
 

DIPARTIMENTO DI MECCANICA ◼ POLITECNICO DI MILANO 
via G. La Masa, 1 ◼ 20156 Milano ◼ EMAIL (PEC): pecmecc@cert.polimi.it  
http://www.mecc.polimi.it 
Rev. 0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Function-based selective and adaptive cyber-physical 
assembly system for increased quality in 
optoelectronics industry  
 
Demir, O. E.; Colledani, M.; Paoletti, R.; Pippione, G.  
 
This is a post-peer-review, pre-copyedit version of an article published in COMPUTERS IN 
INDUSTRY. The final authenticated version is available online at: 
http://dx.doi.org/10.1016/j.compind.2023.103915 
 
This content is provided under CC BY-NC-ND 4.0 license 
 

  
 
 

mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
http://dx.doi.org/10.1016/j.compind.2023.103915
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


1 

 

Function-based Selective and Adaptive Cyber-Physical Assembly 

System for Increased Quality in Optoelectronics Industry 

Ozan Emre Demir a,*, Marcello Colledani a, Roberto Paoletti b, Giulia Pippione b 

a Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 1, 20156, Milan, Italy 
b Prima Electro S.p.A, Via Schiaparelli 12, 10148, Torino, Italy 

* Corresponding author, E-Mail: ozanemre.demir@polimi.it 

Abstract 

Recent advances in smart manufacturing technologies combined with the growing emphasis on zero-defect 

manufacturing paradigm set a premium on defect mitigation strategies in low-volume production systems. Assemblies 

for high-tech, high-variety products are becoming more complex, necessitating the need for in-line inspection, 

prediction, and prevention mechanisms; since the state-of-art end-of-line quality gates are error-prone due to 

accumulation of variability and errors from heterogenous sources, originating in upstream process stages. This paper 

proposes a dynamic function-oriented selective and adaptive assembly based on Cyber-Physical System (CPS) 

capabilities in order to meet changing product quality standards while enhancing the flexibility of the underlying 

strategy. A real-case study in optoelectronics industry is used to test and validate the method, highlighting the major 

benefits of the suggested methodology in terms of final product quality. 

Keywords: Assembly, Optimization, Cyber-Physical System, Zero-Defect Manufacturing 

1. Introduction 

The rising use of customer-tailored, cutting-edge assemblies in high-added value sectors such as automotive, 

electronics and healthcare brings the challenge of continuous on-time delivery with preserved quality and 

sustainability. The delays in supply chain, especially in post-pandemic scenario, postpone the delivery of critical raw-

/semi-finished materials, which undermines the due-date performance, reputation of the organization, and ultimately 

its ability to compete on the global market. Moreover, the eco-friendly approach through more efficient use of 

resources, while reducing the production costs generates a constant pressure on reduction of defects and non-

conforming outputs. Although the traditional quality control techniques such as Lean Manufacturing, Six- Sigma and 

Total Quality Management (TQM) are proven to be useful so far, therefore widely adopted, in mass production 

environments to ensure the end-of-line product characteristics meet the specifications, they fall short to proactively 

compensate the production losses imposed by today’s ever-fluctuating demand and massive customization 

requirements in small-lot down to individualized, one-of-a-kind production contexts, since the traditional methods 

rely solely on the historical data to identify certain patterns and trends meanwhile neglecting the present dynamics 

(Psarommatis, Sousa, Mendonça, & Kiritsis, 2022). Hence, manufacturing industry strives to utilize innovative, 

integrated and digital technologies provided by the fourth industrial revolution, Industry 4.0, for sustainable, agile, 

resilient systems that are capable of exploiting sophisticated Zero-Defect Manufacturing (ZDM) techniques that 

comprehensively take into account quality, production logistics, and maintenance aspects (Tolio & Colledani, 2014). 

Zero-Defect Manufacturing (ZDM) is an emerging concept to exceed beyond the traditional quality control 

techniques. The philosophy behind ZDM is to eliminate defects by not only through detection and correction (e.g. 

repair, rework), but also through prediction and prevention mechanisms to achieve “first-time-right” (Powell, 

Magnanini, Colledani, & Myklebust, 2022) (Psarommatis F. , May, Dreyfus, & Kiritsis, 2020) (Psarommatis, 

Prouvost, May, & Kiritsis, 2020) (Powell, Eleftheriadis, & Myklebust, 2021). Therefore, the in-line gathered data 

from manufacturing system, equipped with sensor and monitoring networks, needs to be elaborated in real-time to 

evaluate current system state and predict a priori the possible evolution scenarios to enable promptly the preventive 

measures. For instance, since the processes without any intervention have a natural tendency to exceed their control 

limits due to various reasons, e.g. process instability, each processing stage introduces a deviation from nominal 
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product feature. Thanks to the recent advancements regarding 100% in-line inspection technologies (Azamfirei, 

Psarommatis, & Lagrosen, 2023), early detection of these deviations allows to prevent the superimposition of 

unidentified or understudied effects which eventually result in high scrap rates. Furthermore, early detection facilitates 

the activation of corrective actions before the defective parts undergo irreversible transformations. However, 

according to the state-of-art, the inspection and testing stages to assess the product quality and functionality usually 

take place at the end-of-line, where different sources of variability and errors originated in upstream process stages 

are aggregated. Following the completion of all the processes on the product, it becomes significantly more 

challenging and expensive to repair and reuse the components. Hence, scrapping or rework remains as the only viable 

alternatives despite the low-added value. This phenomenon is more evident in assembled complex parts, as in the case 

of optoelectronics which is characterized by high-tech, high-complexity and high-customization products, where the 

disassembly requires non-negligible additional time. As a consequence, annihilating economic losses may be 

encountered due to scraps or lost time for defect correction. 

The Key Quality Characteristics (KQCs) of a complex assembly are subjected to the interactions between the quality 

characteristics of composing sub-components. Therefore, the variability at the component level is propagated to the 

assembled product level in case of a functional deviation is observed from in-isolation to joint working conditions 

(Colledani & Demir, 2022). A commonly confronted situation in manufacturing industry is that the conforming 

components comply with tight tolerances and accepted in quality control gates, however they are subjected to critical 

deviations (e.g. consistent measurements near the specification/control limits, SL/CL); indicating potential 

downstream quality issues, in particular during the assembly. Selective assembly is suggested as systematic means of 

producing high precision assemblies from comparably lower precision pieces to cope with this issue. It is based on in-

line inspection, component sorting into classes according to their quality, and ultimately finding the optimal matching 

units to be assembled. The traditional selective assembly applications consist of products with simple variability 

propagation patterns, for instance, mechanical components with static and linear matching functions (e.g. the gap 

between piston and cylinder or pin and bush). This prohibits the use of selective assembly for low-volume, 

customisation intense applications because it relies on large measurement data sets for fitting component KQCs 

statistical distributions. Besides, due to its strict and static matching and assembly procedures which increase the 

logistical complexity at the system-level and the creation of deadlock states, selective assembly has limited use in the 

industry. Figure 1 demonstrates the selective assembly strategy for two component types (x,y).  

 

Figure 1. Selective Assembly (Colledani, Ebrahimi, & Tolio, 2014) 

Nowadays, the industrial barriers for wider implementation of selective assembly is addressed by following rather a 

holistic approach targeting simultaneous realization of four core ZDM strategies: detection, correction, prediction and 

prevention. The in-line gathered time-series data about product, process or system is fused with the information about 

external factors (technological advancements, volume and customization demands from market, material availability 
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in supply chain etc.) to develop and fine-tune the semantic algorithms at different hierarchical levels to 

comprehensively optimize manufacturing system performance, particularly for high-value parts, with lower 

complexity and higher efficiency. In that sense, collected information is exchanged horizontally within network of 

connected machines via Internet of Things (IoT) and vertically between multiple system layers through Manufacturing 

Execution System (MES). Based on the output of integrated digital solutions, preventive or corrective control actions 

are actuated system-wide in case of defect detection to achieve complete ZDM. In this context, Cyber-Physical 

Systems (CPS), the outcome of substantial developments in emerging information and communication technologies 

(ICT), are means to connect the cyber computational space and physical processes surrounded with sensors and 

monitors to control production systems (Monostori & Kádár, 2016). 

 
Figure 2. Cyber-Physical Production System (CPPS) 

CPSs swiftly become quite useful in smart manufacturing due to their ability to integrate data analytics tools to 

elaborate massive amount of real-time gathered data, physics-based or data-driven models (e.g. digital twins, meta-

models) to simulate stochastic behaviours and control loops to maintain process variables at a desired stable value. In 

ZDM framework, the increased use of sensors and in-line measurement instruments opens up the possibility for 

synchronous analysis of simulation models created during Research & Development (R&D) or design phase also 

during manufacturing, using empirical data obtained through systematic in-line observations as an input, for 

adjustment of machine settings for the next operation (Söderberg, Wärmefjord, Carlson, & Lindkvist, 2017). Thus, 

before the actual physical changeover, simulation results in the virtual domain can predict the outcome and support 

the decision-making of operator, or directly adapts process parameters. In addition to that, the lessons-learned at the 

end, which is often overlooked in traditional control methods, deepens the product and process know-how that mainly 

depends on operator expertise (e.g. qualified or non-qualified), and provides valuable feedback to establish causal 

relationships. 
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With the implementation of CPSs, Selective and Adaptive Production Systems (SAPS) that dynamically selects the 

individual elements in the queue to be assembled, taking into account their in-line measurements, are proposed. 

Although the SAPS have been beneficial so far in complex production environments, their application is bounded by 

the computational burden of the CPS. As a result, in various scenarios with large inventory and multi-dimensional 

component quality propagation patterns, rather than planar, the optimisation of selection procedure may lead to 

devastating computational times, interfering with assembly cycle-time, which turns the CPS into system bottleneck 

that must to be avoided. This article discusses a novel methodology to dynamically implement function-oriented 

selective assembly, rather than individual assembly that pairwise matches the components based on their feature 

characteristics; or geometry-based coupling in traditional selective assembly applications, based on CPS capabilities 

to satisfy everchanging customisation requirements for products with numerous variants. The proposed architecture 

primarily aims for defect prevention through the use of real-time data obtained from 100% in-line inspection, which 

separates ZDM from traditional quality improvement strategies. The benefits of component clustering are combined 

with optimisation algorithm, acting on selection to dynamically update the selection vector for evolving component 

matching function, to correctly balance the trade-off between quality and logistics performance of the assembly 

systems. Presented approach is tested and validated in a real case in optoelectronics industry in Prima Electro S.p.A. 

The results show that the final product quality with proposed system is remarkably improved compared to currently 

adopted First-in-First-Out (FIFO) strategy and discussed framework plays a key role to reach smart manufacturing 

and ZDM goals. 

This paper is structured as follows: Section 2 presents the state-of-the-art, Section 3 describes the selective assembly 

system, Section 4 elaborates the proposed methodology, Section 5 demonstrates the real-case study from 

optoelectronics industry, Section 6 presents the achieved results, Section 7 is dedicated to discussions and Section 8 

includes conclusions and future work directions. 

2. Related Works and Contributions 

Selective assembly has been researched in plenty of fields in the state-of-the-art. (Colledani, Ebrahimi, & Tolio, 2014) 

evaluated the system-level quality and production logistic performance of selective assembly in terms of two-level 

decomposition methodology, and shows that selective assembly increases the assembly yield, but it also contributes 

to the managerial complexity of the system by transforming the product quality problem into a system logistics 

problem due to the deadlock states caused by finite buffer capacity. (Tolio & Colledani, 2014) highlighted this subject 

through unveiling the interactions between production logistics, quality and maintenance. In the keynote, a new 

paradigm is proposed to replace traditional Six-Sigma techniques which show strong limitations in batch production, 

customised or one-of-a-kind products; moreover, the need for in-line, real-time monitoring at each process stage for 

quality control and process improvement is investigated. In (Kaufmann, Effenberger, & Huber, 2022), the authors 

make use of in-line integrated fringe projection system to build 3D point-cloud to be compared with nominal product 

CAD model and apply selective assembly to match injection-molded housings and covers for reducing scraps, 

focusing on detection and prevention aspects of ZDM. The virtual assembly to simulate physical assembly in this 

work belongs to broader category called Virtual Metrology (VM), a concept that reduces the physical measurements, 

therefore the inspection time and cost, by estimating the KQCs of a product with data-driven approaches (Dreyfus, 

Psarommatis, May, & Kiritsis, 2022). Taking the advantage of 100% in-line measurements, many attempts to apply 

selective assembly strategy to different sectors with strategic complex assemblies, such as e-mobility, have been made 

(Löchte, Kayasa, Herrmann, & Raatz, 2012) (Yang, Wang, Hu, & Lin, 2013) (Colledani, Coupek, Verl, Aichele, & 

Yemane, 2018). To that end, CPS-based SAPS have been proposed in (Kayasa & Herrmann, 2012) and (Lanza, 

Haefner, & Kraemer, 2015) used a holistic CPS-based matching to optimise SAPS performance. The experiments 

performed in real case study have considerably reduced the production costs and scrap rates. In this area, a viable and 

practical CPS architecture to increase product quality and system reliability is discussed in (Lee, Bagheri, & Kao, 

2015) and (Lee, Jin, & Bagheri, 2017). However, the human-in-loop concept is barely emphasised in this architecture. 

More human-centric CPSs (HCPS) are presented in (Wang, Zheng, Yin, Shih, & Wang, 2022) and (Ansari, Khobreh, 

Seidenberg, & Sihn, 2018). 
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The ZDM solutions usually consist of a sophisticated production systems. A particular reference architecture to 

support digital manufacturing systems towards the multi-level implementation of ZDM strategies and to manage with 

distributed, multi-resolution and multi-scale data gathered from different sources is discussed in (Magnanini, 

Colledani, & D., 2020). But, such connected systems are surrounded by new embedded in-line sensor technologies 

that enable the continuous capturing of big bulks of data or so-ca  ed “Big  ata” from the  ine,  hich  rings the 

challenge of fusing heterogeneous data from multiple sources and the analysis of the data obtained (Lee, Davari, 

Singh, & Vibhor, 2018). As a matter of fact, the analysis results are used to select key performance indicators (KPIs) 

that show the necessary indicators to further investigate in data-driven decision-making tools for quality control 

(Eleftheriadis & Myklebust, 2019). In that sense, CPSs become the cornerstone to implement ZDM practices to the 

shop-floor in order to control production (e.g. maintenance scheduling, machine degradation, machine-level parameter 

control) (Martinez & Al-Hussein, 2022); on the other side, they provide feedback about the quality. In the event of 

defect detection, the feedback quality information activates defect management strategies in ZDM. In this regard, 

(Psarommatis & Kiritsis, 2022) presents a decision-support system to improve production performance through better 

defect mitigation and correction actions and (Schröder, Falk, & Schmitt, 2016) implements a failure classification and 

associated analyses for production ramp-up. Regarding the prediction kernel of ZDM, (Lee, Jin, & Bagheri, 2017) 

studied a maintenance system in ball-screw prognostics to reduce machine downtime through predictive analytics. 

Additional guidelines to ease the integration towards ZDM principles are given in (Psarommatis & May, 2023) and 

(Eleftheriadis & Myklebust, 2016), more in-detail on CPS in (Eger, et al., 2018) and (Chiariotti, 2018).  

Even though these works are pertinent to manifest SAPS in ZDM context, a few number of researches take into 

account both the product quality and functionality. In (Wagner, Haefner, & Lanza, 2018), a simultaneous optimisation 

method of a function-oriented adaptive quality control strategy based on a product model is investigated. Since the 

optimisation of multi-stage control strategies require a significant effort, (Wagner R. , Haefner, Biehler, & Lanza, 

2020) researched state-space model and a meta-model and (Aderiani, A. Wärmefjord, & Söderberg, 2020) proposes a 

novel one-to-one phenotype genotype mapping method to ease the computational load. Lastly, the function-oriented 

selective assembly in cross-industrial collaborative networks is investigated in (Silbernagel, Wagner, Albers, Trapp, 

& Lanza, 2021) and (Silbernagel, Wagner, Peukert, & Lanza, 2022). 

3. System Description 

The schema of the system in which functionality-oriented selective assembly is developed is shown in Figure 3. The 

concept can be extended for multiple component types and longer process chains in grounded on this. 

 

Figure 3. Representation of Selective Assembly System  

The system is explained in the following. The sub-component of type x is processed by machine Mx, with processing 

rate µx. The sorter Sx implements a Classification and Sorting policy by clustering the components into buffers in 

accordance with in-line measurements of KQCs, which are in-line measured by inspection station Ix. A total number 

    

    

    

    

           

        

               

        
               

          



6 

 

of C buffers store the x-type sub-components, namely Bx,c , with c =1 … 𝐶. Components are then extracted by a selector 

Sa in accordance with an optimized Assembly policy and assembled by machine Ma with processing rate µa to obtain 

the final product. The assembly output is examined at machine Ia: the defective assemblies are scrapped, whereas the 

conforming assemblies are delivered as output. 

The two key policies Classification and Sorting and Assembly is further elaborated in the following. 

Classification and Sorting policy. Each buffer Bx,c contains components with KQCs included between a lower limit 

lx,c and an upper limit Lx,c. The quality classes are contiguous, i.e. they respect the following properties: Lx,c=lx,c+1, 

∀ =1 ..  −1; Lx,C=USLx; and lx,1=LSLx. USLx and LSLx represent the Lower and Upper Specification Limits of 

component x. Ix identifies a component as defective and discards it if its KQCs do not adhere to USL and LSL. 

Otherwise, it is sorted in class c and the level Nx,c of buffer Bx,c is updated, i.e Nx,c(𝜏)=Nx,c(𝜏-1)+1. At the same time, 

the mean KQC value of the parts stored in buffer Bx,c, i.e. 𝐾𝑄𝐶 ̅̅ ̅̅ ̅̅ 𝑥,𝑐(𝜏) is updated. Then, the subsequent CPS intelligent 

module receives these variables as input. 

Assembly policy. The selector Sa extracts multiple parts at once from buffers and sends to be assembled in assembly 

machine Ma according to the optimal selection vector, αopt, containing the number of components to select from each 

classes. Such vector is not fixed but repetitively defined as the final output of the CPS and the underlying optimization 

model. Differently from conventional selective assembly systems, the assembly policy considers only the ready-to-

use components in the classes. Thus, deadlock states are avoided. Once parts are assembled, the buffer level Nx,c(𝜏+1) 

and the mean value of the KQC, 𝐾𝑄𝐶 ̅̅ ̅̅ ̅̅ 𝑥,𝑐(𝜏+1),  in the related classes are updated. 

4. Methodology 

The proposed CPS-based methodology is given in-detail as follows. 

4.1. CPS Architecture 

The CPS workflow architecture illustrated in Figure 4 consists of a process chain, Manufacturing Execution System 

(MES) for operations management and control, and two intelligent modules: Classification and Assembling, for 

binning and optimal selection of components. The developed CPS incorporates the ‘human-in-the-loop’ paradigm to 

guarantee traceability, extensive operator monitoring and learning, all of which are crucial for industrial enterprises. 

Through a dedicated User Interface (UI), i.e. Human-Machine Interface (HMI), the operator involves in and controls 

every stage of the process. The operator adjusts and approves the new settings in case production parameters or end-

user requirements change. This enables to achieve the knowledge transfer systematically from digital technology to 

the users, providing a greater integration among the complicated manufacturing systems and humans. 
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Figure 4. CPS Architecture 

The in-line inspection allows the component KQC measurement acquisition directly from the manufacturing line. The 

first intelligent CPS module, Classification Module, actuates the sorter Sx to categorize the components into the 

corresponding quality classes, applying Classification and Sorting policy. The second module, Assembling Module, 

receives the classification results and refines them using data analytics tools and physics-based models to drive an 

optimisation algorithm, able to find the optimal blend of components to be assembled per product functionality 

requirements. The outcome of the Assembling Module is shared with MES and Selector to perform the assembling 

process. The 100% of assembled products pass through a final inspection process at end-of-line inspection machine 

Ia before leaving the system to be delivered to customers, in order to guarantee that no defective products are included 

in the shipment. The back-end of Assembling Module is explain in-detail as follows. 

4.1.1. Assembling Module 

The key building blocks of Assembling Module are explained in the following. 

 

Figure 5. Assembling Module 

Product meta-model, which incorporates data analytics and a physics-based model, links the component quality 

characteristics to the quality features of the assembled product. It elaborates the in-line gathered real-time data at stage 

Mx to anticipate a priori the output quality features and functional performance of the assembled component that will 

be processed at step Ma. 
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Based on iterative calls to the product meta-model kernel, Optimization Model dynamically searches the solution 

domain defined by the available components in buffers Nx,c and their KQC mean value 𝐾𝑄𝐶 ̅̅ ̅̅ ̅̅ x,c to determine αopt, which 

is then passed to the Ma. The objective is to minimise the gap between the target assembled component KQC value 

and its prediction provided by the product meta-model. The traceability of individual component measurements is 

compromised in favour of a dynamically updated, class-based statistics to decrease the required computational effort. 

Otherwise, depending on the problem's NP-hardness level the solver may take astronomical minutes to reach the global 

minimum. 

Through the use of an HMI, Control Module shows the operator the optimal parameters to be used for the controlled 

process. Once the adapted parameters have been evaluated and verified by the operator, Ma receives the αopt. Therefore, 

the CPS acts as an advanced feed-forward controller, reflecting the prevention principle of ZDM, to stop errors from 

propagating all the way to the end of the production line, protecting vital raw materials and lowering production costs 

and lead times in comparison to the scrapping scenario. Figure 6 depicts the simplified block diagram of a feed-

forward controller CPS from a control system point of view. According to the measured anomaly in product or system 

state of upstream production processes, the parameters of the downstream production processes are controlled by a 

model-based approach in order to smooth variability and avoid an input defect to be transformed into an output non-

conforming product. The procedure is applied through two main transfer functions, Cp(z) and Cf(z), acting both on the 

flow control level and on the process parameters. 

 

Figure 6. Feed-Forward Cyber-Physical System (CPS) Control 

where yin and ytarget are the input and target signals respectively; P(z) is the predictor; Cf(z) is the flow and Cp(z) is the 

parameters optimisation control modules; G(z) is the controlled system; and yout is the output signal. 

5. Real-Case Study in Optoelectronics Industry 

5.1. Industrial Context 

Prima Electro S.p.A offers its own production line of high-power diode laser manufacturing and Fiber Laser Module 

(FLM) assembly, implementing strategies to increase the production efficiency and to reduce production costs through 

recycling and reconfiguration of products to maintain high quality standards of the outgoing product. Two multi-

emitters are fabricated in Prima Electro premises: the BL-250-E at 976 nm. wavelength (250W) and the GL-100-E at 

793 nm. wavelength (100W). In this study, multi-emitter laser sources at 976 nm. wavelength  are used to be assembled 

into Multi-kW Yb-doped FLMs, typically used in material processing, to supply hundreds of watts of optical power 

at defined wavelengths. The assembled module must satisfy the challenging characteristics of emitted power, wall 

plug efficiency, laser beam quality and diode life under critical and variable operating conditions, with a complex 

dependency between the diodes and the resulting module characteristics. 
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a. BL-250-E b. GL-100-E 

Figure 7. Multi-emitter Laser Sources 

The laboratory in Turin, Italy consists of a front-end and a back-end of the diode laser products manufacturing with a 

flexible design, enabling a set of product families based on custom requirements and fluctuating market demand. The 

front-end is the manufacturing of single emitter laser source; whereas in the back-end, the Chip-on-Carrier (CoC) 

diode sources are soldered on a platform and electrically connected with Al wire bonding to obtain multi-emitter laser 

diodes. Figure 8 shows the primary three sections of  rima   ectro’s  rod ction  ine: 

• Front-end, production of single-emitter laser diodes (red). 

• Back-end, production of multi-emitter lasers with single emitter diodes as sources (blue). 

• Fiber Laser Assembly, production of FLM (green). 

 

Figure 8. Production Line Schema in Prima Electro 

The aim of Prima Electro is to overcome the challenges of improving the process monitoring and information tracking, 

handling the complex designs that include part functionalities, and controlling the performances through simulation 

tools for a new, flexible, and innovative process chain. During the manufacturing phase, by exploiting in–line 

inspection, data management platform and CPS architecture, the deviations and trends need to be analysed to react on 

the processes through innovative multi-stage system control solutions, moving towards ZDM implementations. 
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The proposed methodology has been implemented to improve the quality and system-level performance of the present 

assembly system, reducing the scrap rate of assembled modules, as is leading to material loss and cost increment. 

5.2. Cyber-Physical System (CPS) Integration 

The proposed CPS framework is customised for the implementation in Prima Electro, as explained in Figure 9. 

 

Figure 9. Cyber-Physical System Implementation Steps for Prima Electro S.p.A 

KQCs of single multi-emitters regarding their optical characteristics are gathered from the production line in terms of 

power, beam quality and wavelength. These data are elaborated by the Classification Module to bin the components 

into quality classes. Then, the Assembling Module extracts the information from company MES about the customer-

driven FLM specification and the component class-related data to decide the multi-emitter diodes to be selected for 

better FLM configuration featuring higher performance stability in terms of power uniformity, beam divergency and 

asymmetry. Thus, the optimised FLM is levelled by a CPS-based approach. Two key quality characteristics (KQC) of 

the diodes that affects the performance of FLM are the power (KQC1) and the wavelength (KQC2). The power of 

single multi-emitters is directly correlated with the capability to generate the output power, while the wavelength 

affects the conversion efficiency (η) of FLM. The target power (ℙ𝑡𝑎𝑟𝑔𝑒𝑡) of the FLM is a user input defined by 

specifications. For instance, ℙ𝑡𝑎𝑟𝑔𝑒𝑡 is selected as 2.1kW in this study, which needs to be surpassed by the output 

power (ℙ𝑜𝑢𝑡). Since the working conditions influence the functionality of sub-components, it is at utmost importance 

to predict the behaviour of assembly output in advance to guarantee the final quality. Using physics-based models and 

the in-line measurements of inspected diodes, ℙ𝑜𝑢𝑡  can be predicted prior to assembly even though the exact value 

can only be determined once the FLM is fully assembled. 

5.2.1. Intelligent Modules 

To implement the proposed methodology, the two intelligent modules (Classification and Assembling) have been 

designed in MatLab environment. 

Classification Module, sorts the processed components into quality classes. The user defines the design parameters 

LSL and USL; and based on the decided number of classes, the class interval and bounds are calculated. The in-line 

measured power and wavelength of single diodes are transferred to the Classification Module from the production line 

and the parts are binned into the buffers. At the end, the classification results are shared with the Sorter and Assembling 

Module. 
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* Data are omitted due to confidentiality 

Figure 10. Classification Module Interface 

Assembling Module, finds the optimal selection vector (αopt), containing the information about selection of 

components from classes and their positioning in FLM, to be transferred to assembly stage. The transfer function 

connecting the diode KQCs and the FLM output KQCs is developed in this module. 
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* Data are omitted due to confidentiality 

Figure 11. Assembling Module Interface 

The input power (ℙ𝑖𝑛) of FLM is equal to the sum of each composing diode power: 

 ℙ𝑖𝑛 𝛼 = 𝛼𝑜𝑝𝑡 × ℙ̅𝑢 𝜏  (I) 

𝜆𝑎𝑣𝑒 indicates the wavelength of FLM. It is equal to the average wavelength of optimally selected components. 

 
𝜆𝑎𝑣𝑒 𝛼 =

𝛼𝑜𝑝𝑡 × 𝜆 𝑢 𝜏 

∑𝛼𝑜𝑝𝑡
 (II) 

The wavelength of FLM influences the conversion efficiency (𝜂) of the optical fiber laser which connects the output 

power to the input power. The data analytics results that correlates the efficiency and FLM wavelength is shown in 

Figure 12. 
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Figure 12. Efficiency (ℙ𝑜𝑢𝑡/ℙ𝑖𝑛) vs. Wavelength of FLM 

Furthermore, the temperature gradient caused by the heat produced by functioning diodes in turn affects the 

wavelength, as demonstrated in (III). Indeed, since ℙ𝑜𝑢𝑡 is coupled with ℙ𝑖𝑛 through the efficiency, wavelength 

extension severely impacts the resulting FLM power. This equation holds for emitted  ave engths    to   μm,  here 

the wavelength dependent coefficient can be roughly approximated as a constant (0.3). Out of this range, incorrect 

KQC values can be observed, e.g. the lasers functioning in visible range. 

 𝜕𝜆

𝜕𝑇
= 0.3 

𝑛𝑚

℃
 (III) 

Two separate cooling systems are installed on the coldplate, where optimally selected components are mounted, to 

prevent overheating. Between each consecutive multi-emitter working, 1°C difference (∇T) is measured. 

The FLM is split into multiple zones at the same temperature hinged on 𝑛𝑢𝑚𝐹𝐿𝑀, the number of diodes used within 

the FLM, as shown in Figure 13. Combined with the temperature gradient given in (III) and 1°C of ∇T, The hotter 

zones comprise diodes operating with longer wavelengths compared to those observed at the reference temperature 

(Tref). 

 

Figure 13. Fiber Laser Module (FLM) Zones 

The formula that intercepts the number of zones (Z) with 𝑛𝑢𝑚𝐹𝐿𝑀 to systematically compute the extended wavelength 

can be derived as given in (IV) and (V). 
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𝑍 =  {

𝑛𝑢𝑚𝐹𝐿𝑀 + 1

2
 𝑛𝑢𝑚𝐹𝐿𝑀 = 2𝑘 + 1: 𝑘 ∈ ℤ

𝑛𝑢𝑚𝐹𝐿𝑀

2
 𝑛𝑢𝑚𝐹𝐿𝑀 = 2𝑘: 𝑘 ∈ ℤ

} (IV) 

 
𝜆 𝑐𝑐 𝑍𝑧

= 𝜆 𝑐𝑐 𝑍1
+

𝜕𝜆

𝜕𝑇
× ∇𝑇 ×  𝑧 − 1  

𝑧 = 2 … .  𝑍              𝑐 = 1 …  𝐶 

(V) 

Based on this product meta-model, the Assembling Module selects the best combination of diodes currently available 

in the inventory in order to fulfil the desired target power, ℙ𝑡𝑎𝑟𝑔𝑒𝑡. The optimisation algorithm embedded inside the 

Assembling Module solves the following fourth order nonlinear optimisation problem with integer variables and 

nonlinear constraints. 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑂. 𝐹 : 𝑚𝑖𝑛  |ℙ𝑜𝑢𝑡 𝛼 − ℙ𝑡𝑎𝑟𝑔𝑒𝑡|  (VI) 

subject to: 

 0 < 𝛼𝑜𝑝𝑡 < 𝑁𝑢 𝜏  (VII) 

 ℙ𝑜𝑢𝑡 𝛼 ≥  ℙ𝑡𝑎𝑟𝑔𝑒𝑡  (VIII) 

 ∑𝛼𝑜𝑝𝑡 ≤ 𝑛𝑢𝑚𝐹𝐿𝑀 (IX) 

As a result, the optimal selection vector αopt with the size 𝐶 × 𝑍 containing the selection of components from classes 

and their positioning in FLM is obtained. Then, this selection vector is converted to a matrix for an easy interpretation 

to the user.  

𝛼𝑜𝑝𝑡 =

[
 
 
 
𝛼𝑐1 𝑧1
𝛼𝑐2 𝑧1

⋮
𝛼𝑐𝐶 𝑧1

 

⋯
⋯
⋮
⋯

 𝛼𝑐1 𝑧𝑍

 𝛼𝑐2 𝑧𝑍

⋮
 𝛼𝑐𝐶 𝑧𝑍]

 
 
 

𝐶×𝑍

 

6. Results 

Classification algorithm, physics-based meta-model and optimisation tool are embedded in two software modules of 

a unique control unit. 

 

Figure 14. Control Unit Interface 
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Considering the travel restrictions during COVID-19 pandemic, since the actual assembly line of Prima Electro is 

located in Massachusetts, USA and hence the line stoppage must be planned well-timely in advance because of their 

tight production schedule, two virtual experiments have been arranged in this case study before in-situ testing and 

validation of proposed methodology. Based on the user-specified parameters and measured KQCs of the components, 

the method was initially tested in lab-scale. The parameters used for Classification and Assembling Modules are given 

in Table 1. 

Table 1. Intelligent Modules Parameters 

 
Classification 

Module 

Assembling 

Module 

KPI Power ― 

LSL (W) 220 ― 

USL (W) 260 ― 

numFLM ― 13 

ℙtarget (kW) ― 2.1 

Here, given that the optimization aims to minimize the divergence from target power of 2.1kW, KPI for Classification 

Module is selected as power. Since the typical FLM efficiency is approximately ~70-75% (from Figure 12), the power 

of each multi-emitter to be assembled into FLM should be around 230W on average for numFLM = 13 (the 

configuration of product type used in this analysis), neglecting the correlational factors of wavelength and operating 

temperature. On the basis of this, LSL is selected as 220W, relatively closer to 230W than USL, 260W, since it is more 

critical to meet first the 2.1kW, then to exceed it. 

The genetic algorithm (GA) is used to solve the optimisation problem. The specific parameters of GA are shown in 

Table 2. 

Table 2. Genetic Algorithm Parameters 

Migration Fraction 0.3 

Crossover Fraction 0.8 

Mutation Fraction 0.2 

Migration Interval 20 

Population Size 200 

Elite Count  10 

where, 

• Migration fraction specifies the number of moving individuals between subpopulations. 

• Crossover fraction is the population fraction that are generated by crossover of two parenting individuals, 

other than elites, from previous generation. 

• Mutation fraction represents the mutated portion of a population that will be transferred to next generation.  

• Migration interval defines how many generations pass between migration. 

• Population size is the total number of individuals in each generation. Large population size allows the GA 

to search entire solution space, thereby increases the chance to find a global minimum rather than local 

minimum. On the contrary, a large population size significantly intervenes with computational load, causing 

the algorithm to run more slowly. 

• Elite count are the individuals that are guaranteed to in the next generation.  

Firstly, First-In-First-Out (FIFO) strategy, which is currently in-use at Prima Electro, is compared to the Selective 

Assembly with increasing number of classes (C) for 250 diodes in the inventory and their in-line power and 

wavelength measurements. FIFO is a common and rather outmoded heuristic compared to modern manufacturing 

methods, on the other hand due to the complexity of the described problem (high-order, non-linear optimization) and 
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the absence of ZDM-driven smart algorithms capable of processing in-line gathered multi-layer information about 

products, processes and systems in a digital environment to solve it, FIFO is still used in optoelectronics industry. In 

FIFO, the diodes are sequentially assembled into FLM zones, whereas in selective assembly the parts are selected and 

assembled according to resulting CPS outcome. The results are compared in terms of mean deviation between the 

measured and target FLM power as shown in Figure 15. 

 

Figure 15. First-In-First-Out (FIFO) vs. Selective Assembly for increasing Number of Classes (C) 

In comparison to FIFO, se ective assem  y’s advantages are noticeable and become increasingly clear as the number 

of classes increases. The deviation from target power is reduced more than 50% for C=3 and C=4. In fact, increase in 

number of classes reduces the variations of mean KQCs within classes by narrowing down the class interval, which 

in turn enhances the effectiveness of selection procedure. Thus, the CPS-based approach has a particular role in 

product quality. In addition to that, it is observed that the marginal benefit of having higher number of classes declines 

after a certain point. This implies that the logistical complexity brought on by four or more classes does not compensate 

the quality improvement. 

The second experiment involves the dynamic application of the proposed CPS-based approach. Particularly, FIFO and 

selective assembly strategies are analysed in four scenarios. Each of these scenarios is characterised by the production 

batches of increasing number of parts: 13, 26, 64 and 92. In FIFO, as soon as thirteen diodes are available in the buffer, 

an assembly operation is immediately performed. In selective assembly, the Classification Module initially classifies 

the arriving batch of parts into the three classes (as a result of previous analysis); and when all the parts have been 

classified, the Assembling Module is called. The results are given in Figure 16. 
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Figure 16. First-In-First-Out (FIFO) vs. Selective Assembly in Different Scenarios 

Except for the first scenario (s1), where no difference is observed, it is evident that the selective assembly is better 

than FIFO in every other scenario, where the gain varies between 9% and over 45%. This is explained as the 

Assembling Module selects more appropriate diodes from the available set of components present in buffers and 

provides an optimal positioning in FLM configuration. Waiting more parts in the buffer before activating the 

Assembling Module may improve the quality but it requires a larger buffer capacity, therefore generating a trade-off 

that needs a system-level analysis to be addressed. 

Lastly, following the completion of virtual experiments, the final validation has been done on a dataset of 150 multi-

emitters located in Massachusetts facility of Prima Electro. The selected products are shipped from diode fab in Italy 

and assembled in actual assembly line in Massachusetts. The results shown in Figure 17 demonstrate that the final 

power is on target and during the selection, a wider range of original wavelength has been selected. This is very 

promising, for a better use of the parts that are currently in an on-hold stock because considered at limit of the 

specifications, opening a new pathway towards reusability. 

 
* Data are omitted due to confidentiality 

Figure 17. CPS-based Selection Results 
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7. Discussions 

In optoelectronics industry, where the final products are usually constituted by many small functional units to be able 

to handle the manifold individualization, the ultimate quality of an assembly vastly depends on transfer functions in-

between the interacting pieces. The proposed function-oriented selective assembly methodology, (i) based on in-line 

inspected component characteristics, (ii) predictive defect prevention actions through feed-forward control, and (iii) 

physics-based product model for complex interactions between subcomponent and final assembly characteristics, 

dynamically finds the optimal set of components to be assembled in order to guarantee the customer-driven KQCs 

and functionality of the assembled product. The numerical results demonstrated in Section 6 support the effectiveness 

of CPS-based method in terms of higher product quality. The CPS is rigged with HMI to reckon human-in-loop 

paradigm to assist the user based on step-by-step approach. In as-is scenario, human actively participates in photonics 

production, but rarely supported by digital technologies (e.g. decision-support systems, virtual/augmented reality 

tools) offered by Industry 4.0 compared to other industrial sectors like automotive. In proposed CPS architecture, the 

operator is able to access the status of whole process-chain through digital tools and actuate the control actions in 

order to achieve ZDM. Indeed, the designed workflow aligns with the transitioning perspective from autonomous 

production lines where human is seen as a defect generation source towards human-centred manufacturing approaches 

in which human is the most valuable production asset. 

It is interesting to notice that, when tactical decisions need to be taken at process-level, the lack of meta-models, 

neither physics-based nor data-driven, significantly increases the lead time. For instance, in real case study under 

discussion, the human gut feeling/expertise-based selection process takes between 15-20 min. depending on the 

inventory size. Instead, the total computational time requested by both CPS modules, Classification and Assembling, 

is around 3-5 min. (65-80% decrease). This means that the CPS-based approach enhances also the overall system-

level performance. 

The last but not the least, the KPI for two experimental setups are selected as power. This itself is meaningful, bearing 

in mind that the objective function in optimization problem is to minimize the excess power after meeting the ℙ𝑡𝑎𝑟𝑔𝑒𝑡. 

On the other hand, as discussed in Section 5, wavelength is the second, potentially equal-impactful, KQC that could 

be considered in the analysis. While it is not directly affecting the power, it acts on the final output FLM power through 

the efficiency. As a matter of fact, it has been observed from the consecutive runs that the tool tends to position the 

components with lower wavelength values (< 976 nm. which corresponds to peak efficiency point) into hotter zones 

of FLM to extend their wavelength to improve their efficiency. On the contrary, the components with a wavelength 

around 976 nm. or higher are placed in colder zones to avoid efficiency loss (see Figure 12). Inevitably, this 

phenomena perfectly aligns with the logic of operator who used to select and assemble the components from bins 

based on a similar idea before CPS. This time, instead, the knowledge is more structured and scientific, therefore more 

trustworthy, that results in lower decision-making time. To conclude, the selection of KPIs should be based on their 

relevance to the objective of the experiment. By analysing the remaining factors along with the chosen KPIs, it may 

be possible to further improve the efficiency and effectiveness of the conducted experiments. 

8. Conclusions and Future Works 

In this paper, a novel CPS-based selective assembly system for function-oriented production is proposed. The primary 

interest of the paper was to focus on virgin fields in optoelectronics industry with the help of ZDM techniques and 

emerging technologies of Industry 4.0 era such as Cyber-Physical Systems to improve final product quality. The 

proposed methodology can become a pioneer force to raise an awareness about the benefits of ZDM, rather than 

conventional ones, in sustainable, smart and waste-free production for optoelectronics industry and to attract more 

research and industrial communities to invest more time and effort into it. 

Future research will include the extension of the approach for larger multi-stage systems characterized by longer 

process chains and more complex quality correlation paths. The optimal design of the CPS depending on the number 

of classes will be further investigated to systematically implement in industrial context. The CPS-based approach to 

manage in-line defects can be enwidened to cover value-retuning solutions from in-line waste and post-use products; 
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opening up unique opportunities towards circularity in flexible, dynamic and technology-intense industry. But, there 

are still several aspects to be resolved in advance: the lack of standardization, making it particularly demanding to 

reuse and recycle some of the materials, or the high-precision, high-quality demands in optoelectronics, mandating an 

intense effort to remanufacture an end-of-life product into its original specifications. 

It is encountered that, in certain cases, some of the assembled multi-emitters may fail due to a short-circuit in 

connectors, damaging the assembled multi-emitter. These damaged components under this circumstance need to be 

replaced from inventory. As the algorithm, for now, is developed to optimize the solution for complete FLM with 

numFLM number of components, which is 13 in this case, the selection for only failed multi-emitters cannot be 

performed. This reduces the flexibility of the tool which will be addressed in the next released version (v1.2). 

Moreover, the product meta-model will cover also the other product type, GL-100-E, for low-specification 

applications (ℙ𝑡𝑎𝑟𝑔𝑒𝑡 < 1 𝑘𝑊) with higher number of components to be assembled. The performance of proposed 

methodology with other solutions than FIFO to the similar problem will also be compared to assess its validity. 

Finally, this research is aimed to open up a new horizon for Zero-Defect Manufacturing (ZDM) solutions 

implementation in multi-stage optoelectronics production systems, relying on CPS, data-driven/physics-based/hybrid 

modelling and optimisation as Key Technology Enablers (KETs). 
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