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ABSTRACT
There is a gap in literature on comparisons between different MPC optimal control formulations
and solver choices for the same building HVAC system. Mixed Integer Nonlinear (MINL) formu-
lations are rarely considered, despite being the most physically accurate way to represent HVAC
systems. This work compares several MPC formulations, including Quadratic, Nonlinear, and MINL,
applied to a case study building and investigates benefits and challenges of MINL MPCs from prac-
tical perspectives. Ten different MPC formulations were developed and implemented using Pyomo.
Then, a detailed emulator model was developed using open-source Modelica libraries and used
with BOPTEST to assess the performance of each MPC. Results show that convergence and control
switching behaviours of MINL MPCs are sensitive to formulations, initialization approaches, solver
selections, and solver parameters. Thus, they require significant effort for tuning. However, a very
well-tuned MINL MPC performed similarly to successful Nonlinear MPC formulations.

ARTICLE HISTORY
Received 11 May 2022
Accepted 29 August 2022

KEYWORDS
Building HVAC optimal
control; model predictive
control; optimal control
problem formulations
comparison; mixed integer
nonlinear optimization

1. Introduction

HVAC systems account for 20% of the total primary
energy consumption in Major Economies Forum (MEF)
countries (Metrics 2015). Therefore, advanced controls for
those systems can help reduce environmental impact as
well as help renewable penetration by unlocking load
flexibility potential in buildings (Roth et al. 2002; del Mar
Castilla et al. 2014). For the last decades there has been a
lot of research on advanced control, includingModel Pre-
dictive Control (MPC), for the optimal operation of build-
ing HVAC systems (Drgoňa et al. 2020; Kathirgamanathan
et al. 2021; Rockett and Hathway 2017).

For MPC, the optimal control problem can be formu-
lated mathematically in a variety of different ways, even
for identical HVAC systems. The primary reasons for the
variety include:

• A general optimization problem could have multiple
equivalent1 problems, e.g. by introducing slack vari-
ables, elimination procedure, hard or soft constraints
and the epigraph problem formulation (Boyd, Boyd,
and Vandenberghe 2004).
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• There are various approximation techniques, e.g. the
McCormick convex relaxation of a bilinear function
(McCormick 1976), piecewise linear approximation for
a nonlinear function, and linear programming (LP)
relaxation of a mixed integer linear program (MILP),
which relaxes the integer constraints.

• MPC itself has different theoretical approaches, such as
centralizedversusdecentralized/distributedor stocha-
stic versus deterministic.

• The objective and constraints of a MPC can be for-
mulated in different ways regarding the quantifica-
tion, relative importance, and constraints on energy
use, carbon emissions, energy cost, load flexibility, and
thermal comfort.

• Each component of an HVAC system can be modelled
in several ways, which affects the performance of the
prediction accuracy, robustness and computing time.
For example,modelling theCoefficient of Performance
(COP) of an air to water heat pump ranges from the
constant COP approach to the DOE-2 (Research Group
LBL, S 1991) like performance mapping as a function
of part load ratio, outdoor air temperature and supply
water temperature.
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• The selection of MPC optimization variables is a con-
trol design factor. For example, one may select either
controllable inputs that are the same as those of the
physical system, such as percent valve position, or that
are abstracted from the system model, such as heat
flow rates. In the latter case, a strategy is needed to
convert optimal solutions to control inputs that are
available in the physical system.

The significance of these variations of MPC formu-
lations is that they could change not only the accu-
racy/physical reliability of amodel and computation time,
but also the class of optimization problems (e.g. from
convex to nonconvex, from NLP to LP or MILP, and vice
versa), affecting mathematical properties of global opti-
mality, feasibility, uniqueness of a solution, convergence
of numerical optimization algorithms, and MPC closed-
loop stability. Consequently, it could considerably impact
the overall MPC performance (e.g. energy consumption,
comfort, computational time, and the rate of change of
control inputs). As a consequence, a significant amount of
time could be spent iterating to identify themost suitable
optimization formulation for each HVAC system. Despite
this importance, there are very few well-documented
papers that investigate differentMPC formulations. This is
especially true for non convex MINL MPC, which is one of
the most natural and straightforward ways to formulate
optimal control problems for many HVAC applications.
This paper tries to partially fill this gap in the literature
by providing comparisons of multiple MPC formulations
for an HVAC system that has both binary and continuous
control variables. In addition, this paper investigates the
practical applicability of MINL MPC approaches, but not
MILPandmore ingeneralMixed IntegerConvexProgram-
ming (MICP) problems. The reasons for excluding MICP
are twofold. First Mixed Integer Linear (MIL) and Mixed
Integer Convex (MIC) problems can be solved reliably
with commercial andopen source tools. Second, there are
several ways to approximate an MINLP into an MICP or
MILP, such as piecewise linearization or McComik meth-
ods. Therefore, to avoid dispersing the manuscript focus,
a separate work should be carried out to test the differ-
ent approximation methods on building HVAC control
related problems.

Section 2 reports the case study details, MPC formula-
tions, optimization solvers and the co-simulation setup.
Section 3 presents the results for the MPC formulations
comparison. Finally, Section 4 reports the main conclu-
sions of this study.

1.1. Literature review

Equivalent formulations for building applications can
be found in many papers. One example is when peak

demand is considered ina control objective. This approach
replaces themaximumpower or demand cost over a pre-
diction horizon with linear constraints and a slack vari-
able, namely the target peak or demand cost (ASHRAE
2019, Chapter 43). Depending on applications, this
approach could convert NLP to LP or MINLP to MILP (Kim
and Braun 2018).

Approximation techniques have also been widely
applied to HVAC systems. Risbeck et al. (2017) applied a
piecewise linearization technique for optimal scheduling
of operations of chillers, pumps, cooling towers, boilers
and thermal energy storages. The introduced approach
approximates a nonlinear chiller performancemapwith a
set of piecewise linearmodels, convertingMINLP toMILP.
Kim et al. (2015) applied a linear programming relaxation
approach that relaxes integer constraints for coordinat-
ing operations of multiple rooftop units. This approach
converts an IP to LP for better computation efficiency.
AtamandHelsen (2015) applied a convex relaxation tech-
nique to handle the bilinearity that naturally appears in
thermal energy systems. The proposed method converts
a nonconvex optimization problem to a convex problem
to ensure global optimality.

Considering MPC architecture and the theoretical
approach, Scherer et al. (2014) and Walker et al. (2017)
compared centralized and distributedMPC architectures,
highlighting that distributed approaches have slightly
worse KPI performance but better computational time.
Oldewurtel et al. (2012), Drgoňaet al. (2013),Ma,Matuško,
and Borrelli (2014) and Maasoumy et al. (2014) compared
deterministic versus robust or stochastic MPC, showing
that a robust or stochastic MPC performs better in sce-
narios of high uncertainty and is comparable in other
cases. Rather than focussing on architecture and theoret-
ical approach, Cigler et al. (2013) and Drgona and Kvas-
nica (2013) instead analysed the formulation of the MPC
problem, focusing on different cost functions and con-
straints, assessing which formulations are more robust
and computationally efficient, but limiting their analysis
to LP, QP and MILP.

Considerable effort was also put into analysing dif-
ferent building envelope thermal modelling approaches.
Prívara et al. (2013) compared several black-box andgrey-
box model structures to model building envelope sys-
temsandconcluded thatblackboxmodels aremore com-
putationally efficient for larger case studies but become
less reliable for longer prediction horizons. Sourbron, Ver-
helst, and Helsen (2013) analysed the effects of grey box
model order on the performance of MPC for concrete
core activated buildings. Blum et al. (2019) also shows
that model order has a strong influence on the model
quality. Furthermore, Blum et al. (2019) identified seven
factors that play an important role in the accuracy of
the building envelope model. Picard et al. (2017) and
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Picard et al. (2016) show that a purely physical driven
white box approach can be viable in certain building
types. Kim et al. (2016, 2018) pointed out that a typical
identification algorithm with any model structure would
likely result in a biased model when significant unmea-
sured disturbances (e.g. unmeasured internal heat gain,
in/exfiltration, door/window openings, zonal plug load)
presented in a training dataset, andproposed a new iden-
tification approach for a typical grey box model structure
to mitigate this negative effect.

Drgoňa et al. (2020) and Serale et al. (2018) provided
comprehensive reviews on building MPC literature. For
the papers that they reviewed, many works address the
benefit and applicability of their own MPC formulations
compared with rule-based controls. Less comprehen-
sive work is available on comparisons between differ-
ent HVAC modelling approaches, optimization variable
choices, and their impacts on the resulting MPC perfor-
mance. Verhelst et al. (2012) performed an extensive anal-
ysis of different COP formulations in the MPC problem
leading to LP and NLP problems, highlighting the poten-
tial benefit of a nonlinear formulation. Pčolka et al. (2016)
compares a linear time invariant MPC, a linear time vari-
ant and a nonlinear MPC in a case study for a heat pump
and domestic hot water system. It reports that the non-
linear solution is the best, but the linear time variant gets
close and remains more robust. In both studies of Pčolka
et al. (2016) and Verhelst et al. (2012), binary variables
were not taken into account to avoid MILNP formula-
tions, although MINLP arises fairly naturally when deal-
ing with HVAC systems. Indeed, very few studies can be
found comparing MINLP with other formulations. To the
authors’ knowledge, only Burger et al. (2018) introduces a
customMINLP solver compared with Bonami et al. (2008)
for a solar thermal system. Furthermore, it is hard to cross-
compare to different works due to the unique case study
system and lack of commonmetrics.

1.2. Objectives and contributions

This work aims to partially fill this literature gap by pre-
senting comparisons of ten MPC formulations with a
greater focus on MINL MPCs, for a relatively common
HVAC system that requires control decisions on valve
on/off and supply water temperature setpoint. The diver-
sity of formulations is due to two issues that appear in a
broad range of HVAC systems: (1) the nonlinearity arising
from modelling heat pump COP and (2) the binary on-
off physical control inputs for distribution circuit valves.
Depending onmodelling and approximation approaches
to handle them, the resulting optimal control problem
formulations become QP, NLP or MINLP. Each formula-
tion encompasses a trade-off between accuracy in the

prediction, robustness to find an optimal solution, com-
putational requirements, the rate of change of control
inputs, energy consumption, and comfort violation.

The contributions of this paper are:

• Present awell-documentedwork onhowHVACperfor-
mance can vary with MPC formulations

• Understand the benefits of increased prediction accu-
racy from increased model complexity and the corre-
sponding trade-offs

• Introduce a new Key Performance Indicator (KPI) to
quantify the rate of change of a control input

• Survey, introduce, and test available optimization
solvers of each problem formulation, especially novel
MINLP-specific solvers, thatwere not comprehensively
investigated, but could potentially be useful for typical
building HVAC optimal control problems

• Share lessons-learned for designing MINL MPC.

2. Methodology

2.1. Case study description

The chosen case study is a newly built two-room apart-
ment in Milan, Italy. The HVAC system is a two-circuit
radiant floor heating system connected to an air source
heat pump. A diagram of the HVAC system is presented
in Figure 1.

Each thermal zone is independently controlled via its
own on/off valve. The pump works with a constant head
tuned to provide the nominal water mass flow rate to
each floor heating circuit when a valve is open. Control
decisions are the two valves’ statuses and the heat pump
supply water set point. Despite its simplicity, the case
study includes the HVAC hydronic system components
that allow for several optimal control models, and lead to

Figure 1. Scheme of the case study HVAC.
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three different optimization problemclasses to be solved:
QP, NLP, and MINLP.

The emulator model for the apartment and HVAC sys-
temwas developed inModelica using the IBPSA 3.0 (mas-
ter branch commit 8a0d237) (Wetter, Blum, andHu 2019),
Buildings 8.0 (master branch commit 69bb7cf) (Wetter
et al. 2014) and IDEAS 2.2.1 (master branch commit
32860ea) (Jorissen et al. 2018) libraries. The MPC algo-
rithms were implemented using the Python-based opti-
mizationmodelling language Pyomo (Bynum et al. 2021).
Finally the various MPC formulations were co-simulated
with the emulator model thanks to the Application Per-
formance Interfaces (APIs) and run-time environment
provided by the BOPTEST software framework (Blum
et al. 2021), which also provides as output a standard
subset of KPIs, including thermal discomfort, energy con-
sumption, cost of the energy and computational time
ratio. In this way, it will be possible to consistently com-
pare all MPC formulations on the same emulator, high-
light the pros and cons of each approach, and make the
emulator publicly available for continued usage and fur-
ther comparison of control approaches.

2.2. Introduction of optimization solvers

Different solvers and not different algorithms were com-
pared on the same platform because comparing the
solvers can be considered the state of the art of available
algorithmic implementations, while a custom implemen-
tation could be criticized. Furthermore, great care was
taken in choosing the optimization and co-simulation
toolchain to make the comparison as fair as possible.
Pyomo allows to easily couple different solvers through
the AMPL interface (AMPL 2003) which is supported by a
wide variety of solvers. Table 1 summarizes all the solver
used for the study.

The QP and NLP solver, IPOPT (Wachter 2002) was
chosen due to the popularity and widespread usage.
IPOPT uses MA57 as linear subsolver. The MINLP solvers
were chosen by looking at the results from Kronqvist
et al. (2019), which analysed solver performance on a set
of 335 convex MINLP problems and included both open
source and commercial solvers. The subset of solvers cho-
sen for this study includes some of the best performing

and most popular choices for open source and com-
mercial alternatives. BONMIN (Bonami et al. 2008) is an
open source project belonging to the project COIN-OR
foundation (COIN-OR Foundation 2006), as does IPOPT,
and it is a MINLP solver mainly used for convex MINLP
problems. MINLP solvers divide the optimization prob-
lem into a MILP or MIQP problem and NLP sub problems.
In our setup, BONMIN uses CBC (Forrest and Lougee-
Heimer 2005) as theMIQP subsolver and IPOPT as theNLP
solver. In particular, two algorithms are tested from BON-
MIN. The first is BONMIN-BB, which uses a variation of the
Branch and Bound algorithm to convert the problem. The
second one is BONMIN-Hyb, which is a hybrid approach
between Branch and Cut and Outer Approximation algo-
rithms, which is faster than BONMIN-BB, but suffers more
from the issue of falling into a local minima when the
objective function is not convex. As a commercial alter-
native, Baron (Kılınç and Sahinidis 2018) was used since,
differently from BONMIN, it should be able to guarantee
a close to global optimum even when the objective func-
tion is not convex. Baron uses a variation of the Branch
and Bound algorithm to reduce the MINLP problem into
a subset of NLP problems and aMIQP problem. TheMIQP
solver is CPLEX and theNLP solver is IPOPT. Lastly an open
source alternative to Baron, SCIP, is also tested, which is
a global solver that uses a variation of the Branch and
Bound algorithm. In our setup, SCIP uses CBC as theMIQP
subsolver and IPOPT as the NLP solver.

2.3. Emulatormodel

In Figure 2, a schematic of the apartment is presented,
while in Figures 3–5, the yearly frequency plot of the dry
bulb temperature, humidity ratio and global horizontal
radiation for the location (Milan, Italy) are shown. Milan
can be considered a continental temperate humid cli-
mate. The maximum TDryBulb is 32 [◦C], the minimum is
−7.4 [◦C] and the average 11.7 [◦C]. In Figure 6, a brief vali-
dationof theemulatormodel is shown,whichusedexper-
imental data coming from a globe thermometer posi-
tioned in the centre of the living room, while the bound-
ary conditions were determined from local weather sta-
tions and localized forecast services. For an in depth
description of the envelope, the reader can access the

Table 1. Optimization solver summary.

Solver Problems Availability Algorithms Subsolvers

IPOPT QP,NLP open source Interior Point MA57
CBC MILP open source Branch and Cut, MA57

Dual Simplex algorithm
BONMIN MINLP open source Branch and Bound, CBC,IPOPT

Branch and Cut
SCIP MINLP open source Branch and Bound CBC,IPOPT
BARON MINLP commercial Branch and Bound CPLEX,IPOPT
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Figure 2. Case study apartment scheme.

Figure 3. DryBulb temperature yearly frequency forMilan typical
year weather data.

test case (two zone hydronic apartment) documentation
at the BOPTEST repository Two zone hydronic apartment
(IBPSA 2019). In Table 2, a summary of the main features
of the case study is reported.

The thermal zones and floor heating system are mod-
elled using the Buildings library. The remainder of the
hydronic system ismodelled using the IBPSA library apart
from the heat pump, where a dynamic performance map
model from the IDEAS library is used. The baseline con-
troller in the emulator is an on-off controller with a 1[◦C]
hysteresis on the room set point temperature. The zone
valve fully opens when the hysteresis controller gives
an on signal and remains closed otherwise. Each ther-
mal zone has its own thermostat and is controlled inde-
pendently. The pump works to provide a constant head,
tuned to provide each floor heating circuit the respec-
tive nominal water mass flow rate. The heat pump supply
water set point temperature is calculated via a climatic
curve that depends on the external temperature. The

Figure 4. Humidity ratio yearly frequency for Milan typical year
weather data.

Figure 5. Global horizontal radiation yearly frequency for Milan
typical year weather data.

baseline results shown in theResults Section3, refer to the
emulator running the simulation with this baseline con-
troller. The external Python-Pyomo based MPC is able to
overrideboth the zonevalveon-off signal,ui, and theheat
pump supply water set point Tin,set .

2.4. Reduced ordermodel

A grey-box model based on the resistance-capacitance
(RC) analogy was identified using the Matlab identifica-
tion toolbox (Ljung and Singh 2012) for use within the
MPC controller. Looking at Table 2, the apartment can be
considered to be well insulated and with heavy construc-
tion. Different combinations of resistors and capacitors
were tried, leading to a 3C7R scheme that was adopted
for each thermal zone. The scheme of the resulting RC cir-
cuit for each thermal zone is shown in Figure 7. The three
capacities are related to the room temperature Tr , wall
temperature Tw and floor temperature Tf . Resistances

https://github.com/ibpsa/project1-boptest/pull/411
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Figure 6. Validation of the living roommean radiant temperature for a week free floating experiment in September. TSIM corresponds
to the simulation temperature and TEXP corresponds to the experimental measurement done with a globe thermometer. The dashed
line±0.5 (◦C)corresponds to an estimation of the error the instrument, namely±0.25 (◦C) and the other measurements used.

Table 2. Apartment properties.

Total floor area 44.5 [m2]
Total window area 8 [m2]
External surface to volume
ratio

0.25 [1/m]

Average external thermal
transmittance

0.46 [W/(m2K)]

heat pump nominal
capacity

5 [kW]

Occupation period 8 p.m. to 8 a.m. fromMonday until Friday
and unoccupied during Saturday and Sunday

Total sensible internal
loads

150 [W/zone] when occupied

Total latent internal loads 40 [W/zone] when occupied

connect the capacities nodes to each other and further-
more, two resistances connect Cr and Cw to the external
temperature Text . The wall has a resistance that connects
also with the sky temperature Tsky . The sky temperature
allows the low-order model to better treat the radiative
heat exchange with the external environment, especially
in the presence or absence of clouds. Lastly, the capac-
itors of the rooms are connected to each other through

a resistor as a proxy for air exchange between the two
thermal zones.

The solar heat source �s[W/m2] is the hemispherical
global radiation hitting the external wall and window.
It is divided between the wall and the floor and multi-
plied respectively by the opaque area Awall and the win-
dows area Awin. a and c are tuning parameters that can
be assumed as proxy of absorptance and trasmittance.
�int[W] are the internal gains divided between sensible
and radiative by the parameter b. The sensible part goes
to the room Cr and radiative goes to the wall Cw . Finally,
the heat flow rate to the floor heating system, injected
in the floor capacity Cf , is shown in Figure 7 as �Ḣ =
Ḣin − Ḣout . It is modelled in four different ways resulting
in different classes of optimization problems:

(1) Linear formulation where �Ḣ itself is treated as an
optimization variable (in this case, we let �Ḣ := Q̇).

(2) Linear formulation where �Ḣ is modelled with the
supply water temperature Tin, return water temper-
ature Tout and the nominal value of mass flow ṁfnom

(in this case �Ḣ := ṁfnomcw(Tin − Tout))

Figure 7. Thermal zone reduced order model, the red dots are the temperatures, the blue parallel lines are the capacitors associated
with the temperature states, the resistances are the thermal resistances between the temperatures and the red lines indicate a heat flow
into the node.
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(3) Nonlinear formulation where �Ḣ is modelled with
the energy balance in 2., but multiplied by the valve
position ui, andwith the continuous relaxation of the
integer constraint, i.e. ui ∈ [0, 1] (in this case �Ḣ :=
uiṁfnomcw(Tin − Tout))

(4) Mixed Integer Nonlinear formulation where �Ḣ is
modelled as 3. butwithout the continuous relaxation.

For formulation 1 the optimal control variable will be
the thermal power provided to the floor heating Q̇. For
formulation 2 the optimal control variables will be the
floor heating inlet temperature Tin. For formulations 3-4
the optimal control variables are Tin and the zone valve
status ui. For the formulations 2-4 using the supply tem-
perature Tin as an optimization variable, the return/outlet
temperature Tout was modelled with the following linear
equation to correlate Tout with Tin and floor temperature
Tf as shown in Equation (1).

Tout = wfTin + (1 − wf )Tf (1)

wf is the weighting factor for the identification process.
The rationale behind this linear relationship is that the
water mass flow rate ṁfloor is constant and so if we con-
sider the floor heating system as an heat exchanger wf

would be equivalent to a constant effectiveness. This
equation is valid for this case study since the zones valves
can only be open or closed and do not provide variable
flow control. The authors would like to point out that this
approximation might be more problematic for formula-
tion 3., because with the continuous relaxation the valve
will be able to modulate the flow and could lead to a
larger error between the reduced order model and the
emulator model and instability in the MPC.

Since the training of RC models is not the focus of
the present work, the identification procedure is briefly
reported. All the reduced ordermodel parameters shown
in Figure 7, so not including wf , were trained using
two weeks of free floating data, simulated using the
detailed emulatormodel, where the boundary conditions
were derived from a synthetic profile obtained through
a Fourier analysis of the typical year data (Smart and
Ballinger 1984). In this way all major frequency compo-
nents are present. After identifying all the model param-
eters, an additional week of data where the heating sys-
tem is excited by turning it on and off is used to find
the weighting parameter wf . The result of the overall
identification process leads to a Normalized Root Mean
Square Error (NRMSE) goodness of fit of 82%, defined
in Equation (2), in open loop simulation for the whole
heating season which for Milan is from the 15th of Octo-
ber to the 15th of April, where the heating system was

functional.

NRMSE goodness of fit = 100
(
1 − |ydata − ymodel|

|ydata − ydata)|
)
[%]

(2)

2.5. MPC formulations

Besides the modelling approaches, other constraints and
objective functions were specified to complete MPC
problem formulations. In Table 3, all formulation ele-
ments and MPC implementation parameters that were
commonly used for the ten different MPCs are shown.
Furthermore, Table 4 lists all other optimization variables,
constraints and objectives. Finally, in Table 5, complete
MPC formulations are succinctly summarized with the
notations of Table 4.

Table 3 contains all common elements across the for-
mulations, including dynamic states, disturbances and
implementation choices. In Table 3, only the final choice
for control horizon and time step is shown. However, four
different control horizons were tried for the optimal con-
trol problems from 6 up to 72 [h]. The final choice was 24
[h] since a longer prediction horizon did not show signifi-
cant improvement on KPIs. This time scale aligns with the
fact that we are dealing with a heavy construction and a
floor heating with a high thermal inertia. Another para-
metric study was carried out to identify a suitable time
stepwhere aMPC solution updates. Several different time
stepswere tested ranging5,10,15 and30 [min], the results
show that bringing it below 15 [min] did not give any
significant benefits.The reason is that in this case study
the authors considered a floor heating system where the
time constant of the floor heating is in the order of mag-
nitude of 3 [h], in case of air systems or radiators the
time step should be lower to avoid numerical integration
problems. A direct collocationmethod was implemented

Table 3. MPC states and disturbances.

Control horizon 24 [h]
Time step 15 [min]
Solution update Every time step
Discretization Direct collocation

Trliv [◦C] : (−∞,+∞)

Tfliv [◦C] : (−∞,+∞)

States (x) Twliv [◦C] : (−∞,+∞)

Trbed[◦C] : (−∞,+∞)

Tfbed[◦C] : (−∞,+∞)

Twbed[◦C] : (−∞,+∞)

Text[◦C] : (−∞,+∞)

Tsky [◦C] : (−∞,+∞)

Tsetliv [◦C] : (−∞,+∞)

Disturbances Tsetbed[◦C] : (−∞,+∞)

Q̇rad[kW] : [0, max]
Q̇intliv [kW] : [0, max]
Q̇intbed[kW] : [0, max]
pe[e] : [constant]
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Table 4. List of MPC optimization variables, constraints and objectives.

δliv/bed[◦C] (−∞,+∞)

Tin [◦C] [Tmix , Tinmax]
uB [−] uliv/bed : {0, 1} ∈ Z

Variables uR [−] uliv/bed : [0, 1] ∈ R

uopen [−] uliv/bed = 1
Q̇liv/bed [kW] [0, max]

Comfort constraint
Ccomf Tr,liv/bed(t) − Tset,liv/bed(t) + δliv/bed(t) ≥ 0

Maximum heat flow rate
Constraints CQmax 1/(1 − wf )Q̇liv/bed(t) ≤ ṁf cw(Tinmax − Tf ,liv/bed(t))

Mixing constraint

CTmin Tin ≥ Tmix = ulivTf ,liv + ubedTf ,bed
(uliv + ubed)

Final control objective
Jtot min(Jtot = ∫ tf

t0

∑N
i=1 kiji(t) dt)with 0 ≤ ki ≤ 1

Energy cost QP

jCOP,L Jen = pe
(�Ḣliv(t) + �Ḣbed(t))

COP(Text)(t)
[e]

Energy cost NLP

jCOP,NL Jen = pe
�Ḣliv(t) + �Ḣbed(t)

COP(Text , Tin)(t)
[e]

Objective Temperature mismatch
functions jcomf Jcom = δ2(t) [K2h]

Switching frequency

jswitch Jswi = duliv
dt

2

+ dubed
dt

2

[−]

Binary constraint
jB Jbin = uliv(1 − uliv) + ubed(1 − ubed) [−]

using the Pyomo problem statement to convert the con-
tinuous optimal control problems into discrete program-
ming problems. The six states include all temperatures in
both thermal zones and the disturbances as reported in
Section 2.4, plus the two room set points and the energy
price pe[e] set to 0.20 [e/kWh].

Table 4 lists all other optimization variables, con-
straints, and objective functions used in different formu-
lations (eachMPC formulation is expressed with a combi-
nation of those in Table 5). δliv/bed is an auxiliary variable
representing a temperature deviation from a setpoint,
and is coupled with the constraint Ccomf and the objec-
tive jcomf. By looking at the constraint Ccomf, the value of
δ will be higher than zero if the room temperature Tr is
lower than the setpoint temperature Tset . In this case, it
will be penalized by including δ2 in the objective jcomf.
This will push theMPC to keep Tr higher than the setpoint
temperature.

The other optimization variables, as well as the con-
straints, are related to the floor heat flow rate models
explained in Section 2.4. Tin is the supply temperature
and can go up to the maximum temperature of 45 [◦C]
to avoid high temperatures in the floor, down to a mini-
mum temperature, defined as the adiabatic mixing tem-
perature in constraintCTmin. The formulation of constraint
CTmin comes from a local energy and mass balance at
the return outlet of the floor heating system under the
assumption that the nominal flow rate is the same for all

circuits. Tf ,liv/bed is the floor temperature and uliv/bed is the
floor heating circuit valve control. uR represents a con-
tinuous relaxation on the valve control, so that the valve
can continuouslymodulate the flow from totally closed to
totally opened.uB indicates the valve controlswithout the
relaxation and are consistent with the actual system and
emulatormodel.uopenmeans thevalve controls under the
assumption that the valve is always open and the mod-
ulation is carried out only at the supply temperature Tin.
Finally, Q̇liv/bed is used directly as an optimization vari-
able when the heat flow rate is not modelled explicitly.
It can go from zero to a maximum value determined by
constraint CQmax. The constraint on the heat flow rate
CQmax imposes the maximum heat flow rate linearly with
the floor temperature as a function of the maximum sup-
ply temperature Tinmax and the weighting parameter wf .
This constraint helps to model the behaviour of the floor
slab, where, at constant supply temperature, the higher
the floor temperature, the lower the heat transfer rate to
the floor. Figure 8 is given as a visual representation of the
idea.

The last section of Table 5 presents all the components
that can make up a complete control objective function.
The complete objective function Jtot to be minimized is
the sum of these different objective components with
someweights, denoted as kiwhere i corresponds to a spe-
cific objective component. The weighting parameters ki
need to be tuned to balance the impact of each objective
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Figure 8. Visual representation of the CQmax constraint. In grey is
highlighted the admissible control areawith CQmax implemented.
It reduces as the floor temperature Tf since Tinmax is a constant
value.

on the total objective function Jtot . To find the best val-
ues of ki, several iterative studieswere performed for each
MPC formulation and priority was given to the comfort
constraint. The objectives jCOP,L and jCOP,NL are the energy
cost and are calculated as the energy price pe multiplied
by the total heat flow rate provided by the heat pump,
�Ḣliv(t) + �Ḣbed(t), divided by the heat pump COP. The
COP is a function of the external temperature COP(Text)
for jCOP,L, so the underlying problem remains quadratic.
In jCOP,NL, the COP is a function of the external and sup-
ply temperatures COP(Text , Tin). Here, the optimization
problem becomes nonlinear because a control variable is
present in the denominator of a fraction. jcomf is the tem-
perature mismatch between room temperature Tr and
setpoint Tset and works as a comfort proxy. The switch-
ing frequency objective jswitch is the sum of the squared
valve control derivatives. This objectives serves the pur-
pose of penalizing undesirable sudden changes in the
control variables. Since the derivative is discretized with
forward Euler in the direct collocationmethod, there is no
difference between the formulations that use valve con-
trol state as integer uB and as continuous uR. Finally, the
binary constraint, jB, forces uliv and ubed to be close to
either 0 or 1 to avoid having an objective greater than 0.
The reasoning behind this constraint is to approximate a
MINLP as a NLP. However, as was found in this study, care
should be taken when initializing this optimization prob-
lem because the introduction of the binary constraint
causes a significant discontinuity in the solution space.

Starting from Tables 3 and 4, several MPC formula-
tions can be defined, ranging from QP to MINLP. Table 5
reports the MPC formulations coupled with the solvers
and relative options used for the study.

Table 5 shows the ten MPC formulations that were
tested. The Tag column reports the formulation names.
The Formulation column shows the corresponding opti-
mization variables, constraints, and objectives described
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in Table 4. Note that the auxiliary variable δ, the temper-
ature constraint Ccomf, the temperature mismatch jcomf,
and the switching objective jswitch are present in all for-
mulations, apart from MPC2 where jswitch is not needed
since there is no valve control. The Problem Type col-
umn reports the optimization problem type for eachMPC
formulation, which can be either QP, NLP or MINLP. The
Solver column shows the solver chosen, including the
MINLP handling algorithm option if present. The Toler-
ance column is the solver tolerance which was deter-
mined through a parametric study as a compromise
between quality of the solution and computational time
for each solver. The same tolerance must be used for
the same solver class to guarantee fairness in the solu-
tion and computational time. Furthermore, it is increased
for the MINLP solvers since it considers both the reduc-
tion in the cost function steps for the NLP sub problems
and the integer approximation for the MINLP problem.
The Initialization column defines how the optimization
problem variables were initialized. Free-floating initial-
ization means that a simulation runs using the reduced
order model subject to the same boundary conditions,
as in the forecasts used for the optimal control, with
the floor heat flow rate set to zero. In other formula-
tions, a slightly randomized solution of a different MPC
formulation is used as initialization as indicated. The
Post Process column shows the steps needed to convert
the optimal control trajectory into the physical control
inputs used in the emulator model. The Subsolvers col-
umn refers to the solvers used by the solver indicated
in the Solver column. Another parameter not included
in the table is the Timeout. It corresponds to the max-
imum time between each control horizon optimization
and was fixed at two minutes for all formulations as a
compromise between giving the solvers enough time to
converge to a solution and the overall computational
time.

Below, a summary for eachMPC formulationpresented
in Table 5 is provided:

• MPC1: This formulation uses heat flow rates directly as
optimization variables Q̇liv/bed , and jCOP,L as the energy
objective. In this way, the final constraints are linear
in optimization variables, and the objective function is
quadratic, making a QP problem. The solver of choice
for QP was IPOPT with the MA57 linear subsolver. The
tolerance was set to 10−6 from the default value of
10−8 and the timeout time to 120 [s], and the initializa-
tion is free-floating. Some post processing is required
to convert the optimal control trajectory into the phys-
ical control variables used in the emulator. If Q̇liv/bed is
higher than a threshold value, equivalent to the min-
imum cutoff power of the heat pump set as 20% of

the nominal value 800 [W], the valves uliv/bed will be
openedotherwise they remain closed. The supply tem-
perature setpoint is calculated using the previous step
return temperature plus the delta given by Q̇liv/bed .

• MPC2: This formulation uses the supply temperature
as an optimization variable Tin, while the circuit valves
remain always open uopen, and jCOP,NL is used for the
energy objective. Togetherwith the linear radiant floor
heat modelling approach (see point 2.) in Section 2.4,
the final constraints are linear in optimization vari-
ables, and nonlinear in the objective due to the pres-
ence of COP as a function of the supply temperature
Tin, making it a NLP problem. The solver of choice
for the NLP problem was IPOPT with the linear sub-
solver MA57. The tolerance was set to 10−6 from the
default value of 10−8 and the timeout time to 120 [s],
and the initialization is free-floating. A post process is
required to convert the optimal control trajectory into
the physical control variables used in the emulator.
If the supply temperature Tin is higher than a thresh-
old value, the valves uliv/bed will open; otherwise, they
remain closed. The threshold is calculated as an esti-
mationof theminimumcutoff power of theheat pump
set as 20%of thenominal value, 800 [W]. Theminimum
heat flow rate Q̇ is calculated using the expression in
point 2. Section 2.4. Then Tin is used as setpoint supply
temperature in the emulator.

• MPC3: Compared to MPC2, this MPC does not assume
that the circuit valves are fully open. Instead, it relaxes
the on/off binary constraints to a real number set uR
as mentioned in (3) in Section 2.4 and in Table 4. The
final problem formulation is nonlinear in terms of con-
straints and optimization variables due to themultipli-
cation between supply temperature and valve control.
The objective is also nonlinear due to the presence of
COP as a function of the supply temperature Tin and
the multiplication of two optimization variables in the
calculation of the heat flow rate�Ḣ. The addednonlin-
earity of MPC3 compared toMPC2makes the problem
nonconvex because the solver can change Tin or uR
to modulate the heat flow rate, making the process
of finding a global optimum harder. Solver settings
were identical to MPC2. MPC also needs to convert
the optimal control trajectory into the physical con-
trol variables used in the emulator. If the circuit valve
uliv/bed value is higher than a threshold value, themost
common choice would be 0.4. However, the authors
foundout that playing aroundwith this parameter and
reducing it to 0.3 lead to a more stable solution. So in
case the valve control is higher than the threshold the
valves uliv/bed will be opened, else they remain closed.
Then Tin is used as setpoint for the supply temperature
in the emulator.
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• MPC4: This formulation is identical toMPC3, apart from
the addition of the binary objective jB. The idea behind
jB is to force uR to be either closed uR = 0, or open uR =
1, by penalizing all solutions that modulate the flow
rate in a continuous manner. This allows for a smaller
control spaceby reducing theoptimal operating range
of the zone valves. This will serve as an NLP approxi-
mation of a MINLP formulation. In this case uliv/bed will
be used directly in the emulator, because uliv/bed in the
raw solution when using jB are very close to 0 or very
close to 1, making the rounding process trivial and Tin
is used as setpoint for the supply temperature.

• MPC5: This formulation is the sameasMPC3but replac-
ing the continuous relaxation (uR) with the binary
constraint (uB). In this way the final problem formu-
lation is mixed integer nonlinear due to the multi-
plication between contnious supply temperature and
on/off valve control variables, making a MINLP prob-
lem. The additional complexity of MPC5 compared to
the previous QP and NLP formulations requires a ded-
icated MINLP solver. The solver of choice for MPC5
was BONMIN-BB. CBCwas used as MIQP subsolver and
IPOPT as NLP solver. The tolerance was set to 10−4

from the default value of 10−6 and the timeout time
to 120 [s]. The initialization is done by taking the solu-
tion of MPC3 after rounding the values of uliv/bed . The
MINLP solution can be directly applied to the emulator
with no need for post processing of the solution.In this
case uliv/bed will be directly used in the emulator and
Tin is used as setpoint for the supply temperature.

• MPC6: This formulation is identical toMPC5 apart from
the addition of the binary objective jB and the ini-
tialization done with MPC4 solution. The rationale is
similar as in the transition from MPC3 to MPC4. How-
ever, instead of a single NLP problem, it is extended to
all subsets of NLP problems generated by the MINLP
solver.In this case uliv/bed will be directly used in the
emulator and Tin is used as setpoint for the supply
temperature.

• MPC7: This formulation is identical to MPC6, where
a different MINLP algorithm option was used for the
Bonmin solver BONMIN-Hyb. In this case uliv/bed will be
directly used in the emulator and Tin is used as setpoint
for the supply temperature.

• MPC8: This formulation is identical to MPC5, where
a different MINLP solver was used named Baron. The
MIQP solver is CPLEX and theNLP solver is IPOPT.In this
caseuliv/bedwill bedirectly used in theemulator and Tin
is used as setpoint for the supply temperature.

• MPC9: This formulation is identical to MPC8 with the
addition of the binary constraint jB.In this case uliv/bed
will be directly used in the emulator and Tin is used as
setpoint for the supply temperature.

• MPC10: This formulation is identical to MPC9 with the
difference that the MINLP solver of choice was SCIP.In
this case uliv/bed will be directly used in the emulator
and Tin is used as setpoint for the supply temperature.

2.6. Co-simulation setup

All elements shown in previous sections are coupled
in a co-simulation, a graphical representation is given
in Figure 9. The optimal control routine runs on the
Pyomo Python toolbox Pyomo (Bynum et al. 2021) and
the detailed emulator model is wrapped in a Docker con-
tainer using the BOPTEST software (Blum et al. 2021). all
simulations were carried out on a Linux Ubuntu 18 lap-
top with 16GB of RAM and an Intel(R) Core(TM) i7-8650U
CPU @ 1.90GHz. all solvers have multi thread capabil-
ity so up to 8 threads were used for the simulations.
This does not mean that all solvers use multi-thread with
equal effectiveness. Different solvers will have different
core-allocation mechanisms which may result in very dif-
ferent multi-thread efficiency. However, this is also part
of the evaluation in the performance of a solver, since
recent core architectures make parallel computing very
important.

All cases mentioned in Table 5 were directly imple-
mented in Python using a concrete instance modelling
feature of Pyomo. The solvers were compiled exter-
nally and coupled with Pyomo using the AMPL interface.
Finally the Kalman filter from Labbe (2018) was used to
update the statesof the reducedordermodel at each time
initialization.

BOPTEST provides an easy to use API interface that
allows the optimization scripts to manipulate the control
variables of the detailed model, access sensor data and
access forecasts, and the KPIs calculated by BOPTEST. The
control variables are the supply temperature setpoint and
the zone valve open or closed signal. The forecasts are
the disturbance variables reported in Table 3 and are con-
sidered deterministic, which means that the same distur-
bances will also be used in the emulator model. Themea-
surements are the room temperature, the water supply
temperature and the return temperature from each zone,
and are used by the Kalman filter to estimate the initial
value of room, wall, and floor temperatures for each zone
for each prediction horizon. To estimate the performance
of each MPC formulation, BOPTEST can calculate many
KPIs, though this paper considers the thermal discomfort,
computational time ratio, and energy cost. Furthermore,
four additional KPIs were used to evaluate the perfor-
mance of these MPC formulations, namely the total com-
putational time [s] of the MPC solver, the thermal energy
used [kWh], the control arc length, and the number of
MPC solver time-out or error events [%] that occurred
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Figure 9. co-simulation setup.

Table 6. BOPTEST and MPC specific KPIs.

Icon Name Equation Type

Kdis Discomfort

∑N
z=1

∫ tf
t0
max(Tr,set(t) − Tr(t), 0) dt

N
[Kh/zone] BOPTEST

Ktimr Computational time ratio

∑M
k=1

�Tk
�tk

M
[−] BOPTEST

Kcost Energy cost

∫ tf
t0
pel

Q̇tot(t)
COP(t) dt

Atot
[EUR/m2] BOPTEST

Ken Thermal energy supplied

∫ tf
t0
Q̇tot(t) dt

Atot
[kWh/m2] case study specific

Kttot Total computational time [s] case study specific

Kerr Solver errors or timeouts
Nerrors + Ntimeouts

Ntotal
[%] case study specific

Kconlen Control arc length

∫ tf
t0

√
1 + ( dudt )

2 dt
∫ tf
t0

√
1 + (

duref
dt )2 dt

case study specific

throughout the evaluation period. The equations and
descriptions of the KPIs are reported in Table 6, and the
descriptions of their variables are reported below the
table. For a fair KPI estimation, the emulator and reduced
order model thermal envelope states were initialized to
20[◦C] temperature, and awarmup period of 5 [days] was
used. Only valid solutions are used to update the MPC
control trajectory. Time-out solutions are valid when vari-
ables values arewithin the bounds, however, theymaybe
not fully converged,meaning that constraintsmay not be
completely satisfied. Time-out solutions are considered
invalid if outside variables bounds. Solutionswith an error
in the solver status are discarded. When a solution is dis-
carded, the previous solution current time step is used
until a new valid solution is found.

In the discomfort KPI Kdis calculation, Tr[K] is the room
operative temperature and Tr,set[K] the heating setpoint,
N is the total number of zones, and to and tf are the initial
and final time of the evaluation period. In the computa-
tional time ratio KPI Ktimr δTk[s] is the MPC computational
time at step k,M is the number of control steps and δtk[s]
is the time interval of control step k. In the cost KPI Kcost ,
pel[EUR/kWh] is the electricity price considered as con-
stant, Qtot[kWh] is the total energy supplied by the heat

pumpandAtot[m2] is the total floor area of the apartment.
Qtot[kWh] is also used to calculate the thermal energy KPI
Ken. Kerr is the ratio between the number of MPC itera-
tions that had either timeout Ntimeouts or errors Nerrors and
the total number of iterations Ntotal , 2976, for the period
considered, the month of January with a time step of 15
[min]. Lastly, a new KPI is introduced in this manuscript
called control arc length Kconlen. The idea of this KPI is to
quantify the frequency of switching for the control sys-
tem throughout the evaluation period. Kconlen is the ratio
between the length of the actual control trajectory. It is
calculated on the total heat flow rate provided by the
heat pump Q̇hp versus a fictional reference trajectory uref
that consider the control variable u to be constant for
the evaluation period. A visual representation is given in
Figure 10.

3. Results

Simulationevaluation results for themonthof January are
shown because similar conclusions were drawn from the
rest of the heating season. As mentioned, all MPCs were
updated for every 15 [min] time stepwith the control hori-
zon of 24 [h]. Each MPC was calculated 2976 times for the
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Figure 10. On the y-axis is the value of the control variable u and
uref is the reference value kept as constant. On the x-axis is time
with the evaluation period taken from t0 to tf .

simulation period and has around 1000 constraints and
600 optimization variables for the linear problems and
1200 optimization variables for the nonlinear problems.

3.1. KPIs comparison

Figures 11 and 12 report the KPI results calculated by
BOPTEST. From the Discomfort KPI Kdis in Figure 11, most
of the formulations outperform the rule based controller

withmore than90%decrease indiscomfort. Themain rea-
son is the ability of MPC to predict the step change in
zone heating setpoint temperature and compensate for
the delayed response of the floor heating system. How-
ever, the MPC7 solution using Bonmin with the Hybrid
method led to discomfort similar to the baseline con-
troller. The authors managed to make MPC7 work prop-
erly, not shown in the chart. However, it required signifi-
cant manual tuning effort for the weight on comfort con-
straints and solver internal options (MINLP approxima-
tion relaxation, integer tolerance) to guide the solution.
This highlights that Bonmin-Hyb is probably not robust
enough for this type of problem.

Looking at the computational time ratio Ktimr in Figure
11 and total computational time Kttot in Figure 12, QP and
NLPs (MPC1 – MPC4) required less computing time than
MINLPs (MPC5-MPC10) as expected. However, all MPC
formulations have a Ktimr value much lower than one,
meaning that MINLPs could be used for a real time appli-
cation from the computation perspective. Looking at a

Figure 11. BOPTEST KPIS for the month of January as thermal discomfort Kdis (top), computational time ratio Ktimr in logarithmic scale
(middle), and energy cost Kcost (bottom). The results are shown for all MPC combinations explained in Table 5.
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Figure 12. MPC specific KPIs for themonth of January, Thermal heating power per squaremeter Ken (top), total computational time Kttot
in logarithmic scale (middle), Total number of solver time out or error statuses Kerr (bottom), the KPI description is presented in Table 6.
The results are shown for all MPC combinations explained in Table 5.

relative comparison of Kttot , MPC1 (QP) and MPC2 (NLP)
take between 15 and 20 [min] to run for all 2976 opti-
mization iterations, so on average from 0.3 to 0.4 [s] per
optimization. MPC3 (NLP) and MPC4 (NLP) take between
50 and 60 [min], so on average from 1 to 1.3 [s] per opti-
mization. The remaining MINLP formulations, i.e. MPC5
to MPC10, instead take from 1 [h] 40 [min] up to 2 [d]
and 5 [h], so on average from 2 [s] to 64 [s] per opti-
mization. This big variation of computational times shows
that MINLP MPCs are sensitive to a formulation, initializa-
tion, and solver selection. In fact, the differences between
MPC5 and MPC6 are only the initialization approach and
the inclusion of jB, and the difference betweenMPC9 and
MPC10 is only the solver. However, MPC5 and MPC10
result in much longer computational time (a factor of 10)
caused by a lot of errors or timeouts for around 30% of
the iterations (see the last subfigure in Figure 12), mean-
ing that the MINLP solvers are struggling to converge.
Furthermore, SCIP was not able to find a solution with-
out the jB binary objective. It is very interesting that all

MINLP solvers benefit from the introduction of jB in terms
of solver reliability and time, because the objective seems
to be redundant for integer formulations and solvers. This
might be explained by the fact that by introducing jB,
each NLP approximation of the MINLP is itself an approx-
imation of a MINLP problem. Furthermore, the addition
of the binary constraint jB reduces the available control
space, making the MINLP objective function more con-
vex and bringing it closer to a Mixed Integer Convex
Programming (MICP) problem.

The comparisons of energy cost Kcost and thermal
energy Ken are shown in Figure 11 and in Figure 12,
respectively. For Ken, all formulations and the baseline are
within 6 % of each other, with MPC2, MPC4, MPC6, MPC7,
andMPC9 beingmarginally better than the baseline, and
MPC1, MPC3, MPC8 and MPC10 being marginally worse.
The MPCs perform in a similar fashion with respect to the
RBC because the case study considered is a newly built
low transmittancebuildingwith lowconsumption. There-
fore, notmuch energy can bewasted by a properly tuned
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RBC. Furthermore, the RBC is under heating the build-
ing as it can be seen by looking at the discomfort Kdis.
Instead, the MPCs do a better than the RBC in shifting the
thermal energy supplied to anticipate the demand of the
setpoint to drastically reduce discomfort, while keeping
the thermal input lower thanks to better management
of the partial loads When looking at cost Kcost however,
MPC1 (QP) is the worst performer with 5% increase with
respect to the baseline RBC 2, while MPC2 (NLP), MPC4
(NLP), MPC6 (MINLP) and MPC9 (MINLP) show the best
performance with a 13% decrease in cost with respect
to the baseline, which is aligned with other literature
results. This is due to the fact that MPC1 adopts a simpler
COP model,that is only a function of external tempera-
ture since the supply temperature is not a control vari-
able, while the other formulations use amore precise COP
definition including supply temperature allowing a more
efficient use of the heat pump by keeping on average a
lower supply temperature. It is not clear from this analysis

alonewhy theMPC2,MPC4,MPC6 andMPC9 seem toout-
perform the other nonlinear formulations for these KPIs.
For that, we consider a more detailed analysis of time
series data in Section 3.2.

3.2. Typical day analysis

Figure 13 shows daily temperature and thermal power
profiles grouped by similar control patterns based on
aggressiveness of switching: medium (left figures): MPC1
and MPC7 with the baseline, smooth (middle figures):
MPC2, MPC4, MPC6 and MPC9, aggressive (right figures):
MPC3, MPC5,MPC8 and MPC10). The aggressive group’s
pattern could be explained by the convergence issues as
indicated in the last panel of Figure 12 except for MPC3.
Although there are cost savings and comfort improve-
ments for those MPCs (see Figure 11), they may not be
applicable inpracticedue to short cyclingwhich increases
the wear of components. It is also interesting to see the

Figure 13. Results for a typical day 15th of January, in the top row charts are the temperatures in the living room for the different
formulations,in the bottom row charts are the total thermal power supplied by the heat pump to the floor heating system.
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Figure 14. Control arc length KPI Kconlen specific for the month of January. It allows for estimating the heat pump switching frequency
for the different formulations. The KPI description is presented in Table 6. In this case the total power supplied by the heat pump was
used to calculate Kconlen.

influence of relaxation schemes for integer constraints:
The only difference of MPC3 (NLP) compared with MPC2
(LNP) andMPC4 (NLP) that are in the smooth group (mid-
dle figures) is in rounding the MPC decision to enforce
it to either 0 or 1. This rounding clearly introduces pre-
diction errors and hence pushes MPC3 to solve an unex-
pected problem at the next time step. The aggressive
result of MPC3 indicates that nonlinear MPC could be
sensitive to prediction errors at least for this case study.
Lastly, the frequent on-off of the system causes a higher
discrepancy between the prediction of the low order
model versus the emulator model. The main reason is
that the Buildings envelope model is made up of hun-
dreds of states while the reduced order model uses only
a handful. The consequence is that the high frequency
components for the aggressive case impact the temper-
ature nodes in different ways between the emulator and
reduced order models, increasing the error of the predic-
tion. From the comprehensive analysis using KPIs of dis-
comfort Kdis, cost Kcost and on-off switching Kconlen, MPC2
(NLP), MPC4 (NLP), MPC6 (MINLP) andMPC9 (MINLP) that
are in the smoothgroupare superior thanotherMPCs and
the baseline, and MPC9 performs the best. However, as
pointed out in Section 3.1, MINLP MPC formulations are
sensitive to formulations, initialization approaches, solver
selections and solver parameters, and the incremental
savings of MPC9 are insignificant. Overall, we conclude
that increasing the complexity ofMINLP-MPCapproaches
does not bring substantial benefits at least for this case
study but only adds computational burden, makes the
MPC less robust, and requiresmoremanual tuningefforts.
The open-source and commercially available, general
purpose MINLP solvers are not yet sufficiently reliable for
real time MPC applications for the HVAC system.

The newly introduced KPI Kconlen described in Table 6
can compactly indicate the level of short cycling. Indeed,
from Figure 14, which compares Kconlen, the same con-
clusion from the analysis of Figure 13 can be drawn: the
smooth group (middle figures: MPC2, MPC4, MPC6 and
MPC9) has half the control arc length of the aggressive
group (right figures: MPC3, MPC5, MPC8 and MPC10).
However, the difference between baseline and MPC1
which use an on-off approach and MPC2,MPC4,MPC6
and MPC9 which modulate the load more is not high-
lighted. The reason is that the control variable considered
is the total heat pump power Q̇, which partially masks the
behaviour of separate control variables, water supply set-
point Tin,set and valves on-off ui. The authors are aware of
this simplification andwill explore amore comprehensive
approach in future work.

4. Conclusions

This manuscript compared ten combinations of MPC
formulations and solvers ranging between a QP for-
mulation (MPC1), NLP formulations (MPC2–MPC4), and
MINLPs (MPC5–MPC10) with a high focus on the assess-
ment of MINLP MPCs for a residential radiant floor heat-
ing system. The performances were evaluated with a
detailed emulator model where all MPCs exhibit unmod-
eled dynamics. The conclusions are summarized as
below.

• MPC1 and MPC2 are both linear approximations, for
the constraints, of the original MINLP problem. How-
ever, there is a large performance gap between the
two. MPC1 is the most intuitive way to linearize the
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heat flow rate by combining valve and temperature
into thermal power Q̇. However, in this way, the MPC
is not able to accurately estimate the heat pump
COP as a function of supply temperature, leading to
an on-off operation of the system. MPC2, instead,
used a less intuitive approach, keeping the valves
always open and modulating only the supply tem-
perature in order to maximize COP. Here, the more
detailed COP formulation led to an overall better
solution.

• MINLP MPC performance is sensitive to formulations,
MINLP solvers, solver options and tolerances, and the
corresponding tuning process is not trivial. However, a
MINLP formulation is natural andmore straightforward
to implement, since the optimization variables could
be consistent with the physical controllable variables
and modelling approaches for simulations (e.g. the
detailed COP model or use of physical valve positions
as optimization variables).

• To make MINLP MPC properly work, it often required
solving another, approximated MPC problem. In our
case, an NLP MPC was solved for initializing an MINLP
MPC.

• For this case study, no substantial benefits of any
MINLP MPC formulation were found over an NLP
MPC. Meanwhile, MINLP formulations dramatically
increased computational time and were less stable,
with time outs or errors occurring for over 30% of
MPC control steps. In terms of generalization of the
results, the authors think that for residential newly
built buildings, the insulation between apartments is
high enough, so that they can be considered almost
adiabatic. Therefore, controlling the whole building
would be almost equivalent to having a specific MPC
for each apartment, making the problem very simi-
lar to the one dealt with in the manuscript. However,
in the case of older buildings where the heat trans-
fer between apartments is important, the coupling
between the different MPCs must be done more care-
fully if using a distributed approach. Instead, a cen-
tralized approach would lead to a similar conclusion
sincemore complex problem formulations are needed
and MINLP solvers suffer exponentially more, in terms
of computational time and robustness, the larger the
optimal control problem becomes.

• This paper introduced and compared the state-of-
the-art, open source MINLP solvers (SCIP, Bonmin)
and commercial solver (Baron). They could be viable
options for building HVAC optimal control problems
with appropriate tuning, but they were not the best
solution for this case study.

• From the overall analysis, it is shown that the initial
effort of findinga suitable linear constraint formulation

or reduce the unwanted control space (jB), (in mod-
elling the radiant floor heat transfer) leads to identical
energy and discomfort performance compared with
a very well tuned MINLP MPC, while being faster and
more robust.In fact, a lot of effort went into the opti-
mal control community, other than the building con-
trol field, to try and locally approximate the MINLP
as MILP or MICP with various approximation meth-
ods. Future work will investigate the performance of
different approximation methods applied to building
HVAC control problems. Therefore, the authors con-
clude that using a linear formulation for the constraints
with a nonlinear objective function and proper initial-
izationmethod, such as slightly randomized free float-
ing solutions, gives a good balance between the accu-
racy of the prediction, computational requirements,
and robustness. Furthermore, the outcome of this
manuscript shows that the introduction of additional
sensors, control inputs and network infrastructure to
allow for a more complex predictive control system
may not necessarily bring significant improvements
with respect to a simpler, more robust formulation
approach. Therefore, it is important for implementa-
tions to consider the reliability of the whole infrastruc-
ture.

Nomenclature

Symbol

δ Auxiliary temperature variable [K]
Ḣ Enthalpy flow rate [kW]
Q̇ Heat flow rate [kW]
� Specific heat rate [kW/m2]
A Flow or surface area [m2]
C Heat Capacity [kJ/K]
pe Electricity price [e]
R Thermal Resistance [kW/K]
T Temperature [K]
ui Control variable [−]

Acronyms

API Application Programming Interface
BOPTEST BuildingOptimizationPerformanceTest

framework
COP Coefficient Of Performance
HVAC Heating, Ventilation and Air

Conditioning
I or IP Integer or Integer Programming
KPI Key Performance Indicator
L or LP Linear or Linear Programming
MEF Major Economic Forum
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MIC or MICP Mixed Integer Convex or Mixed Integer
Convex Programming

MIL or MILP Mixed Integer Linear or Mixed Integer
Linear Programming

MINL or MINLP Mixed Integer Nonlinear orMixed Inger
NonLinear Programming

MPC Model Predictive Control
NL or NLP Nonlinear or NonLinear Programming
NRMSE Normalized Root Mean Square Error
Q or QP Quadratic or Quadratic Programming
SQP Sequential Quadratic Programming

Notes

1. Twooptimizationproblemsare called equivalent if one solu-
tion of a problem is or can be readily found from the other
solution.

2. The performance of MPC1 (QP) should not be under-
evaluated compared to the baseline control because of the
significant comfort improvement
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