous Representation Formula
in the Fueter hyperholomorphic context consists to apply Proposition 3.13 in
[14] to each polynomial Pm.

We conclude this part with a result which will be used in the sequel
while dealing with kernels:

Proposition 2.20. The polynomial Pm(x) is right anti-hyperholomorphic in x,
namely it satisfies

Pm(x)D =
∂Pm

∂x0
− ∂Pm

∂x1
e1 − ∂Pm

∂x2
e2 − ∂Pm

∂x3
e3 = 0.

More in general, if f , g are left hyperholomorphic, f � g = g �R f is right
anti-hyperholomorphic.

Proof. We immediately have:

Pm(x)D = DPm(x) = 0,

and the first assertion follows. Then we have

f � g = CK(f|x0=0 � g|x0=0) = CK(f|x0=0 � g|x0=0).

We now note that

CK(f|x0=0 � g|x0=0) = CK(g|x0=0 �R f|x0=0)

= CK(g|x0=0) �R CK(f|x0=0) = g �R f

which concludes the proof. �

2.3. Positivity, Analytic Extension and Toeplitz Operators

This section considers the complex variable setting. Recall first that a C
n×n-

valued function K(z, w) defined for z, w varying in some set Ω is called posi-
tive definite if for every choice of N ∈ N0 and w1, . . . , wN ∈ Ω the block ma-
trix (K(wj , wk))N

j,k=1 is non-negative. Associated to K(z, w) is a uniquely de-
fined Hilbert space of Cn-valued functions defined on Ω, denoted here H(K),
and with the properties:
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(1) For every c ∈ C
n and w ∈ Ω, the function Kwc : z �→ K(z, w)c belongs

to H(K), and
(2) For every f ∈ H(K) and w, c as above,

〈f,Kwc〉 = c∗f(w). (2.32)

H(K) is called the reproducing kernel Hilbert space with reproducing kernel
K(z, w), and there is a one-to-one correspondence between reproducing kernel
Hilbert spaces and positive definite functions; see [26,75,79]. We recall the
following result, which originates with the work of Donoghue [50]. We take a
real neighborhood of the origin, but it could be replaced by any other zero
set in the open unit disk.

Theorem 2.21. Let s be a C
r×t-valued function defined in a neighborhood

(−ε, ε) of the origin, and such that the kernel

Ir − s(a)s(b)∗

1 − ab
(2.33)

is positive definite in (−ε, ε). Then s has a (uniquely defined) analytic and
contractive extension to the open unit disk.

Proof. The proof can be found in e.g. [6, pp. 45–46]. For completeness we
outline it. We set r = s = 1 to simplify the notation. Let ρw(z) = 1 −
zw. The function 1/ρw(z) is positive definite in the open unit disk D, with
reproducing kernel Hilbert space the Hardy space of the open unit disk,
denoted H2(D), and consisting of the power series f(z) =

∑∞
n=0 anzn with

complex coefficients satisfying ‖f‖2
2

def.=
∑∞

n=0 |an|2 < ∞. The formula

T (1/ρx) =
s(x)
ρx

, x ∈ (−1/3, 1/3)

extends linearly to a densely defined operator T from H2(D) into itself. The
positivity of the kernel (2.33) and the definition of the inner product in the
Hardy space implies that T is a contraction, and hence extends to an ev-
erywhere defined contraction, still denoted by T , from H2(D) into itself. Let
f ∈ H2(D). The adjoint of T satisfies:

(T ∗f)(x) = 〈T ∗f,
1
ρx

〉 = 〈f,
s(x)
ρx

〉 = s(x)f(x), x ∈ (−1/3, 1/3).

(2.34)

Take first f(z) = 1. Since T ∗1 is analytic in the open unit disk, it is an
analytic extension of s(x), x ∈ (−1/3, 1/3). It remains to check that T ∗1 is
contractive in D. Equation (2.34) extends analytically to

(T ∗f)(z) = (T ∗1)(z)f(z), z ∈ D. (2.35)

So T ∗ is the operator of multiplication by T ∗1. Since it is bounded, the
formula for the adjoint of a multiplication operator acting in a reproducing
kernel Hilbert space gives

T ∗(1/ρw) =
T ∗1(w)

ρw
.
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Since it is contractive, writing that ‖T ∗1/ρw‖ ≤ ‖1/ρw‖ we get

|T ∗1(w)|2
1 − |w|2 ≤ 1

1 − |w|2 , w ∈ D,

and hence T ∗1 takes contractive values in the open unit disk. �

We also recall (we refer to [76] for more information on Toeplitz opera-
tors):

Theorem 2.22. Let s be a C
r×t-valued function analytic in the open unit disk,

with power series expansion s(z) =
∑∞

n=0 snzn. Then, s is contractive in the
open unit disk if and only if the lower triangular block-Toeplitz operator

Ts =

⎛

⎜⎜⎜⎝

s0 0 0 · · ·
s1 s0 0 · · ·
s2 s1 s0 0
...

. . . . . . . . .

⎞

⎟⎟⎟⎠ (2.36)

is a contraction from �2(N0,C
t) into �2(N0,C

r).

Proof. We set r = t = 1 to simplify the arguments. Assume first that s is
a contraction, and let P denote the orthogonal projection from L2(T) onto
H2(T). Then the Toeplitz operator f �→ Ps∗f is a contraction from H2(T)
into H2(T). It admits thus a matrix representation. Using the basis 1, z, z2, . . .
we see that

〈Ps∗zn, zm〉2 =

{
0, n < m,

sn−m, n ≥ m

and hence the Toeplitz matrix representation. For the converse, we assume
that Ts is a contraction. We compute T ∗

s ez where ez = (1, z, z2, . . .)t. We
have [compare with (2.35)]

T ∗
s ez = s(z)ez (2.37)

and hence the result. �

3. Positive Operators, Reproducing Kernel Spaces and
Toeplitz Operators

We use various tools from quaternionic operator theory and in particular from
the theory of linear relations and the theory of reproducing kernel spaces, as
developed in [8]. We recall:

Definition 3.1. Given two right (or left, or two-sided) linear spaces V,W over
the quaternions, a linear relation is a linear subspace of the Cartesian product
V × W.

The graph of a (possibly not everywhere defined) linear operator is a
linear relation, but there are linear relations which are not graphs of opera-
tors.
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We will define inner products on a quaternionic right vector space, say
V, with the following convention

〈fu, gv〉 = v〈f, g〉u, f, g ∈ V, u, v ∈ H (3.1)

and satisfying moreover

〈f , ug〉 = 〈uf , g〉, f, g ∈ V, u ∈ H, (3.2)

when the quaternionic space under study is two-sided (for instance, �2(N0,H)).
Let K(x, y) be a the H

r×r-valued function, positive definite on Ω. We
will denote by H(K) the reproducing kernel space of H

r-valued functions
with reproducing kernel K.

Let K1(z, w) and K2(z, w) be two H
r×r-valued functions positive defi-

nite on a set Ω. We recall that K1 ≤ K2 means that the difference K2 − K1

is still positive definite in Ω. This happens if and only if the space H(K1) is
contractively included in the space H(K2).

The following result, relating operator ranges and reproducing kernel
Hilbert spaces is well known. See [9] for a discussion in the quaternionic and
indefinite inner product setting.

Proposition 3.2. Let Γ be a positive bounded operator from the left quater-
nionic Hilbert space H into itself. Let Ω be a set and let z �→ fz be a H-valued
function defined on Ω, and such that the closed left-linear span of the vectors
fw is equal to H. The function

K(z, w) = 〈Γfw, fz〉 (3.3)

is positive definite on Ω and the associated reproducing kernel Hilbert space
with reproducing kernel consists of the functions of the form

F (z) = 〈
√

Γf, fz〉, f ∈ H,

with norm

‖F‖ = ‖(I − π)f‖
where π is the orthogonal projection onto the kernel of Γ.

Let us set H = �2(N0,H
r) in the previous proposition. Since Γ is

bounded, it has a block matrix representation Γ = (Γnm), where Γmn ∈ H
r×r.

We can write

〈Γf, g〉 =
∞∑

n,m=0

g∗
nΓnmfm, (3.4)

and

K(z, w) =
∞∑

n,m=0

fn(z)∗Γnmfm(w).

Cases of interest in the present work are:

Ω ⊂ R
4 ∼= H, and denoting z = p, fn(p) = pnIr (3.5)

and

Ω ⊂ R
4 ∼= H, and denoting z = x, fn(x) = Pn(x)Ir. (3.6)
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Assume now Γ to be of the form

Γ = I − TST ∗
S (3.7)

with TS as in (2.36) and where Si ∈ H
r×t, i = 0, 1, . . .. In particular, the

block Toeplitz operator TS is a contraction. The kernel becomes in the first
case

∞∑

n=0

pnqnIr −
∞∑

n=0

( ∞∑

m=n

pmSm−n

)( ∞∑

m=n

qmSm−n

)∗
, (3.8)

and
∞∑

n=0

Pn(x)Pn(y)Ir −
∞∑

n=0

( ∞∑

m=n

Pm(x)Sm−n

)( ∞∑

m=n

Pm(y)Sm−n

)∗
(3.9)

in the second case.
We note that, with the �-product (see [8]):

∞∑

m=n

pmSm−n = pn �

( ∞∑

m=0

pmSm

)
(3.10)

and similarly, with the CK-product, using (2.27) in Lemma 2.8,
∞∑

m=n

Pm(x)Sm−n = Pn(x) �
( ∞∑

m=0

Pm(x)Sm

)
. (3.11)

The functions

σ(p) =
∞∑

m=0

pmSm

and

S(x) =
∞∑

m=0

Pm(x)Sm

are Schur multipliers, for the slice hyperholomorphic and for the present case
(called Appell-like case), respectively.

4. The Hardy Space and Schur Multipliers

In this section we will introduce and study the Hardy space in this framework.
To start with, we denote by E the ellipsoid

E =
{
x ∈ R

4 : 9x2
0 + x2

1 + x2
2 + x2

3 < 1
}

(4.1)

and we prove the following:

Lemma 4.1. The function

kE(x, y) =
∞∑

m=0

Pm�
1 (x)Pm�

1 (y) (4.2)

converges and is positive definite for x, y ∈ E.
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Proof. For x ∈ E we have |P1(x)| < 1 and the result follows from Corol-
lary 2.9. �

We point out that using (2.28), we get

kE(x, y) =
∞∑

m=0

⎛

⎝
∑

|ν|=m

ζ(x)νeν |ν|!
ν!

⎞

⎠

⎛

⎝
∑

|μ|=m

ζ(y)μeμ
|μ|!
μ!

⎞

⎠. (4.3)

Remark 4.2. In [22–24] a different approach was used and a similar construc-
tion yields the Drury-Arveson kernel

K(x, y) =
∞∑

m=0

∑

|ν|=m

|ν|!
ν!

ζ(x)νζ(y)ν

= (1 − ζ1(x)ζ1(y) − ζ2(x)ζ2(y) − ζ3(x)ζ3(y))−�.

(4.4)

Note that the formula (4.2) is easier to work with than formula (4.3). We
also note that

kE(x0, y0) =
1

1 − 9x0y0
, x0, y0 ∈ (−1/3, 1/3). (4.5)

Using the polynomials Qn one can define the kernel (see [12, Remark 5.3])

KQ(x, y) =
∞∑

n=0

Qn(x)Qn(y)

whose restriction to the real axis is different, indeed it is

KQ(x0, y0) =
1

1 − x0y0
, x0, y0 ∈ (−1, 1).

Definition 4.3. The reproducing kernel Hilbert space associated with (4.2)
will be called the Hardy space, and denoted by H2(E).

Theorem 4.4. The Hardy space H2(E) consists of functions of the form

f(x) =
∞∑

m=0

(ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3)
m�

fm =
∞∑

m=0

Pm(x)fm, (4.6)

where the coefficients fm belong to H and are such that
∞∑

m=0

|fm|2 < ∞. (4.7)

This expression is then the square of the norm of f in the Hardy space, i.e.
‖f‖2 =

∑∞
m=0 |fm|2.

Proof. The proofs follows standard arguments, see [12,21]. �

From the form of the elements of the Hardy space H2(E) and using the
fact that the polynomials Pm are Fueter hyperholomorphic of axial type, see
Remark 3.9 in [12], we deduce:

Corollary 4.5. Elements of H2(E) are Fueter hyperholomorphic of axial type,
in particular are uniquely determined by their restriction to (−1/3, 1/3).
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Lemma 4.6. The operator S : f �→ P1 �f is an isometry in the Hardy space,
with adjoint given by

S∗
( ∞∑

n=0

Pnfn

)
=

∞∑

n=0

Pnfn+1. (4.8)

Furthermore

SS∗f = f − f(0), f ∈ H2(E). (4.9)

Proof. The proof is a consequence of

SS∗f = P1 �
( ∞∑

n=0

Pnfn+1

)

=
∞∑

n=0

Pn+1fn+1

= f − f0

= f − f(0).

�

Let Cf =f(0) be the point evaluation in H2(E). Then C∗u= kE(·, 0)u =
u and we get from the previous lemma

I − MP1M
∗
P1

= C∗C. (4.10)

This equation is really what makes the arguments work in the sequel,
and in particular in the construction of a coisometric realization.

Definition 4.7. The operator (4.8) will be called the backward-shift operator
and denoted by R0.

Example 4.8. Let a ∈ E . The space of functions in the Hardy space such that
f(a) = 0 need not be S-invariant. On the other hand, the space of functions
f ∈ H2(E) such that

(Pn � f)(a) = 0, n = 0, 1, 2, . . . (4.11)

is S-invariant, see Lemma 2.8. This suggests that the natural homogeneous
interpolation condition is (4.11) and not merely f(a) = 0. See [23, p. 148] for
a related remark.

We can consider hyperholomorphic functions operator-valued, in par-
ticular matrix or vector-valued. The definition of this class of functions is
given by following the classical complex case, but we repeat it for the sake of
completeness.

Definition 4.9. Let X be a two-sided quaternionic Banach space, and X ∗ be
its dual. A function f : U ⊂ H → X , where U is open, is said to be weakly
(left) hyperholomorphic in U if Λf satisfies D(Λf) = 0 for every Λ ∈ X ∗.
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We recall that a function is hyperholomorphic if and only if it is differ-
entiable in a suitable sense, see [74, Theorem 3] and we follow this notion of
differentiability to state the following definition, in which we identify H with
H3 = {�ζ = (ζ1, ζ2, ζ3) |ζi = xi − eix0, i = 1, 2, 3} as a real linear space via
the map (ζ1, ζ2, ζ3) �→ ζ1e1 + ζ2e2 + ζ3e3:

Definition 4.10. Let �a ∈ H3, U be a neighborhood of �a and let F : U → X be
a continuous function. Then f is called left (resp. right) strongly differentiable
in �a in the quaternionic sense if there exists a left (resp. right) linear map
L : H3 → X such that

lim
Δ�z→0

‖f( �a + Δ�z) − f(�a) − L(Δ�z)‖X
‖Δ�z‖ = 0 (4.12)

where ‖�z‖ =
∑3

i=1 ζiζi. A function is strongly differentiable in U if it is so at
every point �a ∈ U .

The definition originally considered by Malonek in [74] can be obtained
from the previous one when X = H. Since, in the scalar case, the definition
is also equivalent to that one of left (resp. right) hyperholomorphy, we will
equivalently say that a function f as in Definition 4.12 is strongly hyper-
holomorphic. See also [19] for a theory of hyperholomorphic functions whose
values are taken in a Banach algebra. Using the same arguments as in the
complex case, see [77, Theorem VI.4], which are valid also in the quaternionic
case, see [8], one can prove:

Theorem 4.11. A function is weakly hyperholomorphic in U if and only if it
is strongly hyperholomorphic in U .

The validity of this result allows to simplify the terminology and we shall
say, for short, that f is hyperholomorphic with values in X . In the special
case in which X = H

r×s, a function is weakly hyperholomorphic if and only
if all its entries are left or right hyperholomorphic there.

The next result was proved in the quaternionic setting in the context
of slice hyperholomorphic functions, see e.g. [8, Sect. 7]; here we prove its
counterpart in the present framework.

Theorem 4.12. Let M be a finite dimensional linear right-vector space of Hr-
valued functions, and hyperholomorphic of axial type in a neighborhood of the
origin. Then M is R0-invariant if and only if there exists a pair of matrices
(C,A) ∈ H

r×N × H
N×N such that f ∈ M if and only if it can be written as

f =
∞∑

n=0

PnCA
nξ, ξ ∈ H

N . (4.13)

We have N ≥ dimM, and there is equality if and only if the pair (C,A) is
observable, meaning

∩∞
n=0 kerCAn = {0} . (4.14)
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Proof. Let f1, . . . , fN be a basis of M, and let F =
(
f1 f2 · · · fN

)
. Let F =∑∞

n=0 PnFn, with Fn ∈ H
r×N . In view of the R0-invariance there exists a

matrix A ∈ H
N×N such that

∞∑

n=0

PnFn+1 =

( ∞∑

n=0

PnFn

)
A.

It follows that

Fn+1 = FnA, n = 0, 1, . . .

and (4.13) follows with F0 = C.
The last claim follows from the fact that,

f ≡ 0 ⇐⇒ CAnξ = 0, n = 0, 1, 2, . . .

�
Note that, for x1 = x2 = x3 = 0, we have

f(x0) = C(IN − 3x0A)−1ξ.

Since the CK-product is not a law of composition we cannot, a priori, define
Schur multipliers (see Definition 4.13) in terms of multiplication operators.
We define them in terms of positive definite functions. The corresponding
contractive operator, counterpart of the CK-multiplication by S, is given in
Proposition 4.17 and Definition 4.20; see Eq. (4.23).

Definition 4.13. The H
r×s-valued hyperholomorphic function S is called a

Schur multiplier if the kernel

KS(x, y) =
∞∑

n=0

(
Pn(x)Pn(y)Ir − (Pn � S)(x)((Pn � S)(y))∗

)
(4.15)

is positive definite in
{
x ∈ R

4 : 9x2
0 + x2

1 + x2
2 + x2

3 < 1
}
.

Example 4.14. For instance S = P1Ir is a Schur multiplier since
∞∑

n=0

(
Pn(x)Pn(y)Ir − (Pn � S)(x)((Pn � S)(y))∗

)

=
∞∑

n=0

(
Pn(x)Pn(y)Ir − (Pn � P1)(x)(Pn � P1)(y)Ir

)

=
∞∑

n=0

Pn(x)Pn(y)Ir −
∞∑

n=0

Pn+1(x)Pn+1(y)Ir

= Ir.

This example is of course quite trivial. We will give in Sect. 8 a complete
characterization of Schur multipliers, from which one can get numerous other
examples.

The positivity of the kernel (4.15) is equivalent to the contractive inclu-
sion of the reproducing kernel Hilbert space with reproducing kernel

∞∑

n=0

(Pn � S)(x)((Pn � S)(y))∗ (4.16)



38 Page 24 of 63 D. Alpay et al. IEOT

inside the Hardy space. In particular, if S is a Schur multiplier Pn�S ∈ H2(E)
for every n.

Theorem 4.15. The H
r×s-valued function S is a Schur multiplier if and only

if the lower triangular Toeplitz operator

T =

⎛

⎜⎜⎜⎜⎜⎝

S0 0 0 · · ·
S1 S0 0 · · ·
S2 S1 S0 0
...

. . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎠
(4.17)

is a contraction from �2(N0,H
s) into �2(N0,H

r).

Proof. Assume first that the kernel (4.15) is positive definite in E . We divide
the argument in a number of steps.
STEP 1: There exist coefficients S0, S1, . . . ∈ H

r×s such that

S(x) =
∞∑

u=0

Pu(x)Su

and
∑∞

u=0 ‖Su‖2 < ∞.
Indeed, let K2(x, y) =

∑∞
n=0 Pn(x)IrPn(y) and K1(x, y) =

∑∞
n=0(Pn �

S)(x)((P � S)(y))∗. The inclusion operator

I
( ∞∑

n=0

(Pn � S)fn

)
=

∞∑

n=0

(Pn � S)fn

is a contraction from H(K1) inside H(K2), and so in particular S ∈(H2(E))r×s.
STEP 2: The function

s(a) =
∞∑

n=0

χ(Sn)an, a ∈ (−1, 1),

has an analytic contractive extension to the open unit disk of the complex
plane.

We write for x0, y0 ∈ (−1/3, 1/3)

Ks(3x0, 3y0) =
Ir − s(3x0)s(3y0)∗

1 − 9x0y0

(of course, Ks(3x0, 3y0) does not characterize in a unique way Ks(x, y)).
The kernel Ks(3x0, 3y0) is positive definite for x0, y0 ∈ (−1/3, 1/3). We set
a = 3x0 and b = 3y0. The kernel

Ir − s(a)s(b)∗

1 − ab

is positive definite in (−1, 1), and so is the kernel χ

(
Ir − s(a)s(b)∗

1 − ab

)
, and

we conclude by applying Theorem 2.21.
STEP 3: The Toeplitz operator based on the sequence χ(Su) is contrac-

tive from �2(N0,C
2s) into �2(N0,C

2)
This follows from Theorem 2.22.
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STEP 4: The Toeplitz operator Ts is contractive.
This follows from Proposition 2.2. We restrict the operator in Step 3 to

sequences of matrices in the range of χ.
We now suppose that T is a contractive operator. We write

〈(I − T T ∗)c, c〉�2(N0,Hr) ≥ 0

with

c =
∑

i

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ir

P1(x(i))Ir

P2(x(i))Ir

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

ui (4.18)

to get the positivity of the kernel KS . �

Corollary 4.16. In the above notation, the function
∞∑

n=0

pnSn (4.19)

is a slice hyperholomorphic Schur multiplier.

Given two multipliers, the bounded operator MS1MS2 will not be a
multiplier in general.

Proposition 4.17. Let S be a H
r×s-valued Schur multiplier. The formula

T

( ∞∑

n=0

PnPn(a)u

)
=

∞∑

n=0

Pn ((Pn � S)(a))∗
u, a ∈ E , u ∈ H

r, (4.20)

defines a contraction from (H2(E))s into (H2(E))r, with adjoint given by

T ∗
( ∞∑

n=0

Pnun

)
=

∞∑

n=0

(Pn � S)un, un ∈ H
s. (4.21)

Proof. Let
∑∞

n=0 Pnun ∈ H2(E). We can write:
〈

T ∗
( ∞∑

n=0

Pnun

)
,

∞∑

n=0

PnPn(b)u

〉
=

〈 ∞∑

n=0

Pnun, T

( ∞∑

n=0

PnPn(b)u

)〉

=

〈 ∞∑

n=0

Pnun,

∞∑

n=0

Pn((Pn � S)(b))∗u

〉

= u∗
∞∑

n=0

(Pn � S)(b)un.

�
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Remark 4.18. Formula (4.21) gives the adjoint of CK-multiplication for any
(bounded) multiplier (i.e. functions for which the corresponding operator of
CK-multiplication is bounded in the Hardy space), and not only for Schur
multipliers.

Corollary 4.19. Let S(x) =
∑∞

n=0 PnSn be a H
r×t-valued Schur multiplier.

Then,

S̃(x) =
∞∑

n=0

Pn(x)S∗
n (4.22)

is a H
t×r-valued Schur multiplier.

Proof. S is a Schur multiplier if and only if the function
∑∞

n=0 znχ(Sn) is
analytic and contractive in D; this will hold if and only if the function

∞∑

n=0

znχ(Sn)∗ =
∞∑

n=0

znχ(S∗
n)

is analytic and contractive in D; by the previous theorem this will hold if and
only if S̃ is a H

t×r-valued Schur multiplier. �

The operator T ∗ cannot be written as S � (
∑∞

n=0 Pnun), i.e. it is not
the � multiplication by S. We now introduce the counterpart of this latter
operator here.

Definition 4.20. The operator T ∗ will be denoted by MS :

MS

( ∞∑

n=0

Pn(a)un

)
=

∞∑

n=0

(Pn � S)(a)un, a ∈ E . (4.23)

We have the following extension result, counterpart of Theorem 2.21.
The proof is slightly different.

Theorem 4.21. Assume the kernel (4.15) defined and positive definite in a
neighborhood N of the origin of R4. Then, S extends, in a unique way, to a
Schur multiplier.

Proof. We consider the scalar case to simplify the notation. The preceding
argument still holds and, setting a = 0 and b ∈ N , we get

(T ∗v)(b) = S(b)v, b ∈ N.

But T ∗v ∈ H2(E) and in particular is hyperholomorphic in all of E . More
generally, still for b ∈ N , but for f =

∑∞
n=0 Pnfn ∈ H2(E) we have

(T ∗f)(b) = 〈(T ∗f)(·), kE(·, b)〉2
= 〈f(·), TkE(·, v)〉2

=
∞∑

n=0

(Pn � S)(b)fn.
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Writing (T ∗f)(b) =
∑∞

n=0 Pnhn and S =
∑∞

n=0 Pnsn, the previous equality
is equivalent (since v varies in an open set; it would be enough to have an
interval such that x0 ∈ (−ε, ε))

⎛

⎜⎝
h0

h1

...

⎞

⎟⎠ = TS

⎛

⎜⎝
f0

f1

...

⎞

⎟⎠ ,

where TS is the lower triangular Toeplitz operator based on the coefficients
of S. So TS is a contraction, and so I −TST ∗

S ≥ 0, and so 〈(I −TST ∗
Sc, c〉 ≥ 0

for every c ∈ �2(N0,H). The choice (4.18) allows to conclude that S is a Schur
multiplier. �

Lemma 4.22. The following equality holds for all f ∈ H2(E):

P1 � (MSf) = MS(P1 � f). (4.24)

Proof. Let f =
∑∞

n=0 Pnun. We can write:

P1 � (MSf) = P1 �
( ∞∑

n=0

(Pn � S)un

)

=
∞∑

n=0

(P1+n � S)un

= MS

( ∞∑

n=0

Pn+1un

)

= MS (P1 � f)

= MS (MP1f) .

�

It is useful to rewrite (4.24) as

MP1MS = MSMP1 . (4.25)

5. Schur Algorithm

The Schur algorithm is based on Schwarz lemma and on the fact that if two

numbers u and v are in the open unit disk so is
u − v

1 − uv
. It reads (see [80,81]):

Theorem 5.1. Let f be analytic and contractive in the open unit disk (i.e. a
Schur function), and assume |f(0)| < 1, and set f (0) = f . Then the recursion

f (n+1)(z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (n)(z) − f (n)(0)

z(1 − f (n)(0)f (n)(z))
, 0 < |z| < 1,

(f (n))′(0)
1 − |f (n)(0)|2 , z = 0,

(5.1)

defines a family of Schur functions; it stops at rank n0 if |f (n0)(0)| = 1.
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The numbers ρn = f (n)(0) are called the Schur parameters associated
with the Schur function f .

This recursion cannot be considered directly in the matrix-valued case.
One needs to take into account that if E1 and E2 are strictly contractive
matrices, say in C

p×q, the matrix (E1 + E2)(Iq + E∗
1E2)−1 need not be con-

tractive, but the matrix

(Ip − E1E
∗
1 )1/2(E2 + E1)(Ip + E∗

1E2)−1(Iq − E∗
1E1)1/2 (5.2)

is strictly contractive.
The matricial Schur algorithm was studied in [48] and, in the next result, we
repeat the statement taking into account the matrix symmetry

E−1
p MEq = M, Em =

(
0 Im

−Im 0

)
, m = p, q (5.3)

is in force.

Theorem 5.2. Let s be a C
p×q-valued Schur function satisfying (5.3). Assume

s0 strictly contractive. Then the function

s(1)(z) =

{
1
z (Ip − s0s

∗
0)−1/2(s − s0)(Iq − s∗

0s)−1(Iq − s∗
0s0)

1/2, 0 < |z| < 1,

(Ip − s0s
∗
0)−1/2s′(0)(Iq − s∗

0s0)
−1/2, z = 0,

(5.4)

is a Schur function and satisfies the symmetry (5.3).

If ‖s0‖ < 1 one can iterate, and one gets the matricial Schur algorithm.
The condition ‖s(0)‖ < 1 is quite restrictive. A tangential Schur algorithm
was developed in [16]. On the other hand, when p = q = 2 and s(0) is in the
range of χ both (I2 − s0s

∗
0)

−1/2 and (I2 − s∗
0s0)1/2 are scalar matrices and

(5.4) reduces to

s(1)(z) =
1
z
(s(z) − s0)(I2 − s∗

0s(z))−1. (5.5)

We now turn to the setting of hyperholomorphic functions of axial type.
For simplicity of exposition we first consider scalar valued Schur multiplier.
From the analysis in the previous sections, S =

∑∞
n=0 PnSn is a Schur mul-

tiplier if and only if the block Toeplitz operator
⎛

⎜⎜⎝

χ(S0) 0 0 · · ·
χ(S1) χ(S0) 0 · · ·
χ(S2) χ(S1) χ(S0) 0

· · · · · ·

⎞

⎟⎟⎠ (5.6)

is a contraction from �2(N0,C
2) into �2(N0,C

2). The function

s(z) =
∞∑

n=0

χ(Sn)zn

takes then contractive values, and is in the range of χ; see Lemma 2.1.
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Theorem 5.3. Let S be a quaternionic Schur multiplier such that |S(0)| < 1.
Then the function

S(1)(3x0) =
1

3x0
(S(3x0) − S(0))(1 − S(0)S(3x0))

−1

extends to a Schur multiplier.

In the matrix-valued case it is not true anymore that I − χ(S0)χ(S0)∗

is a scalar matrix.

Theorem 5.4. Let S be a H
r×t-valued Schur multiplier, and assume ‖S(0)‖ <

1. The function

S(1)(3x0) =
1

3x0
(Ir − S0S

∗
0 )−1/2(S(3x0) − S0)(It − S∗

0S(3x0))
−1(It − S∗

0S0)
1/2,

with x0 ∈ (−1/3, 1/3) and S0 = S(0) extends to a Schur multiplier.

The question whether the tangential Schur algorithm developed in [16]
can lead to functions satisfying the required symmetry property in the matrix-
valued case remains to be considered.

6. Intrinsic Functions

In this section we study quaternionic intrinsic Fueter hyperholomorphic func-
tions. Let us recall that, given an hyperholomorphic function f on some axi-
ally symmetric open set Ω, we say that f is quaternionic intrinsic if it satisfies
the relation

f(x) = f(x), ∀x ∈ Ω. (6.1)

Proposition 6.1. The family of polynomials (Pn)n≥0 consists of axially hy-
perholomorphic quaternionic intrinsic functions on H.

Proof. We know that for all n ≥ 0 the polynomials Pn are axially hyper-
holomorphic functions on H. Furthermore, using the relation with the n-th
quaternionic Appell polynomials Qn, see [12, (3.8)], we have

Pn(x) =
Qn(x)

cn

=
n∑

j=0

Tn
j

cn
xn−jxj

=
Qn(x)

cn

= Pn(x).

�

Proposition 6.2. Let f be a hyperholomorphic function of axial type on some
axially symmetric open set Ω. Then, f is quaternionic intrinsic if and only
if it admits a power series representation with real coefficients with respect to
the polynomials (Pn)n≥0.
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Proof. We know by Theorem 3.10 in [12] that f admits a power series with

respect to (Pn)n≥0. So, we can write f =
∞∑

n=0

Pnfn with fn ∈ H for all n ≥ 0.

We assume that f is intrinsic, thus the formula (6.1) and Proposition 6.1
imply that

f(x) = f(x),∀x ∈ Ω ⇔
∞∑

n=0

Pn(x)fn =
∞∑

n=0

Pn(x)fn,∀x ∈ Ω

⇔
∞∑

n=0

fnPn(x) =
∞∑

n=0

Pn(x)fn,∀x ∈ Ω

⇔
∞∑

n=0

fn(3x0)n =
∞∑

n=0

(3x0)nfn,∀x0 ∈ R

⇔ fn = fn,∀n ≥ 0
⇔ fn ∈ R,∀n ≥ 0.

The equivalence between the second and the third lines holds because Pn

is the unique axially hyperholomorphic extension of (3x0)n. This ends the
proof. �

Proposition 6.3. Let S1 and S2 be two hyperholomorphic functions of axial
type, defined on some axially symmetric open set Ω. If S1 is quaternionic
intrinsic, then S1 � S2 admits a power series expansion with respect to the
polynomials (Pn)n≥0.

Proof. We note that S1 and S2 have power series expansions in terms of

(Pn)n≥0 that we can write S1 =
∞∑

n=0

Pnan and S2 =
∞∑

n=0

Pnbn. Since S1

is quaternionic intrinsic we know by Proposition 6.2 that the coefficients
(an)n≥0 are real. Thus, we apply also Lemma 2.8 to get

S1 � S2 =

( ∞∑

n=0

Pnan

)
�
( ∞∑

m=0

Pmbm

)

=
∞∑

n,m=0

(Pn � Pm)anbm

=
∞∑

n,m=0

Pn+manbm

=
∞∑

n=0

Pn

(
n∑

k=0

akbn−k

)
.

�

Proposition 6.4. Let S be a hyperholomorphic function of axial type. If S is
quaternionic intrinsic, then the operator MS coincides with the multiplication
operator f �→ S � f .
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Proof. We note that since S is quaternionic intrinsic, it has real coefficients.
Thus, we have Pn � S = S � Pn for all n ≥ 0. Then, starting from Defini-

tion 4.20, for any f =
∞∑

n=0

Pnun, we have

MS(f) =
∞∑

n=0

(Pn � S)un

=
∞∑

n=0

(S � Pn)un

= S �
( ∞∑

n=0

Pnun

)

= S � f.

�
Proposition 6.5. Let S1 and S2 be two hyperholomorphic functions of axial
type such that S1 is quaternionic intrinsic. Then, we have

MS1MS2 = MS1�S2 . (6.2)

Proof. We know by Proposition 6.3 that S1 � S2 is well defined and admits
a power series expansion in terms of (Pn)n≥0 since S1 is intrinsic. Therefore,
using Proposition 6.4, we have

MS1�S2(f) = (S1 � S2) � f

= MS1(S2 � f)

= MS1MS2(f).

�

7. de Branges–Rovnyak Spaces

The reproducing kernel Hilbert space with reproducing kernel (4.15) will be
called the de Branges–Rovnyak space associated with the Schur multiplier S
and denoted by H(S). The treatment using the Appell-like approach allows
to prove results naturally extending the corresponding ones in the classical
complex case. For example, we have the following characterization:

Theorem 7.1. We have

((I − MSM∗
S)(kE(·, a)u) (b) = KS(b, a)u (7.1)

and

H(S) = Ran
√

I − MSM∗
S (7.2)

with inner product

〈√I − MSM∗
Sf,

√
I − MSM∗

Sg〉H(S) = 〈(I − π)f, g〉2 (7.3)

where π is the orthogonal projection on the kernel of
√

I − MSM∗
S.



38 Page 32 of 63 D. Alpay et al. IEOT

Proof. The claims follow from [9]. �

We recall the following, valid for f, g ∈ H2(E) (the first equality is a
special case of the second one):

〈Γf , Γg〉H(S) = 〈Γf , g〉2, (7.4)

〈
√

Γf , Γg〉H(S) = 〈
√

Γf ,
√

Γg〉2. (7.5)

Using the quaternionic version of [44] or [55, Theorem 4.1] (we do not
give proofs of these since we will have more general results than the theorems
below in the next section) we have the following results, for matrix-valued
Schur multipliers

Theorem 7.2. Let S be a H
r×s-valued Schur multiplier. An element f in

H2(E) belongs to H(S) if and only if

sup
g∈H2(E)

‖f + MSg‖2
2 − ‖g‖2

2 < ∞. (7.6)

Using this characterization we can prove the following:

Theorem 7.3. Let S be a H
r×s-valued Schur multiplier. Let R0 be defined by

(4.8). Then:

‖R0f‖2
H(S) ≤ ‖f‖2

H(S) − ‖f(0)‖2, f ∈ H(S). (7.7)

Proof. Recall that S denotes the forward-shift operator, and that the latter
is an isometry (see Lemma 4.6). Using (4.9) and (4.24) we can write for
f, g ∈ H2(E):

‖R0f + MSg‖2
2 − ‖g‖2

2 = ‖S(R0f + MSg)‖2
2 − ‖Sg‖2

2

= ‖f − f(0) + MS(P1 � g)‖2
2 − ‖P1 � g‖2

2

= ‖f + MS(P1 � g)‖2
2 − 2Re 〈f + MS(P1 � g) , f(0)〉+

+ ‖f(0)‖2 − ‖P1 � g‖2
2

= ‖f + MS(P1 � g)‖2
2 − ‖P1 � g‖2

2 − ‖f(0)‖2,

where we have used, with g =
∑∞

n=0 Pnbn,

〈f + MS(P1 � g) , f(0)〉2 = 〈f + P1 � MSg , f(0)〉2
= 〈f , f(0)〉2 + 〈P1 � MSg , f(0)〉2
= ‖f(0)‖2

since P1 � MSg has no constant term. �

Theorem 7.4. Let R0 be defined by (4.8). Then R0Su ∈ H(S) for every u ∈
H

s and

‖R0S‖2 ≤ ‖u‖2 − ‖S(0)u‖2, u ∈ H
s. (7.8)
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Proof. We already know that Su ∈ H2(E). We write

‖R0S + MSg‖2
2 − ‖g‖2

2 = ‖S(R0S + MSg)‖2
2 − ‖Sg‖2

2

= ‖ − S(0)u + MS(u + P1 � g)‖2
2 − ‖P1 � g‖2

2

= ‖S(0)u‖2 + ‖MS(u + P1 � g)‖2

− 2Re 〈S(0) , MS(u + P1 � g)〉
≤ ‖S(0)‖2 + ‖u + P1 � g‖2

2 − ‖P1 � g‖2
2

= ‖u‖2 − ‖S(0)u‖2.

In the above, to go from the third to fourth line we used that

‖MS(u + P1 � g)‖2 ≤ ‖u + P1 � g‖2

(since S is a Schur multiplier) and

〈S(0) , MS(u + P1 � g)〉 = 0

since MS(u + P1 � g) has no constant term in its expansion along the Pn.
Similarly we used that 〈u, P1 � g〉2 = 0 to go from the fourth to the last line.
�

The operators defined in the previous theorems are part of a coisometric
operator matrix. In [44] (see also [42]) it is obtained using the theory of
complementation. In the next section we use a different method.

8. The Coisometric Colligation and Blaschke Functions

8.1. The Lurking Isometry

Let us denote by �r the right CK-product. Using (2.27) we note that (4.15)
can be rewritten as

KS(x, y) − P1(x) � KS(x, y) �r P1(y) = Ir − S(x)S(y)∗, (8.1)

from which we get

KS(x, y) + S(x)S(y)∗ = P1(x) � KS(x, y) �r P1(y) + Ir. (8.2)

Write K(x, y) = 〈f(x), f(y)〉H, where H is a Hilbert space and x �→ f(x) is
H-valued function. We rewrite (8.2) as
〈(

S(y)∗h
f(y)

) (
S(x)∗k
f(y)

)〉

Hr⊕H

=

〈(
h

f(y) �� P1(y)h

) (
k

f(x) �� P1(y)k

)〉

Hs⊕H

where h, k ∈ H
s and x, y ∈ E .

This last equality, called the lurking isometry (see [4,28]), can be the
tool to get a co-isometric realization of S (see [2] for an application in the
quaternionic setting). We will choose a different (and closely related) avenue,
namely the theory of relations, which originates with the work of Krein and
Langer (the εz method; see e.g. [69,70]) and was developed further in [11]. We
will use the lurking isometry method in Sect. 11 to characterize Carathéodory
and Schur multipliers in the setting of the counterpart of Hardy space of the
right half plane.
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8.2. The Co-isometric Realization

We use the method of isometric relations, as in [11], suitably adapted to the
present setting, and follow [22, Sect. 2]. We set Γ = I − MSM∗

S , and define
wa via

waq = ΓM∗
P1

kE(·, a)p ∈ H(S), q ∈ H
r,

and introduce:

V̂

(
waq
u

)
=
(

(KS(·, a) − KS(·, 0))q + KS(·, 0)u
(S(a)∗ − S(0)∗)q + S(0)∗u

)
, q ∈ H

r, u ∈ H
s.

Theorem 8.1. V̂ is isometric from its domain Dom V̂ ⊂ H(S) ⊕ H
r into

H(S) ⊕ H
s.

Proof. We want to check:
〈

V̂

(
waq
u

)
, V̂

(
wbp
v

)〉

H(S)⊕Hs

=
〈(

waq
u

)
,

(
wbp
v

)〉

H(S)⊕Hr

(8.3)

where p, q ∈ H
r, u, v ∈ H

s, and a, b ∈ E . We divide the proof into three steps.
STEP 1: Case u = v = 0.

Then, only terms involving the directions p and q appear. In the follow-
ing sequence of equality we use (4.25) to go from the second to the third line,
and (4.10) to go from the fourth to the fifth line. We also note that

〈waq, wbp〉H(S) = 〈ΓM∗
P1

kE(·, a)q , M∗
P1

kE(·, b)p〉2
= 〈M∗

P1
kE(·, a)q , M∗

P1
kE(·, b)p〉2

− 〈M∗
SM∗

P1
kE(·, a)q , M∗

SM∗
P1

kE(·, b)p〉2
= 〈M∗

P1
kE(·, a)q , M∗

P1
kE(·, b)p〉2

− 〈M∗
P1

M∗
SkE(·, a)q , M∗

P1
M∗

SkE(·, b)p〉2
= 〈MP1M

∗
P1

kE(·, a)q , kE(·, b)p〉2
− 〈MP1M

∗
P1

M∗
SkE(·, a)q , M∗

SkE(·, b)p〉2
= 〈(I − C∗C)kE(·, a)q , kE(·, b)p〉2

− 〈(I − C∗C)M∗
SkE(·, a)q , M∗

SkE(·, b)p〉2.
To pursue we note that

C (kE(·, a)q) = q

and, using the formula (4.20) for M∗
S

CM∗
S (kE(·, a)q) = S(a)∗q.

Thus

〈waq, wbp〉H(S) = p∗kE(b, a)q − p∗q + p∗S(b)S(a)∗q − 〈M∗
SkE(·, a)q , M∗

SkE(·, b)p〉2
= 〈ΓkE(·, a)q , kE(·, b)p〉2 − p∗q + p∗S(b)S(a)∗q

= 〈KS(·, a)q,KS(·, b)p〉H(S) − qp∗ + S(b)S(a)∗q.
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Furthermore,

〈(KS(·, a) − KS(·, 0))q , (KS(·, b) − KS(·, 0))p〉H(S)

+ p∗(S(b) − S(0))(S(a)∗ − S(0)∗)p

= 〈KS(·, a)q, KS(·, b)p〉H(S) − p∗KS(0, a)q − p∗KS(b, 0) + p∗KS(0, 0)q+

+ p∗(S(b) − S(0))(S(a)∗ − S(0)∗)p

= 〈KS(·, a)q, KS(·, b)p〉H(S) − p∗(I − S(0)S(a)∗)q − p∗(I − S(b)S(0)∗)q+

+ p∗(I − S(0)S(0)∗)q + p∗(S(b) − S(0))(S(a)∗ − S(0)∗)q

= 0.

STEP 2: Case p = q = 0.
We now need to check that

〈KS(·, 0)u , KS(·, 0)v〉H(S) + v∗S(0)S(0)∗u = v∗u,

but this is straightforward.
STEP 3: Mixed terms.

By symmetry it is enough to consider the case where p and u appears.
We need to verify that:

〈KS(·, 0)u , (KS(·, b) − KS(·, 0))p〉 + 〈S(0)∗u , (S(b)∗ − S(0)∗)p〉 = 0,

but this is equivalent to

KS(b, 0) − KS(0, 0) − S(0)S(0)∗ + S(b)S(0)∗ = 0,

i.e.

Ir − S(b)S(0)∗ − (Ir − S(0)S(0)∗) − S(0)S(0)∗ + S(b)S(0)∗ = 0,

which clearly holds. �
We now compute the adjoint of the above isometric operator.
We write

V̂ =

(
T̂ Ĝ

F̂ Ĥ

)
. (8.4)

Theorem 8.2. V̂ is densely defined, extends to an everywhere defined isometry
and its adjoint is given by

T̂ ∗ = R0. (8.5)

Proof. By definition of the operator range inner product we have:

〈
√

Γf,Γwap〉H(S) = 〈
√

Γf,M∗
P1

kE(·, a)p〉2
= u∗(MP1 �

√
Γf)(a)

and so f = 0 if the above vanishes for all u and a since MP1 is an isometry.
Set T̂ ∗(

√
Γf) =

√
Γg. We have on the one hand

〈T̂ ∗F,Γ(M∗
P1

kE(·, a)u)〉H(S) = 〈
√

Γg , Γ(M∗
P1

kE(·, a)u)〉H(S)

= 〈
√

Γg,M∗
P1

kE(·, a)u〉2
= u∗

(
P1 �

√
Γg
)

(a).
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On the other hand,

〈T̂ ∗F,Γ(M∗
P1

kE(·, a)u)〉H(S) = 〈
√

Γg , (KS(·, a) − K(S(·, 0)) u〉H(S)

= u∗(
√

Γg)(a) −
√

Γg)(0))

Hence

(P1 � T̂ ∗(F ))(b) = F (b) − F (0).

�

Proposition 8.3. Let

V̂ ∗ =
(

A B
C D

)
, (8.6)

where V is as in (8.4). Then, for f =
∑∞

n=0 Pnfn ∈ H(S)

fn = CAnf, n = 0, 1, . . . (8.7)

and

S(x) = D +
∞∑

n=1

Pn(x)CAn−1B. (8.8)

Proof. Let f(x) =
∑∞

n=0 Pn(x)fn ∈ H(S). We have

Rm
0 f =

∞∑

n=0

Pmfm+n, m = 0, 1, . . .

and so CRm
0 f = fm for m = 0, 1, . . .. To prove (8.8) we write

S = S(0) + P1 � R0S.

Writing S =
∑∞

n=0 PnSn we conclude by applying (8.7) to R0Su for u ∈ H
s.

�

Remark 8.4. A deep difference with respect to the classical case is that the
kernel functions of H2(E) are not eigenvectors for R0.

Note that (8.8) is not equal to D + C � (I − P1A)−� � B. But, for
x1 = x2 = x3 = 0 we have

S(x0) = D + 3x0C(I − 3x0A)−1B.

Remark 8.5. Following linear system theory (see [31,60,67,78]) we will call
the representation (8.8) a realization of S. The associated matrix V̂ will be
called the realization matrix or the Rosenbrock matrix. The case where V̂ ∗

is a matrix can be seen as the definition of rational functions. Unfortunately,
the CK-product of two such functions will not be rational in this sense. The
next section deals with an important example of rational functions.
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8.3. Blaschke Functions

Equation (8.8) allows us to give a family of Schur multipliers, which we call
Blaschke functions, namely those corresponding to the operator-matrix (8.6)
to be a unitary matrix. The definition then extends the classical case, also
in the matrix-valued and possibly indefinite case; see [17] for the latter. In
general there will not be �-multiplicative decompositions of such a Blaschke
“product” into elementary factors, hence the term function rather than prod-
uct.

Proposition 8.6. Let B be H
r×r-valued Blaschke function, with correspond-

ing realization matrix V̂ ∗ ∈ H
(N+r)×(N+r). The corresponding multiplication

operator MB is an isometry from (H2(E))r into itself and the corresponding
space H(B) is finite dimensional.

Proof. We first remark that the assumed unitarity is equivalent to the equa-
tions

A∗A + C∗C = IN , (8.9)
B∗B + D∗D = Ir, (8.10)
D∗C + B∗A = 0. (8.11)

Let now n0,m0 ∈ N0, and u, v ∈ H
r. We have, with bn given by (8.7),

bn =

{
D, if n = 0,

CAn−1B, if n > 0,
(8.12)

and so

〈MBPn0u,MBPm0v〉2 = 〈Pn0 � Bu,Pm0 � Bv〉2

=
∞∑

n,m=0

〈Pn0+nbnu, Pm0+mbmv〉2

=
∞∑

n,m=0
n0+n=m0+m

v∗b∗
mbnu.

We now compute

∞∑

n,m=0
n0+n=m0+m

b∗
mbn
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taking into account that the matrix V̂ is unitary. When n0 = m0 we have
∞∑

n=0

b∗
nbn = D∗D +

∞∑

n=0

B∗A∗nC∗CAnB

= D∗D +
∞∑

n=0

B∗A∗n(IN − A∗A)AnB

= D∗D +
∞∑

n=0

B∗(A∗nAn − A∗(n+1)An+1)B

= D∗D + B∗B
= Ir,

where we first used (8.9) and then (8.10).
Assume now n0 < m0 (the case n0 > m0 is obtained by symmetry). We

can write:
∞∑

n,m=0
n0+n=m0+m

b∗
mbn =

∞∑

m=0

b∗
mbm0−n0+m

= D∗CAm0−n0B +
∞∑

m=1

B∗A∗mC∗CAmAm0−n0B

= D∗CAm0−n0B +
∞∑

m=1

B∗A∗m(IN − A∗A)AmAm0−n0B

= D∗CAm0−n0B + B∗AAm0−n0B

= (D∗C + B∗A)Am0−n0B

= 0

in view of (8.11).
We thus have an isometry on the linear span of P0, P1, . . . and on the

whole of (H2(E))r by continuity.
To show the finite dimensionality of the space we restrict x = x0, y =

y0 ∈ (−1/3, 1/3). We then have

KS(3x0, 3y0) =
Ir − S(x0)S(y0)∗

1 − 9x0y0
= C(IN − 3x0A)−1(IN − 3y0A)−1C∗.

It follows that the linear span of the functions x0 �→ KS(3x0, 3y0)h (h ∈ H
r

and y0 ∈ (−1/3, 1.3) is finite dimensional. By the uniqueness of the axially
hyperholomorphic extension the linear span of the functions x �→ KS(x, 3y0)h
is finite dimensional We claim that they span H(S). Indeed, a function
f ∈ H(S) orthogonal to these functions would satisfy f(3y0) = 0 for y0 ∈
(−1/3, 1/3). Since f is of axial type we have that f ≡ 0. �

The above computations show equivalently that:

Corollary 8.7. Let V̂ ∗ given by (8.6). Then the corresponding Toeplitz oper-
ator defined by the sequence (8.12) is unitary from �2(N0,H

r) into itself.
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More generally, one can take V̂ ∗ to be C
(N+s)×(N+s)-valued and co-

isometric. Then (8.9)–(8.11) still hold and the same proof as above leads
to:

Theorem 8.8. Let S(x) = D+
∑∞

n=1 Pn(x)CAn−1B, where the realization ma-
trix (8.6) is coisometric. Then the corresponding operator MS is an isometry
from (H2(E))s into (H2(E))r.

Remark 8.9. Take S1, . . . , , SN to be N Schur multipliers (say, H-valued) with
associated finite dimensional H(Sj) spaces, j = 1, . . . , N , and let t1, . . . , tN
to be real numbers such that

∑N
n=1 t2n = 1. The function

S(x) =
(
t1S1(x) · · · tNSN (x)

)

is a Schur multiplier from (H2(E))N into H2(E), and the associated reproduc-
ing kernel space is finite dimensional, but will not be isometrically included
in H2(E) when N > 1; see [16, p. 71] for the complex setting. The argument
is the same here.

Remark 8.10. In fact the results in the present section still hold when V̂ ∗ is
isometric, but not necessarily a matrix. Then the corresponding multiplier
is called inner. The study of these multipliers will be considered elsewhere.
Similarly, one could assume unitarity with respect to an indefinite metric.
This aspect of the theory will also be treated in a separate publication.

8.4. Rational Functions

We now define rational functions in the present setting. We first recall that
any C

n×m-valued rational function, say M(z), with no pole at the origin can
be written in the form

M(z) = H + zG(I − zT )−1F, (8.13)

where H,G, T, F are matrices of appropriate sizes. Expression (8.13) is called
a realization (centered at the origin). See Remark 8.5 above for references.
We also recall the formulas for the product and inverse of rational functions.
Note that, since we consider possibly non-square functions, the sum will be
a special case of the product since

(
M1(z) In

)( Im

M2(z)

)
= M1(z) + M2(z)

where M1 and M2 are C
n×m-valued.

Assuming in (8.13) that n = m and H invertible, one has the formula

M(z)−1 = H−1 − zH−1G(I − zT×)−1FH−1, (8.14)

where T× = T −GH−1F , and with Mj(z) = Hj +zGj(I−zTj)−1Fj , j = 1, 2,
two rational functions of compatible sizes,

M1(z)M2(z) = H + zG(I − zT )−1F,

with H = H1H2 and

T =
(

T1 G1T2

0 T2

)
, G =

(
G1

H1G2

)
, F =

(
F1H2 F2

)
. (8.15)
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Definition 8.11. The H
r×s-valued function R(x) hyperholomorphic of axial

type is called rational if its restriction to the real axis is a rational function
of the real variable, with quaternionic coefficients.

Theorem 8.12. The H
r×s-valued function R(x) hyperholomorphic of axial

type, and defined at the origin, is rational if and only if x0 �→ R(3x0) can be
written as

R(3x0) = D + 3x0C(I − 3x0A)−1B (8.16)

where A,B,C,B are quaternionic matrices of appropriate sizes.

Equivalently:

Theorem 8.13. The H
r×s-valued function R(x) hyperholomorphic of axial

type, and defined at the origin, is rational if and only if it can be written
as

R(x) = D +
∞∑

n=0

Pn(x)CAn−1B (8.17)

where A,B,C,B are quaternionic matrices of appropriate sizes.

We will not give the proofs of the above results, which follow easily
from the previous analysis in the paper. One still has the formulas (8.14) and
(8.15) for a real variable x0, but not for the CK-product. So the product
of rational hyperholomorphic functions of axial type is not compatible with
the CK product. To emphasize this point, we now make the connection with
rational functions of the Fueter variables, as studied in [10,20,23] (see also
[71], and see [18] for the split quaternionic case). There, rational functions
are characterized by the formula (we do not specify the sizes of the various
quaternionic matrices)

R(x) = D + C � (I − (ζ1A1 + ζ2A2 + ζ3A3)−� � (ζ1B1 + ζ2B2 + ζ3B3)

= D + C � (I − ζA)−� � (ζB),

(8.18)

with

A =

⎛

⎝
A1

A2

A3

⎞

⎠ and B =

⎛

⎝
B1

B2

B3

⎞

⎠ ,

and the variable here is

ζ =
(
ζ1 ζ2 ζ3

)
.

We look at the special case where

A =

⎛

⎝
e1A
e2A
e3A

⎞

⎠ and B =

⎛

⎝
e1B
e2B
e3B

⎞

⎠ ,
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where A and B are matrices of appropriate sizes and with quaternionic
coefficients. Since P1(x) = ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3 we can then rewrite
(8.18) as

R(x) = D + C � (I − P1(x)A )−� � P1(x)B,

which will not be in general a series in the Pn, but is a series in the ζα. We can
define such elements as the rational functions associated with the polynomials
Pn. Then, things make sense in terms of realizations, with the usual formulas,
but we do not get power series in Pn, even when A is nilpotent.

8.5. A Structure Theorem

In the classical, and scalar-valued, setting, Beurling’s theorem asserts that a
closed subspace N of the Hardy space H2(D) is invariant under multiplica-
tion by the complex variable if and only if it is of the form N = jH2(D),
where j is an inner function. The space M = H2(D) � N is then isometri-
cally included in H2(D), backward-shift invariant, and has reproducing kernel
equal to 1−j(z)j(w)

1−zw . One motivation for the theory of de Branges–Rovnyak
is to characterize reproducing kernel Hilbert spaces of functions which are
contractively included in H2(D), and R0-invariant. Rather than the latter,
one assumes that the inequality

‖R0f‖2
M ≤ ‖f‖2

M − |f(0)|2 (8.19)

holds. This inequality implies contractive inclusion in the Hardy space,

f ∈ M =⇒ f ∈ H2(D) and ‖f‖H2(D) ≤ ‖f‖M (8.20)

and that in particular the space is a reproducing kernel Hilbert space since

|f(w)| ≤ 1√
1 − |w|2 ‖f‖H2(D) ≤ 1√

1 − |w|2 ‖f‖M, w ∈ D.

Theorem 8.14. Let M be a Hilbert space of functions analytic in the open
unit disk and such that (8.19) holds in M. Then, M is contractively included
inside H2(D) and there is a (possibly �2-valued) analytic function s such that

the reproducing kernel of N is
1 − s(z)s(w)∗

1 − zw
.

We refer to the notes in [11, p. 206] for some history on Theorem 8.14,
but mention the papers [72]. Guyker characterized the spaces for which the
inclusion is isometric; see [11, p. 187], [64,65]. For an illustration of the con-
tractive inclusion, see Remark 8.9 above.
A general version of Theorem 8.14, in the operator-valued and Pontryagin
space case, has been proved in [11, Theorem 3.1.2, p. 85]. We will present
in a subsequent paper the general version of the result, in the Pontryagin
and operator-valued function case. The purpose of this section is to illustrate
the power of the methods used here on a simple case. Note that (8.21) is a
weakening of (4.10).

Theorem 8.15. Let H be a Hilbert space of Hr-valued functions axially hyper-
holomorphic in E, and R0-invariant and satisfying

‖R0f‖2
H ≤ ‖f‖2

H − f(0)∗f(0), f ∈ H. (8.21)
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Then there exist a right quaternionic Hilbert space C and a L(C,Hr)-valued
function S hyperholomorphic of axial type such that H = H(S).

Proof. It follows from (8.21) that H is contractively included in (H2(E))r,
and that the operator R0 is bounded (another argument, still valid in the
quaternionic Pontryagin space setting would be to prove that R0 is closed,
thanks to the reproducing kernel property, and use the closed graph theo-
rem; see [8, Theorem 5.1.16, p. 74] for the latter). The point evaluation at
the origin, which we will denote by C, is also bounded since the space is con-
tractively included in the Hardy space and its norm is larger than the Hardy
space norm. We can thus rewrite (8.21) as

R∗
0R0 + C∗C ≤ I.

Since the adjoint of a contraction between Hilbert space is still a contraction
we have

IH⊕Hr −
(

R0

C

)(
R0

C

)∗
≥ 0,

and we can factorize the quaternionic positive operator via a right quater-
nionic Hilbert space C as

IH⊕Hr −
(

R0

C

)(
R0

C

)∗
=
(

B
D

)(
B
D

)∗
,

with
(

B
D

)
∈ L(C,H ⊕ H

r).

The operator matrix
(

R0 B
C D

)
: H ⊕ C −→ H ⊕ H

r

is co-isometric, and the L(C,Hr)-valued function S defined by

S(x) = D +
∞∑

n=1

P�n(x)CRn
0 B

is a Schur multiplier. To conclude we show that H = H(S). From the defini-
tion of S we have for x0, y0 ∈ (−1/3, 1/3)

KS(3x0, 3y0) = C(I − 3x0R0)−1(I − 3y0R0)−∗C∗.

We have

KS(3x0, 3y0) − 3x0KS(3x0, 3y0)3y0 = Ir − S(3x0)S(3y0)∗

and the result follows from axially hyperholomorphic extension on the left
with respect to x and on the right with respect to y. �
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9. Spaces L(Φ)

We now consider the counterpart of L(Φ) spaces, see (1.2), in the present set-
ting, and first briefly review the classical case. Functions analytic in the open
unit disk and with a positive real part there will be called here Herglotz func-
tions (they are called Carathéodory functions in Akhiezer’s book [5, p. 116]).
An Herglotz function, say Φ, is characterized by an integral representation of
the form

Φ(z) = im +
∫

[0,2π]

eit + z

eit − z
dσ(t) (9.1)

where m ∈ R, σ is an increasing function, and (9.1) is a Stieltjes integral.
They play an important role in the trigonometric moment problem, operators
models for isometric and unitary operators in Hilbert spaces and in the the-
ory of dissipative discrete systems, and have been extended to various more
general frameworks; see e.g. [1,27,29,30,68,69,73].
In a way similar to Theorem 2.21, consider a function Φ defined in a real
neighborhood (−ε, ε) of the origin and such that the kernel

Φ(a) + Φ(b)
2(1 − ab)

is positive definite there. Then it is the restriction to (−ε, ε) of a uniquely
defined Herglotz function, and the corresponding kernel

LΦ(z, w) =
Φ(z) + Φ(w)
2(1 − zw)

is positive definite in the open unit disk. The factor 2 in the kernels is to get
nicer realization formulas (such as (9.2)) and follows basically from the Cayley

transform z �→ 1 − z

1 + z
, which maps Herglotz functions into Schur functions.

The corresponding reproducing kernel Hilbert space and its applications
to operator models was first characterized and studied by de Branges; see
[41,45]. It is important to note that a Herglotz function need not be bounded,
and hence need not be a multiplier of the Hardy space.

Using the reproducing kernel space L(Φ) associated with LΦ (or directly
from (9.1)), one can characterize Herglotz functions in terms of a realization
of the form

Φ(z) = ia + C(I + zV )(I − zV )−1C∗, (9.2)

where V is coisometric in some Hilbert space, and C∗ is a continuous map
from the coefficient space (the complex numbers when the functions are
scalar) into that Hilbert space. Note that (9.2) can be rewritten as

Φ(z) = ia + CC∗ + 2
∞∑

n=1

znCV nC∗, z ∈ D. (9.3)

In this section we study the counterpart of the kernel LΦ in our setting,
and give the counterpart of the expansion (9.3), and study connections with
Toeplitz operators. In the following definition (and also in Sect. 12 below) we
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use the term multiplier although the operator of CK-multiplication by the
given function need not be bounded in the Hardy space.

Definition 9.1. A H
r×r-valued axially hyperholomorphic function Φ is called

a Herglotz multiplier if the kernel

LΦ(x, y) =
1
2

∞∑

n=0

(Pn � Φ)(x)Pn(y)∗ + Pn(x)((Pn � Φ)(y))∗ (9.4)

is positive definite in E .

When the operator of CK-multiplication by Φ is bounded in the Hardy
space (H2(E))r, we can replace (9.4) by the condition (see Remark 4.18)

Γ def.=
MΦ + M∗

Φ

2
≥ 0. (9.5)

Proposition 9.2. We note the following property of Γ:

MP1ΓM∗
P1

=
1
2

{MΦ(I − C∗C) + (I − C∗C)M∗
Φ} . (9.6)

Proof. Using the fundamental equality (4.10), we can write

MP1ΓM∗
P1

= MP1

(
MΦ + M∗

Φ

2

)
M∗

P1

=
1
2
MΦMP1M

∗
P1

+
1
2
MP1M

∗
P1

M∗
Φ

=
1
2
MΦ(I − C∗C) +

1
2
(I − C∗C)M∗

Φ.

�

We make now some remarks on the above kernel. It seems difficult to
find a direct counterpart of (9.2) [in view of (2.24)], let alone of (9.1). As for
the case of Schur multiplier, we look for a characterization of the coefficients
of Φ in its expansion along the Pn. When x = x0 and y = y0 belong to
(−1/3, 1/3) the kernel LΦ becomes

LΦ(3x0, 3y0) =
Φ(3x0) + Φ(3y0)∗

1 − 9x0y0
. (9.7)

As for the case of Schur multipliers, this restriction is enough to get back the
kernel LΦ in view of the axial symmetry of the functions.

Definition 9.3. We denote by L(Φ) the reproducing kernel Hilbert space of
axially hyperholomorphic functions with reproducing kernel (9.4).

The Hilbert space L(Φ) is the completion of the linear span of functions
of the form LΦ(x, y)p, p ∈ H

r, thus it consists of hyperholomorphic functions
of axial type.
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Theorem 9.4. Let Φ(x) =
∑∞

n=0 Pn(x)Φn be an axially hyperholomophic func-
tion in E. Then Φ is a Herglotz multiplier if and only if the coefficients Φn

can be written as

Φn =

{
CC∗, n = 0,

2CV ∗nC∗, n = 1, 2, . . .
(9.8)

where V is an isometry in a Hilbert space, say H, and C is a continuous map
from H into H

r.

Proof. We first prove the sufficiency. We have for a ∈ (−1, 1)

Φ(a) = CC∗ + 2
∞∑

n=1

anCV ∗nC∗ = C(I + aV ∗)(I − aV ∗)−1C∗.

Thus, for a, b ∈ (−1, 1),

Φ(a) + Φ(b)∗

2(1 − ab)
= C(I − aV ∗)−1(I − bV ∗)−∗C∗

and thus the corresponding function (9.7) is positive definite in (−1/3, 1/3),
and we get the result by hyperholomorphic extension on the left with respect
to x and on the right with respect to y since the functions are assumed axially
hyperholomorphic.
We now turn to the proof of the direct statement, and divide the proof in
a number of steps. We follow [25, Proof of Theorem 5.2, p. 708]. We write
P1(3y0) rather than 3y0 to emphasize the axially symmetric hypercomplex
extension to be used. At the end of section alternative steps 1 and 2 are given
when MΦ is bounded.
STEP 1: The linear relation (see Definition 3.1) of L(Φ) × L(Φ) defined by
the span of the functions
(
LΦ(·, 3y0)P1(3y0)q, (LΦ(·, 3y0) − LΦ(·, 0))q

)
, y0 ∈ (−1/3, 1/3), q ∈ H

r,

(9.9)

is densely defined and isometric.
Let F be orthogonal to the domain of the relation, then P1(3y0)F (3y0) ≡

0 and so F is identically equal to 0 by axially hypercomplex extension.
Next, we need to show that, for x0, y0,∈ (−1/3, 1/3) and p, q ∈ H

r, we
have:

〈LΦ(·, 3y0)P1(3y0)q, LΦ(·, 3x0)P1(3x0)p〉L(Φ)

= 〈(LΦ(·, 3y0) − LΦ(·, 0))q, (LΦ(·, 3x0)

− LΦ(·, 0))p〉L(Φ).

This amounts to check that

P1(3x0)LΦ(3x0, 3y0)P1(3y0) = LΦ(3x0, 3y0) − LΦ(3x0, 0) − LΦ(0, 3y0) + LΦ(0, 0)

but this is a direct consequence of the definition of LΦ since

LΦ(3x0, 0) + LΦ(0, 3y0) − LΦ(0, 0) =
Φ(3x0) + Φ(3y0)∗

2
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and

LΦ(3x0, 3y0) − P1(3x0)LΦ(3x0, 3y0)P1(3y0) =
Φ(3x0) + Φ(3y0)∗

2
.

There is thus an everywhere defined isometric operator such that, for q ∈ H
r

V
(
LΦ(·, 3y0)P1(3y0)q

)
= (LΦ(·, 3y0) − LΦ(·, 0))q, y0 ∈ (−1/3, 1/3).

STEP 2: We have

V ∗ = R0.

On the one hand

〈V ∗F, (LΦ(·, 3y0)P1(3y0))q)〉L(Φ) = 〈F, (L(·, 3y0) − L(·, 0))q〉L(Φ)

= q∗(F (3y0) − F (0))

and on the other hand

〈V ∗F, (LΦ(·, 3y0)P1(3y0)q)〉L(Φ) = 〈F, (LΦ(·, 3y0)P1(3y0))q)〉L(Φ)

= q∗P1(3y0)(V ∗F )(3y0).

Hence,

P1(3y0)(V ∗F )(3y0) = F (3y0) − F (0),

and hence the result by axially hypercomplex extension.
STEP 3: Let C denote the evaluation at the origin in L(Φ). It holds that

(C∗q)(x) = LΦ(x, 0)q = (Φ(x) + Φ(0)∗)q, q ∈ H
r.

We have, with p, q ∈ H
r,

〈C∗q , LΦ(·, x)p〉L(Φ) = 〈q , L(0, x)p〉Hr =
1
2
((Φ(0) + Φ(x)∗)p)∗q,

and hence the result.
STEP 4: We prove (9.8).
With q ∈ H

r we write

Φ(x)q = (Φ(x) + Φ(0)∗)q − Φ(0)∗q

= 2(C∗q)(x) − Φ(0)∗q

= 2
∞∑

n=0

CV ∗nC∗q − Φ(0)∗q

= CC∗ + 2
∞∑

n=1

CV ∗nC∗q + CC∗ − Φ(0)∗q

= CC∗ + 2
∞∑

n=1

CV ∗nC∗q +
Φ(0) − Φ(0)∗

2
q

since CC∗ =
Φ(0) + Φ(0)∗

2
. �

Corollary 9.5. Let Φ be a Herglotz multiplier. The space L(Φ) is R0 invariant.

As for Schur multiplier one has:
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Theorem 9.6. A space L(Φ) is finite dimensional if and only if the operator
V can be chosen to act in a finite dimensional space (and hence is unitary).

In terms of Toeplitz matrices we have:

Theorem 9.7. Φ is a H
r×r-valued bounded Herglotz multiplier if and only if

the infinite block matrix (Φn−m)∞
n,m=0 (with Φ−m = Φ∗

m) defines a bounded
positive operator.

Proof. Let Φ be such that the kernel LΦ is positive definite in E (at this stage
we do not assume yet that the associated operator MΦ is bounded). Then,
setting x1 = x2 = x3 = 0 and applying the map χ we see that the kernel

χ(Φ)(3x0) + (χ(Φ)(3y0))
∗

1 − 9x0y0

is positive definite in (−1/3, 1/3). Setting a = 3x0 and b = 3y0, and with
ϕ(a) = χ(Φ)(3x0) we see that the kernel

ϕ(a) + ϕ(b)∗

1 − ab

is positive definite on (−1, 1). Thus it extends to a positive definite function
to the open unit disk, and the extended ϕ has a positive real part there. The
block Toeplitz matrices

(χ(Φn−m))N
n,m=0 ,

with Φ−m = Φ∗
m, are thus non-negative. If MΦ is bounded, the infinite

Toeplitz matrix (χ(Φn−m))∞
n,m=0 defines a bounded positive operator, and

so does (Φn−m)∞
n,m=0 by Proposition 2.2.

Conversely, if (Φn−m)∞
n,m=0 defines a bounded positive operator, the function

(
Ir P1(x)Ir · · ·) (Φn−m)∞

n,m=0

⎛

⎜⎝
Ir

IrP1(y)
...

⎞

⎟⎠

is positive definite. It can be rewritten as the kernel LΦ. Indeed

(
Ir P1(x)Ir · · ·) (Φn−m)∞

n,m=0

⎛

⎜⎝
Ir

IrP1(y)
...

⎞

⎟⎠ =
∞∑

n,m=0

Pn(x)Φn−mPm(y)

while

LΦ(x, y) =
∞∑

n=0

( ∞∑

m=0

Pn+m(x)Φm

)
Pm(y) + Pn(x)

( ∞∑

m=0

Φ∗
mPm+n(y)

)

=
∞∑

n=0

∞∑

m=0

Pn(x)Φn−mPm(y)

with Φ−m = Φ∗
m for m = 0, 1, . . .. �
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We conclude with a computation of the linear relation associated to Φ
when MΦ is a bounded operator. The computations are longer, but avoid
axially symmetric extensions. The relation (9.9) becomes:

⎛

⎝
∑

j

Γ(M∗
P1

kE(·, aj)qj),
∑

j

LΦ(·, aj)qj − LΦ(·, 0)

⎛

⎝
∑

j

qj

⎞

⎠

⎞

⎠ , (9.10)

where u1, v1 . . . ∈ E and p1, q1, . . . ∈ H
r.

NEW STEP 1: The linear relation spanned by the elements (9.10) is iso-
metric and densely defined, and hence extends to the graph of an everywhere
defined isometry.

To prove this claim, we let f =
∑

j kE(·, uj)qj and g =
∑

� kE(·, v�)p�.
Using (9.6) we can write:

〈Γ(M∗
P1f), Γ(M∗

P1g)〉L(Φ) = 〈M∗
P1f, Γ(M∗

P1g)〉2
= 〈f, MP1Γ(M∗

P1g)〉2
=

1

2
〈f, (MΦ(I − C∗C) + (I − C∗C)M∗

Φ)g〉2

= 〈f, Γg〉 − 1

2
(CM∗

Φg)
∗
Cf − 1

2
(Cg)∗ CM∗

Φf

=
∑

j,�

p∗
�LΦ(v�, uj)qj − 1

2

(
∑

�

Φ(v�)
∗p�

)∗(∑

j

qj

)

− 1

2

(
∑

�

p�

)∗(∑

j

Φ(uj)
∗qj

)

=
∑

j,�

p∗
�LΦ(v�, uj)qj −

(
∑

�

LΦ(0, v�)
∗p�

)∗(∑

j

qj

)

−
(
∑

�

p�

)∗(∑

j

LΦ(0, uj)
∗qj

)

+

(
∑

�

p�

)∗

LΦ(0, 0)

(
∑

j

LΦ(0, uj)
∗qj

)

=

〈
∑

j

LΦ(·, uj)qj − LΦ(·, 0)

(
∑

j

qj

)
,

∑

�

LΦ(·, v�)p� − LΦ(·, 0)

(
∑

�

p�

)〉

L(Φ)

.

There is thus an everywhere defined isometric operator such that

V
(
ΓM∗

P1
kE(·, u)q

)
= LΦ(·, u)q − LΦ(·, 0)q, u ∈ E .

NEW STEP 2: We have

V ∗ = R0.
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Indeed, let V ∗F =
√

Γf . On the one hand,

〈V ∗F,
√

Γ
(
M∗

P1
kE(·, u)

)
q〉L(Φ) = 〈

√
Γf,M∗

P1
kE(·, u)q〉2

= 〈MP1V
∗F, kE(·, u)q〉2

= q∗(P1 � V ∗F )(u).

On the other hand,

〈V ∗F,
√

Γ
(
M∗

P1
kE(·, u)

)
q〉L(Φ) = 〈F, V

(√
Γ
(
M∗

P1
kE(·, u)

)
q
)
〉L(Φ)

= 〈F,LΦ(·, u)q − LΦ(·, 0)q〉L(Φ)

= q∗(F (u) − F (0)).

Hence, using the formulas (7.4)–(7.5) for the operator range inner product,
we have

(P1 � V ∗F )(u) = F (u) − F (0).

10. The Half-Space Case

We first recall that the classical Hardy space of the open right half-plane
Cr is the reproducing kernel Hilbert space with reproducing kernel equal to

1
2π(z + w)

(the factor 2π appears because of Cauchy’s formula), and can be

characterized as the space of power series of the form

b(z) =
∞∑

n=0

(1 − z)n

(1 + z)n+1
bn (10.1)

where the complex numbers bn satisfy
∑∞

n=0 |bn|2 < ∞; see for instance
[66]. We will denote this space by H2(Cr). The purpose of this section is
to define and begin a study of the counterpart of the space H2(Cr) in the
present setting. A more detailed analysis will be presented in a sequel to the
present work. We give three equivalent characterizations of the new space,
respectively in terms of a reproducing kernel, restriction to the positive real
axis and series expansion analogous to (10.1). We first define what will be
the counterpart of Cr. To that purpose, consider the function w(x) defined
in (1.3); it has for (unique) CK-extension

W1(x) = (1 − P1(x)) � (1 + P1(x))−�. (10.2)

This function is intrinsic hyperholomorphic of axial type by Remark 2.14, in
fact in a neighborhood of the origin we can write it as

W1(x) = (1 − P1(x)) �
∞∑

n=0

(−1)nP1(x)�n =
∞∑

n=0

(−1)nP1(x)�n

+
∞∑

n=0

(−1)n+1P1(x)�n+1

= 1 + 2
∞∑

n=1

(−1)nP1(x)�n.
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We define Wn(x) = W�n
1 (x) and we set

KW (x, y) =
∞∑

n=0

Wn(x)Wn(y).

Note that Wn(0) = 1 and also that Wn(x) is hyperholomorphic of axial type,
being a finite CK-product of intrinsic series in P1(x). On the other hand for
x1 = x2 = x3 = 0 and x0 > 0,

|Wn(x0)| =
∣∣∣∣
1 − 3x0

1 + 3x0

∣∣∣∣ < 1.

Using the arguments in Lemma 2.3 we can prove the following:

Lemma 10.1. The series
∞∑

n=0

|Wn(x)|2 (10.3)

converges in a neighborhood of x = 1/3.

Proof. The function W1(x) is hyperholomorphic by its definition. Since we

have W1(1/3) = 0 we consider the variable x̃ = x− 1
3
. The composed function

W1(1/3 + x̃) = W̃1(x̃) is still hyperholomorphic, W̃1(0) = 0 and we can
consider its expansion at the origin

W̃1(x̃) =
∑

α∈N
3
0

α�=(0,0,0)

ζ(x̃)αfα.

By Lemma 2.3 we have that for any ρ > 0 there exists ε > 0 such that for
x̃2

0 + x̃2
j < ε, j = 1, 2, 3, one has

∣∣∣∣
(
W̃1(x̃)

)�n
∣∣∣∣ < ρn, n = 1, 2, . . . .

Since W̃n(x̃) = Wn(1/3+x) = (W1(1/3+x))�n = (W̃1(x̃)�n we deduce that
|W̃n(x̃)| < ρn for x̃2

0 + x̃2
j < ε, j = 1, 2, 3. Thus, for any 0 < ρ < 1 there exists

ε > 0 such that
∞∑

n=0

|Wn(x)|2 <

∞∑

n=0

ρ2n

for (x0 − 1/3)2 + x2
j < ε, j = 1, 2, 3 and the statement follows. �

Definition 10.2. We denote by P the subset of H for which the series
∞∑

n=0

|Wn(x)|2 (10.4)

converges.

The set P is nonempty as the previous lemma shows, moreover we have:

Proposition 10.3. The P contains all the points of the positive real axis R
+

and for any x̃0 ∈ R
+ there exists a neighborhood of x̃0 in which the series

converges.
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Proof. Let us consider a point x̃0 ∈ R
+, then W1(x̃0) = w1 ∈ R with |w1| < 1.

Let x̃ = x − x̃0 and set W1(x̃ + x̃0) = W̆1(x̃). Since W̆1(0) = w1 we write
W̆1(x̃) = w1 + W̃1(x) with W̃1(0) = 0. Let us set W̆n(x̃) = (W̆1(x̃))�n then

W̆n(x̃) = (W̆1(x̃))�n = (w1 + W̃1(x̃))�n =
n∑

k=0

(
n

k

)
W̃1(x̃)�kwn−k

1 ,

so that

|W̆n(x̃)| ≤
n∑

k=0

(
n

k

)
|W̃1(x̃)|k|w1|n−k.

The proof of Lemma 10.1 shows that for any 0 < ρ < 1 there exists ε > 0 such
that |W̃1(x̃)|k < ρk for (x− x̃0)2+x2

j < ε, j = 1, 2, 3. Setting η = 1−|w1| > 0,
we take ρ = η/2 so that we have

|W̆n(x̃)| ≤ (|w1| + ρ)n = (1 − η/2)n

and |Wn(x)|2 < (1 − η/2)n in a neighborhood of x̃0. The assertion follows.
�

As in Sect. 2, KW (x, y) solves the Eq. (8.1), with W1 replacing P1,
namely

KW (x, y) − W1(x) � KW (x, y) �r W1(y) = 1. (10.5)

We set (note that we do not put a factor 2π):

KP(x, y) = (1 + P1(x))−� � KW (x, y) �r (1 + P1(y))−�r . (10.6)

Theorem 10.4. The kernel KP(x, y) is positive definite in P and is the unique
solution of the Lyapunov equation

2(P1(x) � KP(x, y) + KP(x, y) �r P1(y)) = 1. (10.7)

Proof. The first claim follows from the formula

KP(x, y) =
∞∑

n=0

(
1 + P1(x))−� � Wn(x)

) (
1 + P1(y))−�r �r Wn(y)

)∗

(10.8)

where we have used Proposition 2.20 relating the left and right CK-products.
We have from (10.6)

KW (x, y) = (1 + P1(x)) � KP(x, y) �r (1 + P1(y)). (10.9)

Moreover, we have

(1 + P1(x)) � (1 − P1(x)) � (1 + P1(x))−� = (1 − P1(x)). (10.10)

Using these equations we rewrite (10.5) as

(1 + P1(x)) � KP(x, y) �r (1 + P1(y))

−(1 − P1(x)) � KP(x, y) �r (1 + P1(y)) = 1 (10.11)

from which we get (10.7). �
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We denote by H2(P) the reproducing kernel Hilbert space with repro-
ducing kernel equal to KP(x, y). We also note that (10.7) and (10.11) are
equivalent, but (10.11) is better adapted to use the lurking isometry method
or the linear relation method, when one considers multipliers (see Sect. 11).
The counterpart of the expansion (10.1) is presented in the following theorem.

Theorem 10.5. The reproducing kernel Hilbert space associated with the ker-
nel KP(x, y) consists of the power series

f(x) =
∞∑

n=0

(1 + P1(x))−� � Wn(x)fn, (10.12)

where the coefficients fn are in H and satisfy
∑∞

n=0 |fn|2 < ∞. The latter is
then the square of the norm of f .

Proof. This follows from (10.8). �

We now turn to the characterization of H2(P) in terms of restrictions
to the real positive axis.

Theorem 10.6. f ∈ H2(P) if and only if x0 �→ χ(f(3x0)) is the restriction
to x0 > 0 of an element in (H2(Cr))

2×2. The map which to f ∈ H2(P)
associates the map x0 �→ √

πχ(f(x0)) is then unitary.

Proof. Setting x1 = x2 = x3 = 0 we get

f(x0) =
∞∑

n=0

(1 − 3x0)n

(1 + 3x0)n+1
fn.

Applying the map χ and comparing with (10.1) we get the statement. The
function is uniquely determined since (0,∞) is a zero set. The converse follows

from the fact that x0 �→ (1 − 3x0)n

(1 + 3x0)n+1
has as unique axially hyperholomor-

phic extension the function (1 + P1(x))−� � Wn(x) (which is evidently of
axial type), being the CK-product of series in P1(x). �

11. Schur Multipliers in the Half-Plane Setting

In the classical case of the complex numbers, a C
r×r-valued function is con-

tractive in Cr if and only if the kernel
Ir − s(z)s(w)∗

z + w
(11.1)

is positive definite in Cr. More generally, if a function s is defined in a zero set,
say Z, of the open right half-plane and the kernel (11.1) is positive definite on
Z, then s is the restriction to Z of a uniquely defined function analytic and
contractive in Cr. This can be seen from the disk case (see Theorem 2.21)
using a Cayley transform. In the present section we study the counterpart
of the Schur multipliers for the space H2(P), and characterize them in three
equivalent ways:
(1) In terms of a positive definite kernel.
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(2) In terms of an appropriately defined multiplication operator.
(3) In terms of a realization.

Definition 11.1. A H
r×r-valued S function is called a Schur multiplier if there

is a kernel KS(x, y) positive definite in P, left-hyperholomophic in x and
right-hyperholomorphic in y, and such that

2(P1(x) � KS(x, y)

+KS(x, y) �r P1(y)) = Ir − S(x)S(y)∗, x, y ∈ P. (11.2)

We will get a description of all such multipliers in terms of a realization,
but already mention a very easy example, namely S(x) = W1(x). Then, with

KS(x, y) = (1 + P1(x))−�(1 + P1(y))−�r

we have

2(P1(x) � KS(x, y) + KS(x, y) �r P1(y)) = 1 − W1(x)W1(y), x, y ∈ P.

In view of the lurking isometry method, it is better to write (11.2) as

(1 + P1(x)) � KS(x, y) �r (1 + P1(y))

− (1 − P1(x)) � KS(x, y) �r (1 − P1(y))

= Ir − S(x)S(y)∗
(11.3)

or as

(1 + P1(x)) � KS(x, y) �r (1 + P1(y)) + S(x)S(y)∗

= (1 − P1(x)) � KS(x, y) �r (1 − P1(y)) + Ir.
(11.4)

Theorem 11.2. The H
r×s-valued function S is a Schur multiplier if and only

if there exist a Hilbert space H and a co-isometry
(

A C
B D

)
(11.5)

such that

S(3x0) = D +
1 − 3x0

1 + 3x0
C

(
I − 1 − 3x0

1 + 3x0
A

)−1

B, x0 ∈ (−1/3, 1/3),

(11.6)

with unique hyperholomorphic extension (of axial type) to P given by

S(x) = D +
∞∑

n=0

Wn(x)CAnB. (11.7)

Proof. Write

KS(x, y) = X(x)X(y)∗

where X is operator-valued and hyperholomorphic of axial type (for instance,
via the associated reproducing kernel Hilbert space; one takes X(x) to be the
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point evaluation at x). We get the isometric relation (the lurking isometry)
spanned by the pairs

((
X(3y0)∗(1 − P1(3y0))h

h

)
,

(
X(3y0)∗(1 + P1(3y0))h

S(3y0)∗h

))

with y0 ∈ (−1/3, 1/3) and h ∈ H
s. Write the isometry as
(

A∗ B∗

C∗ D∗

)
. (11.8)

We get
1 − 3y0

1 + 3y0
A∗X(y0)∗h +

1
1 + 3y0

C∗h = X(y0)∗h

(1 − 3y0)B∗h +
√

2D∗h = S(y0)∗h

Hence,

S(3y0)∗ = D∗ +
1 − 3y0

1 + 3y0
B∗
(

I − 1 − 3y0

1 + 3y0
A∗
)−1

C∗

and hence the result, since Wn(x) is the unique hyperholomorphic extension
of axial type. �

In the complex setting case, a function, say s, analytic and contractive
in Cr does not need belong to H2(Cr), but z �→ s(z)/(1 + z) does belong
to H2(Cr). Here, at least in the present analysis, we need a supplementary
condition to get the counterpart of this result. We have (the notion of spectral
radius is defined for a quaternionic operator A as in the classical case by the
formula ρ(A) = lim supn→∞ ‖An‖1/n):

Corollary 11.3. In the notation of Theorem 11.2, assume ρ(A) < 1. Then,
the entries of the function (1 + P1(x))−� � S(x) belong to H2(P).

Proof. This follows from the fact that

‖CAnB‖ ≤ ‖C‖ · ‖B‖ · ‖An‖,

and the series
∑∞

n=1 ‖An‖ converges since ρ(A) < 1. �

Theorem 11.4. S is a Schur multiplier if and only if the operator defined by

MSf =
∞∑

n=0

(1 + P1(x))−�(Wn � S)(x)fn

is a contraction from H2(P) into itself, and KS is given by

KS(x, y) = (1 + P1(x))−��

�
( ∞∑

n=0

Wn(x)Wn(y) −
∞∑

n=0

(Wn � S)(x)(Wn � S)(y)

)

�r (1 + P1(y))−�r .

(11.9)
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Proof. We consider the scalar case to ease the notation and first remark that,
if S is a Schur multiplier we have

KS(3x0, 3y0) =
1 − S(3x0)S(3y0)

3(x0 + y0)

with axially hyperholomorphic extension (11.9), and the positivity of (11.9)
expresses that the operator MS is a contraction. The converse is proved by
defining a contractive relation from the positivity of the kernel, and show
that the relation extends to the graph of M∗

S . �

As in the E setting, the case where the isometry in the above realizations
is unitary in a finite dimensional space corresponds to finite dimensional H(S)
spaces isometrically included in the Hardy space (H2(P))r. When the space
has dimension 1 the function S is the counterpart of a Blaschke factor of the
half-plane.

Theorem 11.5. The space H(S) is finite dimensional if and only if the space H
can be chosen finite dimensional. When r = s, the space H(S) is isometrically
included inside (H2(P))r.

Proof. We set
(
A B
C D

)

the matrix of the underlying unitary map. We have:

MS

(
(1 + P1(x))−� � Wm(x)h

)

= (1 + P1(x))−� � Wm(x)Dh +
∞∑

n=0

(1 + P1(x))−� � Wm+n(x)CAnBh.

The same computations as in the proof of Proposition 8.6 show that

〈MS

(
1 + P1(x))−� � Wn1h(x)

)
,MS

(
1 + P1(x))−� � Wn2(x)k

)〉

=
∞∑

n,m=0
n1+n=n2+m

k∗B∗A∗nAC∗CmBh

= δn,mk∗h, h, k ∈ H
s,

and this allows to end the proof. �

12. Carathéodory Multipliers in the Half-Plane Setting

A function Φ analytic and with a positive real part in the open right-half plane
is called a Carathéodory function, and is characterized by the positivity of
the kernel

Φ(z) + Φ(w)
z + w

in Cr. As for Herglotz functions, a Carathéodory function need not be a
multiplier of the Hardy space H2(Cr). We now introduce the counterpart
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of this class of functions in the present setting. As in Sect. 9 we use the
term multiplier (rather than, for instance pseudo-multiplier) although the
CK-multiplication by the function Φ is not assumed bounded.

Definition 12.1. An H
r×r-valued function Φ is called a Carathéodory pseudo-

multiplier if there is a kernel KΦ(x, y) positive definite in P, left-hyper-
holomophic in x and right-hyperholomorphic in y, and such that

2(P1(x) � KΦ(x, y) + KΦ(x, y) �r P1(y)) = Φ(x) + Φ(y)∗. (12.1)

A first example is given by Φ(x) = aP1(x) with a > 0 and KΦ(x, y) =
a/2. It follows from the definition that a sum of Carathéodory multipliers is
a Carathéodory multiplier, and so is Φ−� and aΦ with a > 0. Therefore, any
sum of the form

Φ(x) = a0P1(x) +
N∑

n=1

bn(an + P1(x))−�

is a Carathéodory multiplier for every choice of a0 ≥ 0, a1, . . . , aN > 0 and
b1, . . . , bN ≥ 0.
It is more convenient to rewrite (12.1) as

(1 + P1(x)) � KΦ(x, y) �r (1 + P1(y)) − (1 − P1(x)) � KΦ(x, y) � (1 − P1(y)

= (Ir + Φ(x))(Ir + Φ(y)∗) − (Ir − Φ(x))(Ir − Φ(y)∗).

(12.2)

Theorem 12.2. Φ is a Carathéodory multiplier if and only if it can be written
as

Φ(3y0) = (Ir − S(3y0))(Ir + S(3y0))−1 (12.3)

with S as in (11.6).

Proof. Write

KΦ(x, y) = X(x)X(y)∗

where X(x) is the point evaluation in the reproducing kernel Hilbert space
with reproducing kernel KΦ. We get the isometric relation (the lurking isom-
etry) defined by the right linear span of the pairs

((
X(3y0)∗(1 − P1(3y0))h

(Ir + Φ(3y0)∗)h

)
,

(
X(3y0)∗(1 + P1(3y0))h

(Ir − Φ(3y0)∗)h

))
,

with y0 ∈ (−1/3, 1/3) and h ∈ H
r. Furthermore, with the same notation as

(11.8),
1 − 3y0

1 + 3y0
A∗X(3y0)∗h +

1
1 + 3y0

C∗(Ir + Φ(3y0)∗)h = X∗(3y0)h,

(1 − 3y0)B∗X∗(3y0)h + D∗((Ir + Φ(3y0)∗)h = (I − Φ(3y0)∗)h,

and hence

(Ir − Φ(3y0)∗)h − D∗(Ir + Φ(3y0))∗h =
1 − 3y0

1 + 3y0
B∗
(

I − 1 − 3y0

1 + 3y0
A∗
)−1

× C∗(Ir + Φ(3y0))∗h,
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so that, with S(3y0) as in the previous theorem,

Ir − Φ(3y0)∗ = S(3y0)∗(Ir + Φ(3y0)∗)

and hence the result. �

Here too, the space L(Φ) will be finite dimensional if and only if the
space H can be chosen finite dimensional.

13. A Table

We conclude this paper with a table comparing the slice hyperholomorphic
case, the case of Fueter variables and the present setting.

Slice setting Appell setting General CK-setting

variable p ∈ H P1(x) = CK(x1e1 + x2e2 + x3e3) ζ(x) =
= ζ1(x)e1 + ζ2(x)e2 + ζ3(x)e3 =

(
ζ1(x) ζ2(x) ζ3(x)

)

“unit disk” x2
0 + x2

1 + x2
2 + x2

3 < 1 9x2
0 + x2

1 + x2
2 + x2

3 < 1 3x2
0 + x2

1 + x2
2 + x2

3 < 1

product �-product CK-product CK-product

properties stays inside the space outside the space stays inside the space
Not a power series in Pn

(I − pA)−
 = (I − P1A)−� (I − ζA)−� =
inverse

=
∑∞

n=0 pnAn outside the space =
∑

α∈N3
0

|α!|
α! ζαAα

Not a power series in Pn

Hardy or ky(x) =
Drury-Arveson k(p, q) =

∑∞
n=0 pnqn

∑∞
n=0 Pn(x)Pn(y) =

∑
α∈N3

0

|α!|
α! ζα(x)ζα(y)

reproducing kernel

structural identity I − MpM
∗
p = C∗C I − MP1M

∗
P1

= C∗C I − MζM∗
ζ = C∗C

(but does not hold in Qn setting)

multiplication Cauchy product on MS (
∑∞

n=0 Pnun) = �-multiplication
operator coefficients =

∑∞
n=0(Pn � S)un

adjoint of
multiplication M∗

Sk(p, q) = M∗
S

(∑∞
n=0 PnPn(a)u

)
= M∗

Sky(x) =

operator =
∑∞

n=0 pnS(q)qn =
∑∞

n=0 Pn(Pn � S)(a)u =
∑

α∈N3
0

|α|!
α! ζα(x)·

·(S � ζα(y))

backward shift kernel eigenvector kernel not eigenvector kernel common
operator eigenvector of the shifts

rational functions ring group ring
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Remark 13.1. For the formulas for the adjoint operator, see e.g. [7, (3.9), p. 160]
for the slice hyperholomorphic case and [24, Proposition 2.2. p. 34] for the
Fueter series setting.
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(2016)

[9] Alpay, D., Colombo, F., Sabadini, I.: Realizations of holomorphic and slice
hyperholomorphic functions: the Krein space case. Indag. Math. (N.S.) 31(4),
607–628 (2020)

[10] Alpay, D., Correa-Romero, F.M., Luna-Elizarrarás, M.E., Shapiro, M.: Hy-
perholomorphic rational functions: the Clifford analysis case. Complex Var.
Elliptic Equ. 52(1), 59–78 (2007)

[11] Alpay, D., Dijksma, A., Rovnyak, J., de Snoo, H.: Schur functions, operator
colligations, and reproducing kernel Pontryagin spaces. In: Operator Theory:
Advances and Applications, vol. 96. Birkhäuser Verlag, Basel (1997)

[12] Alpay, D., Diki, K., Sabadini, I.: Fock and Hardy spaces: Clifford Appell case.
To appear in Mathematische Nachrichten (2021)

[13] Alpay, D., Diki, K., Sabadini, I.: On the global operator and Fueter mapping
theorem for slice polyanalytic functions. To appear in Analysis and Applica-
tions. https://doi.org/10.1142/S0219530520500189

[14] Alpay, D., Diki, K., Sabadini, I.: On slice polyanalytic functions of a quater-
nionic variable. Res. Math. 74(1), 17 (2019)

[15] Alpay, D., Diki, K., Sabadini, I.: Correction to: On slice polyanalytic functions
of a quaternionic variable. Res. Math. 76(2), 84 (2021)

[16] Alpay, D., Dym, H.: On applications of reproducing kernel spaces to the Schur
algorithm and rational J-unitary factorization. In: Gohberg, I. (ed.) I. Schur
Methods in Operator Theory and Signal Processing, Volume 18 of Opera-
tor Theory: Advances and Applications, pp. 89–159. Birkhäuser verlag, Basel
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