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Abstract—An accurate and efficient algorithm is 
presented, which allows deriving the structure function of 
a discretized 3-D heat conduction problem. In this 
approach, the partial thermal conductances and 
capacitances in the structure function are computed in 
terms of weighted spatial averages of thermal resistivity 
and volumetric heat capacity. As a result, the exact 
influence of all materials and geometric details on each 
part of the structure function is determined. The approach 
is validated on a state-of-the-art SiGe HBT for high-
frequency applications. 

Index Terms—Heterojunction bipolar transistor (HBT), 
multi-directional heat flow, self-heating (SH), silicon 
germanium (SiGe), structure function, transmission line. 

I. INTRODUCTION 

HE structure functions–introduced by Protonotarios and 
Wing in 1967 [1]–were identified as a useful means for 
the thermal characterization of electronic devices by 

Székely and Van Bien [2], and are today largely used in the 
semiconductor industry for failure analysis and to improve the 
thermal models of the products. Originally, the structure 
functions have been considered for domains where the heat 
flow is, at least approximately, one-directional [2]. A one-
directional heat flow corresponds to a one-dimensional (1-D) 
heat conduction problem in which the power is injected at one 
boundary and the temperature rise is measured at the same 
boundary, and is equivalent to a short-circuited RC 
transmission line. From the electric circuit theory, it is well 
known that the structure function of such a transmission line 
can be completely recovered from its port response, either in 
the time or frequency domain [1]. As a result, interesting 
information on the spatial distribution of thermal properties of 
a one-directional heat conduction problem can be gained. 

A two-step algorithm was developed by Székely for 
reconstructing a structure function from the experimental or 
numerically-simulated thermal response [2], [3]: first, such a 
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response is described with a lumped RC one-port network in 
the Foster’s I canonical form, derived by inverse numerical 
deconvolution [4]; second, an approximation of the structure 
function is obtained by a simple transformation of the Foster’s 
network into the ladder-shaped Cauer’s I canonical form, 
performed with a long-division procedure. 

However, the Székely’s algorithm presented in [2], [3] suffers 
from a limited accuracy and is very sensitive to the input data [5]. 
Conveniently, such drawbacks have been mitigated in an 
improved, yet non-documented, algorithm variant commercially 
available in the Siemens-Mentor T3Ster and FloTHERM 
software packages. This variant has been heuristically used also 
for generic multi-directional (i.e., non-one-directional) heat flow 
problems by Székely and his coworkers [6], [7]. The applicability 
of the approach to a multi-directional heat propagation was 
confirmed by Codecasa [8], who rigorously proved that any one-
port passive dynamic thermal network modeling a three-
dimensional (3-D) heat conduction problem is still characterized 
by a structure function. 

Unfortunately, in the multi-directional case, the structure 
function extracted with the improved Székely’s algorithm cannot 
be related to the spatial distribution of thermal properties in the 
examined domain; consequently, no useful information can be 
gained from it [9]. 

In [10], we presented an accurate and efficient algorithm that 
can be exploited to derive a structure function from the 
discretized equation governing the 3-D heat conduction problem 
in any electronic device. Unlike the common approximate 
approach based on the solution of the discretized thermal model, 
the proposed methodology directly (i.e., without computing the 
thermal response) and exactly derives the RC ladder network 
defining the structure function of the device; this is done by 
means of a Lanczos-like tridiagonalization algorithm applied to 
the pair of mass and stiffness matrices used for discretizing the 
heat conduction in the domain. By using such an approach, each 
resistance and capacitance of the RC ladder network is computed 
in terms of weighted spatial averages of thermal resistivity and 
volumetric heat capacity over a sub-region of the device. For 
increasing values of the cumulative capacitances and resistances, 
that sub-region gradually expands from the heat source to the 
entire spatial domain. In this way, for the first time in literature, 
the exact correspondence between the structure function of the 
device and the spatial distribution of its thermal properties can be 
determined in 3-D heat conduction problems of practical interest. 
This achievement is consistent with–and completes–the 

Accurate and Efficient Algorithm for 
Computing Structure Functions from the 

Spatial Distribution of Thermal Properties in 
Electronic Devices 

Lorenzo Codecasa, Member, IEEE, Vincenzo d’Alessandro, Antonio Pio Catalano, Ciro 
Scognamillo, Dario D’Amore, Member, IEEE, and Klaus Aufinger, Member, IEEE 

T



L. CODECASA ET AL.: ACCURATE AND EFFICIENT ALGORITHM FOR COMPUTING STRUCTURE FUNCTIONS 2 

theoretical result proved by Codecasa [11], who found a strong 
relation between the structure function and the spatial distribution 
of thermal properties in a generic multi-directional case by means 
of wave-fronts and rays of a wave propagation problem 
associated to the heat conduction problem. 

The proposed algorithm can be practically exploited by 
applying the following procedure, which generalizes what is 
commonly done with structure functions of one-directional heat 
flow problems. Let us assume that the 3-D thermal model of a 
device has been built and that its structure function has been 
extracted by the proposed algorithm. Let us also assume that the 
structure function of the real device has been derived from the 
thermal response by using other algorithms (e.g., the commercial 
variant of the Székely algorithm or our more robust version of it 
presented in Section V.A). The inspection of (possible) 
discrepancies between these structure functions, supported by the 
correspondence between our structure function and the spatial 
distribution of thermal properties, could help (i) calibrate the 
thermal properties of the model, and/or (ii) localize defects and 
other problems due to technological tolerances in the real device. 
The feasibility of our approach for this application is 
demonstrated in Section V.B by comparing the structure 
functions extracted by our algorithm from the thermal models of a 
reference device and a variant of it where a technological 
parameter was modified ad hoc. As the relevant portion of the 
structure function is usually determined in a short time (a few 
minutes), it is expected that the proposed approach may offer a 
valuable aid for design engineers. 

Here we extend [10] in a two-fold way: (i) by providing a 
detailed explanation of the algorithm, and (ii) by validating the 
methodology on a state-of-the-art device under test (DUT) with a 
geometrically-complex structure and a markedly 3-D heat flow. 
More specifically, the DUT is a single-emitter silicon-germanium 
(SiGe) heterojunction bipolar transistor (HBT) with excellent 
frequency performance, yet suffering from a high self-heating 
(SH) thermal resistance. 

The remainder of this paper is arranged as follows. In 
Section II, the concept of structure function is recalled for one-
directional and multi-directional heat flows. Section III introduces 
the novel algorithm for extracting the structure function. In 
Section IV, the details of the DUT are given. In Section V, results 
are presented and discussed. The conclusion is drawn in 
Section VI. 

II. STRUCTURE FUNCTIONS 

A. One-directional Heat Flow 

Let us consider a heat conduction problem in a cylinder Ω 
of length L and cross-section area A, in which the longitudinal 
coordinate x varies from 0 to L. Let us assume that (i) the 
thermal properties are uniform at each normal cross-section of 
Ω, (ii) the heat flux across the boundary surface x=0 is 
uniform, (iii) the temperature rise at the boundary surface x=L 
is zero, and (iv) the heat flux across the lateral boundary 
surface is zero. This specific thermal problem is referred to as 
one-directional heat flow [2] and is governed by the following 
equations: 

     , , 0
 

 
 
q

x t c x x t
x t

 (1) 

     , ,q x t k x x t
x


 


 (2) 

in which ϑ(x,t) is the temperature rise over ambient, q(x,t) is 
the heat flux component along x, c(x) is the volumetric heat 
capacity, and k(x) is the thermal conductivity. The boundary 
conditions are q(0,t)=P(t)/A and ϑ(L,t)=0, P(t) being the total 
power injected at the boundary x=0. The initial condition is 
assumed to be zero. By introducing the cumulative 
capacitance C and cumulative resistance R along the heat flow 
path 
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(1), (2) can be rewritten in the equivalent form 
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in which Q(x(R),t)=Aq(x(R),t), and C=S (R) is the (cumulative) 
structure function, obtained by eliminating the x variable 
among (3), (4). These equations define a passive RC 
transmission line short-circuited at the output port, having as 
input port variables the power P(t) and the temperature rise 
ΔT(t)=ϑ(0,t). The C=S (R) function relates the cumulative 
capacitance C to the cumulative resistance R along the line [1]. 
From (3), (4), it straightforwardly ensues 

      2
d

R A c x k x
dR

S  (7) 

which associates the (differential) structure function dC/dR at 
R to the thermal properties c(x), k(x) at x related to R by (4). 
Eq. (7) establishes the relation between the structure function 
and the spatial distribution of thermal properties in one-
directional heat flow problems. 

The structure functions can be uniquely determined from 
the input-port thermal response of the short-circuited RC 
transmission line z(t) relating the injected power P(t) to the 
temperature rise ΔT(t) by ΔT(t)=z(t)⁎P(t), ⁎ being the 
convolution operator. A two-step Székely’s algorithm [2], [3] 
is usually adopted for reconstructing the structure function 
from the response z(t): first, a lumped RC one-port network in 
the Foster’s I canonical form describing the thermal response 
is derived by inverse numerical deconvolution; second, an 
approximation of the structure function is obtained by a long-
division transformation of this network into the ladder-shaped 
Cauer’s I form. Fig. 1 shows the RC transmission line and the 
Cauer’s network, along with the corresponding structure 
functions. A commercial, yet poorly-documented, variant of 
this algorithm is broadly exploited to characterize the heat 
propagation in electronic devices from their experimental 
thermal response [6], [7]. However, in generic multi-
directional cases, the interpretation of structure function 
previously recalled no longer holds, which prevents from 
deriving detailed information on the thermal properties of the 
domain [9]. 
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Fig. 1. (a) RC transmission line and (c) corresponding structure 
function (red line); (b) Cauer’s I ladder network approximating the 
transmission line and (c) associated structure function (blue line). 

B. Multi-Directional Heat Flow 

Let us consider a multi-directional heat conduction problem 
in a bounded region Ω. The relation between the power 
density g(r,t), the temperature rise ϑ(r,t), and the heat flux 
q(r,t) at position r and time instant t is governed by 

       , , ,


  


t c t g t
t

q r r r r  (8) 

     , ,  t k tq r r r  (9) 

in which c(r) is the volumetric heat capacity and k(r) is the 
thermal conductivity, considered as scalar for the sake of 
simplicity. Conditions on the boundary ∂Ω, assumed of 
Robin’s type, are 

        , ,  t h tq r r r r  (10) 

in which h(r) is the heat transfer coefficient and ν(r) is the unit 
vector outward normal to ∂Ω. Initial conditions are assumed to 
be zero. 

A one-port passive dynamic thermal model can be defined 
consistently with [8] by introducing the power P(t) and the 
temperature rise ΔT(t) measured at its port as follows. The 
power P(t) determines the power density as 

      , g t g P tr r  (11) 

in which g(r) is a shape function of support Σ. The port 
temperature rise is the weighted average 

      ,


  T t g t dr r r  (12) 

Like in the one-directional case, the port response of this one-
port passive dynamic thermal model is described by the 
thermal response z(t) such that ΔT(t)=z(t)⁎P(t). Moreover, as 
demonstrated by Codecasa [8], this one-port passive dynamic 
thermal model can be exactly modeled by a passive RC 
transmission line characterized by a structure function 
C=S (R), like in the one-directional case. Also, such a structure 
function can again be uniquely reconstructed from the thermal 
response. 

A strong relation between the structure function C=S (R) 
and the spatial distribution of thermal properties has been 
established by Codecasa [11] by considering the following 
wave propagation problem in Ω, companion to the previous 

heat conduction problem 
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t c t g t
t
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with boundary conditions in ∂Ω 
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t h t
t

j
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and homogeneous initial conditions. By construction the 
spatial distributions of c(r), k(r), and h(r) are common to the 
heat conduction and the companion wave propagation 
problems. 

A one-port lossless dynamic model can be introduced by 
defining the current I(t) and voltage V(t) measured at its port. 
The current I(t) determines g(r,t) as 

      , g t g I tr r  (16) 

The voltage V(t) is the weighted mean 

      ,


 V t g t dr r r  (17) 

As proved in [11], this one-port lossless dynamic model can 
be described by a short-circuited LC transmission line 
characterized by the same structure function C=S (L) modeling 
the passive RC transmission line, where L is the cumulative 
inductance and C is the cumulative capacitance along the LC 
transmission line. 

Considering such a companion wave propagation problem, 
let φ(r,t), j(r,t) be the solution of the wave propagation 
problem due to a unit impulse I(t). Let ωc(τ) be the sub-region 
of Ω in each point of which φ(r,t)≠0 at some t≤τ, and let 
∂ωc(τ) be its boundary. Similarly, let ωk(τ) be the sub-region of 
Ω, in each point of which j(r,t)≠0 at some t≤τ, and let ∂ωk(τ) 
be its boundary. 

The ωc(τ) and ωk(τ) regions can be characterized as follows. 
The ωc(0) region is the support of φ(r,0)=g(r)/c(r), that is, Σ. 
Similarly, the ωk(0) region is the support of j(r,0), which is a 
sub-region of Σ. The ∂ωc(t) and ∂ωk(t) surfaces are the wave-
fronts of φ(r,t) and j(r,t), respectively, which propagate at 

finite velocity, at each r given by    k cr r . 

In force of this link between a heat conduction problem and 
its companion wave propagation problem, the following result 
holds [11]: for each R, the restriction of the structure function 
C=S (R) to the range [0, R] is affected by all and only the 
values of c(r) in ωc(τ) and of k(r), h(r) in ωk(τ), being 

 
0

 
R d

dR
dR

=
S

 (18) 

The novel algorithm introduced in Section III will allow 
further extending this relation between the structure function 
and the spatial distribution of thermal properties. 

III. NOVEL ALGORITHM FOR COMPUTING STRUCTURE 

FUNCTIONS 

The heat conduction problem, discretized either (i) by the 
finite-volume method (FVM) over a hexahedral grid 
(composed by rectangular parallelepipeds, often denoted as 
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bricks), or (ii) by the finite-element method (FEM) e.g., over a 
hexahedral or tetrahedral grid, can be put in the form 

     Tt t t
t


 


M D q g


 (19) 

   t t q D   (20) 

in which ϑ(t) is an N-column vector with the degrees of 
freedom (DoFs) of the temperature rise, q(t) is an E-column 
vector with the DoFs of the heat flux, D is the E×N rectangular 
matrix discretizing the gradient operator, M is the N-order 
mass matrix, and Λ is an E-order symmetric positive definite 
matrix discretizing the thermal conductivity constitutive 
relation. By eliminating the q(t) variables in (19), (20), it is 
obtained that 

      t t t
t


 


M K g


  (21) 

in which K=DTΛD is the N-order stiffness matrix. The one-
port passive dynamic thermal model is defined introducing the 
relations 

   t P tg g  (22) 

     TT t tg   (23) 

determining its port variables P(t) e ΔT(t). 
The Cauer’s I canonical form of this one-port dynamic 

thermal model is governed by 

     1 
d

t t P t
dt

x
C Gx e  (24) 

  1
TT t  e x  (25) 

in which x(t) is the N-column vector of the electrical potentials 
at the N nodes, and e1 is an N-column vector with all elements 
equal to 0 but the first element, which is equal to 1. 

The N-order diagonal matrix C and the N-order tridiagonal 
matrix G take the form 
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where Ck is the capacitance of the capacitor connecting the k-
th node to ground, with k=1, ..., N, and Gk is the conductance 
of the resistor connecting the k-th node to the k+1-th, with 
k=1, ..., N-1. 

Eqs. (21)-(23) can be transformed into (24), (25) governing 
the Cauer’s I canonical form by the following approach. Let V 
be a nonsingular N-order matrix such that 

 TV MV I  (26) 

 TV KV T  (27) 
where I is the identity matrix, and T is a symmetric tridiagonal 
matrix 
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and such that 

 0 1TV g e  (28) 

Then, by using the transformation of variables 

    t tV   (29) 

(21)-(23) can be written in the equivalent form 

     0 1
d

t t P t
dt

+T e


  (30) 

   0 1  TT t te   (31) 

The tridiagonal Eqs. (30), (31) can in turn be straightforwardly 
transformed into the Cauer’s I canonical form given by (24), 
(25) by the simple rescaling of variables 

    1 2t tC x  (32) 

Thus it ensues that 2
1 01 C , and that 

1   for 1, ...,    k k k kG C G k N  (33) 
2

1 2

1
  for 1, ..., 1   


k

k
kk

G
C k N

C
 (34) 

assuming G0=0. Hence, each value of the conductance Gk and 
capacitance Ck+1 in the Cauer’s I canonical form can be 
determined by the αk and βk coefficients in the tridiagonal 
equations in addition to the values of previous conductances 
Gk-1 and capacitances Ck, respectively. 

The αk and βk coefficients can be evaluated by a 
tridiagonalization algorithm [12] suited to determine the V 
matrix satisfying (26)-(28). The algorithm adopted here, 
derived adapting the Lanczos’ algorithm, is reported below. 

 

This algorithm successively computes the columns vk of the 
transformation matrix V, with k=1, ..., N. 

Using the proposed algorithm, the conductances Gk and 
capacitances Ck defining the structure function of the 
discretized heat conduction problem can be efficiently 
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determined for the following reasons: (i) no computationally 
expensive transient simulations of the heat conduction 
problem have to be performed; (ii) each iteration is fast since 
it only requires to solve the matrix equation at line 1, which 
can be very quickly done: when the FVM is adopted for 
discretizing the heat conduction problem, no matrix equation 
has indeed to be solved since the mass matrix M is diagonal; 
when the FEM is used, the conjugate gradient method can be 
invoked to solve the equation with a few iterations only; (iii) 
the number of steps of the algorithm needed to reconstruct the 
significant part of the structure function (where the wave-front 
has not propagated yet very far away from the source) is not 
N, but is in the order of the number of the discretization points 
in each direction, that is, N1/3; (iv) the proposed Lanczos-like 
tridiagonalization algorithm, when exploited for the extraction 
of a structure function from a discretized heat conduction 
model, can be applied as is, without the necessity of 
improving its robustness through selective orthonormalization 
[12], which would add computational burden. 

At each step of the algorithm, the αk coefficient determining 
the Gk partial conductance of the structure function (blue line 
in Fig. 1) is expressed as the spatial average of the inverse of 
thermal conductivity weighted by the field jk(r) having jk as 
DoF, 

 
 
 

2
1



    kT
k k k d

k

j r
j j r

r
  (35) 

Similarly, the βk coefficient determining the Ck+1 partial 
capacitance of the structure function is expressed as the spatial 
average of the volumetric heat capacity weighted by the field 
φk(r), having φk as DoF 

    2 2



    T
k k k kc dM r r r  (36) 

As a result, the exact dependence of the structure function 
on thermal properties is provided in terms of averages of 
thermal properties distributions. 

IV. DEVICE UNDER TEST 

The SiGe HBT technology is currently used in a large 
variety of commercial and research applications in the mm- 
and even sub-mm-wave frequency spectrum, like automotive 
radars, high-bandwidth communication, material science, 
medical equipment, and optical transmission [13]–[16]. 
Unfortunately, boosting the frequency performance of such 
transistors unavoidably leads to significant SH induced by (i) 
the higher current/power densities, and (ii) the higher thermal 
resistances RTH due to the lateral scaling of the intrinsic 
transistor and the adoption of shallow/deep trenches filled 
with low thermal conductivity materials. In particular, the 
RTHs have been pushed beyond 103 K/W [17]–[20] and can 
even exceed 104 K/W for small devices with superior RF 
performance [21]–[23]. 

Here the analysis is performed on a single-emitter SiGe:C 
NPN HBT with one base and one collector contact (BEC 
configuration) manufactured by Infineon Technologies AG 
within the framework of the DOTFIVE project. More 
specifically, the DUT belongs to the latest project technology 
stage, also denoted as set #3 in [22], [24], the key figures of 
which are listed in Table I. The structure is designed for 

experimental dc characterization. The drawn emitter area is 
equal to 0.2×2.8 µm2, the emitter width being among those 
typically selected for advanced circuit design [22]. The SH 
RTH was experimentally found to be about 7000 K/W with an 
approach based on simple dc measurements [16], [23]. The 
cross-section of the DUT is schematically represented in 
Fig. 2. The structure is geometrically complex and 
characterized by a markedly 3-D heat flow. 

TABLE I. KEY FIGURES OF THE DUT 

BVCBO 5.5 V 

peak fT @ VCB=0 V 235 GHz 

JC @ peak fT, VCB=0 V 10 mA/µm2 

peak fMAX @ VCB=0 V 330 GHz 

peak fT @ VCB=0.5 V 240 GHz 

peak fMAX @ VCB=0.5 V 380 GHz 

 
Fig. 2. (a) Sketch of the cross-section of the DUT and (b) 
magnification of the intrinsic transistor region. Evidenced are: 
the metallurgical base-emitter junction, the heat source (base-
collector space-charge region), and all materials. 

V. RESULTS AND DISCUSSION 

A. 3-D Thermal Model of the DUT 

Fig. 3 shows the 3-D hexahedral grid representing the DUT, 
as obtained by an in-house tool based on the FVM. The back-
end-of-line architecture was accounted for. A smart mesh 
refinement strategy was exploited to ensure a highly-fine grid 
over the intrinsic transistor region, and a coarser one far from 
the heat source; slightly less than 5×106 bricks were used. 

 
Fig. 3. 3-D hexahedral grid representing the DUT (the external 
pads for dc measurements are not represented). 
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Fig. 4 depicts the corresponding geometry. A preliminary 
analysis allowed demonstrating that the simplifications due to 
the adoption of the hexahedral grid only marginally impact the 
temperature field over the intrinsic transistor compared to the 
more accurate tetrahedral grid used in [16], [23]. 

The heat source was assumed to coincide with the base-
collector space-charge region, where the power is dissipated 
[16], [23]. The substrate backside was held at 300 K, which 
can be practically made with a thermochuck; all other surfaces 
were considered adiabatic. As shown in Fig. 3, a horizontally 
large domain was built to prevent an unrealistic influence of 
the adiabatic edges on the device temperature field. 

Typical values (at 300 K) were assigned to all material 
parameters (thermal conductivity, mass density, and specific 
heat), except for the silicon (Si) regions crossed by the heat in 
the intrinsic transistor, the thermal conductivity of which is 
markedly degraded due to the combined impact of (i) high 
doping and (ii) acoustic phonon scattering against the edges 
(lateral sides) of narrow layers like emitter tungsten contact, Si 
emitter, SiGe base, and Si volume surrounded by shallow 
trench [16], [23]. All material parameters are listed in Table II. 

 
Fig. 4. (a) Geometry of the DUT (the pads are not represented) 
and (b) magnification of the intrinsic transistor region. 

TABLE II. MATERIAL PARAMETERS OF THE DUT 

Material 
k 

[W/mK] 
ρ 

[Kg/m3] 
cp 

[J/KgK] 

SiGe (base) 11 3229 605.7 

Bulk Si 148  2330  711  

Si (bottom collector) 80 2330 711 

Si (top collector) 30 2330 711 

Si (bottom emitter) 35 2330 711 

Si (top emitter) 50 2330 711 

Silicon dioxide (SiO2) 1.4 2203 709 

Trench polysilicon 20 2330 920 

Emitter polysilicon 40 2330 920 

Base polysilicon 30 2330 920 

Tungsten (W) 177 19275  130  

Copper (Cu) 390 8954 384 

Cobalt silicide (CoSi) 9.6 5300 580 

Bottom emitter W contact 148 19275 130 

Top emitter W contact 161 19275 130 

Heat source Si volume 30 2330 711 

B. Structure Functions 

The structure function of the DUT determined with the 
proposed algorithm is shown in Fig. 5. Despite the very high 
number of bricks composing the grid, the most relevant 
portion of the function, where the wave-front has not 
propagated yet in sub-regions very far away from the source 
(R<6000 K/W), was extracted in less than five minutes on a 
3.6 GHz 10-Core Intel Core i9. About two hours were 
required for the whole calculation. 

The structure function obtained with the proposed approach 
was compared with a structure function derived from the 
thermal response of the DUT by using a much more robust 
variant of the original Székely algorithm [2], [3] developed as 
follows. First, a very accurate (with a relative error of 10-8) 
dynamic compact thermal model (DCTM) of the DUT in the 
Foster’s I canonical form was extracted in about four hours 
with a multi-point moment matching technique equivalent to 
that implemented in FANTASTIC [25], [26], but directly 
operating on the port thermal response [27] (an inverse 
numerical deconvolution is instead used in [2], [3]). Such 
DCTM was first turned into a 44-order Foster’s I canonical 
form by solving a generalized eigenvalue problem; the 
Foster’s I form was then transformed into an equivalent 
Cauer’s I canonical form by a tridiagonalization approach 
making use of a partial re-orthogonalization ensuring 
robustness [12]. From Fig. 5, it is inferred that the structure 
function derived with this DCTM-based strategy is fairly close 
to that extracted directly from the stiffness and mass matrices 
with the proposed algorithm, while being less accurate since 
the DCTM has a much lower order with respect to the 
discretized heat conduction problem. 
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Fig. 5. Structure function (profile of the cumulative thermal 
capacitance C vs. cumulative thermal resistance R) extracted 
for the DUT with the algorithm proposed in this work (red line) 
and with a DCTM-based algorithm improving the original 
Székely’s one (blue). 

Another analysis was performed by extracting the structure 
function of a variant of the DUT where the deep trench was 
completely filled with silicon dioxide (SiO2) instead of 
polysilicon (trench core) coated by CVD SiO2 (Fig. 2). As can 
be seen in Fig. 6, (i) the structure function is not impacted by 
the different trench core until point C, at which a bifurcation 
takes place; (ii) the RTH increases by about 400 K/W with 
respect to the original DUT since the lateral heat propagation 
is more hindered by the deep trench.  
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Fig. 6. Structure function determined for the DUT (red line) and 
for a DUT variant suffering from a poorly-conductive full-SiO2 
deep trench (green). 

As mentioned earlier, the proposed algorithm allows 
identifying the specific thermal properties responsible for a 
given behavior of the structure function. As an example, it is 
possible to plot and analyze the spatial distributions of the 
weights of thermal resistivity used to compute the resistances 
of RC ladder network defining the structure function at points 
A, B, C indicated in Fig. 6. Such spatial distributions, shown 
over the cross-section of the DUT in Fig. 7, offer an 
exhaustive overview of the impact of the thermal conductivity 
of all sub-regions on the structure function. In particular, 
Fig. 7c clearly witnesses that the bifurcation point C occurs 
when the wave-front of the spatial distribution hits the edge of 
the deep trench core, the thermal conductivity of which was 
altered in the DUT variant. 

This study suggests a potential, and relevant, application of 
the proposed approach. By inspecting the differences between 
(i) the structure function extracted from a 3-D thermal device 
model by our algorithm and (ii) the structure function derived 
from the experimental thermal response of the device by e.g., 
the commercial variant of the Székely algorithm or our more 
robust version of it introduced in Section V.A, it is possible to 
straightforwardly and quickly identify the physical reasons 
leading to such differences, even if they are associated to the 
thermal properties of a sub-region not located in the close 
proximity of the heat source. This information would allow 
calibrating the parameters of the thermal model and localizing 
defects or other technological problems. It is clear that in this 
case the experimental thermal response has to be measured 
under low-power conditions to prevent nonlinear thermal 
effects, as the 3-D thermal model is equipped with the thermal 
conductivity values at an assigned temperature. 

Alternative approaches based on the comparison between 
the experimental thermal response (either in time or in 
frequency domain) and a numerical one computed by thermal 
solvers do not offer this possibility, as in this case finding the 
physical reasons for the differences between the curves is an 
intricate task. 

 
Fig. 7. Spatial distributions of the weights of thermal resistivity 
(||j|| [J1/2K-1/2s-1m-2]) over the cross-section of the DUT at points 
A, B, C identified in Fig. 6. 

VI. CONCLUSION 

An algorithm has been presented for accurately determining 
the structure function of a 3-D heat conduction problem by 
means of the tridiagonalization of its discretized equation, 
performed in a relatively short time. In this approach, the 
partial conductances and capacitances in the structure function 
are evaluated in terms of weighted spatial averages of thermal 
resistivity and volumetric heat capacity, respectively. Hence, 
for the first time, the exact influence of all materials and 
geometric details on each part of the structure function can be 
assessed for a 3-D heat flow normally taking place in devices 
of practical relevance. 

By comparing the structure function extracted from a 
thermal model of a device through the proposed algorithm 
with the structure function derived from the thermal response 
of the real device with other algorithms, it would be possible 
to calibrate the thermal properties of the model, as well as to 
identify physical differences (e.g., defects) between the device 
and the associated model. Consequently, our approach can be 
of particular interest for design engineers. 

The algorithm has been successfully validated on a 
geometrically-complex SiGe:C HBT developed for high-
frequency applications, but adversely affected by a markedly 
high thermal resistance. 
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