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Abstract
Stand-alone deep-space CubeSats are the future of the space sector. For limited 
budget reasons, these spacecraft need to follow operational-compliant (OC) trajec-
tories: transfers with thrusting and coasting periods imposed at pre-defined time 
instants. Traditional trajectory optimisation algorithms exhibit convergence prob-
lems when handling discontinuous constraints. In this work, a homotopic direct col-
location approach is presented. It employs a continuation algorithm that maps the 
classical bang-bang trajectory of a fuel-optimal low-thrust problem into an OC solu-
tion. M-ARGO CubeSat mission is considered as case study for validation, includ-
ing a realistic thruster model with variable specific impulse and maximum thrust. 
The trajectories computed with the developed algorithm are compared with non-
operational-compliant solutions. Our algorithm produces transfers similar to the 
optimal solutions with no operational constraint, both in terms of thrusting profile 
and propellant mass.

Keywords Homotopy · Continuation · Direct transcription and collocation · 
M-ARGO CubeSat

1 Introduction

The deep-space sector is becoming progressively accessible: while traditional mis-
sions were designed with large budgets, in the last years we are witnessing a sig-
nificant reduction of costs. An expression of this trend is the rapid development of 
interplanetary CubeSat technology [32]. Several released-in-situ, deep-space Cube-
Sat missions are expected to be launched in the next years by ESA (e.g., LUMIO 
[7], Milani [12], Juventas [16]). Another class of stand-alone interplanetary Cube-
Sats will travel to their final destination without the need of a carrying mothership. 
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The Miniaturised Asteroid Remote Geophysical Observer (M-ARGO) [31] will be 
the first European CubeSat to perform a similar mission.

The reduced size of miniaturized spacecraft imposes skeletal budgets on their 
systems [24] (e.g. in terms of power, propellant, and data handling). The high spe-
cific impulse makes electric propulsion a good candidate for these probes [27]. Still, 
electric propulsion requires a significant on-ground flight dynamics effort with regu-
lar navigation and guidance operations. To overcome theses issues, spacecraft, and 
especially CubeSats, will be required to follow operational-compliant (OC) trajecto-
ries, consisting of a repetition of a regular pattern of alternating thrusting and coast-
ing arcs (duty cycles). Operations, as communication, ground-based orbit determi-
nation and correction, or scientific experiments, will be performed during coasting 
arcs. They will also ease ground operations, and thus in turn lower the cost of flight 
dynamics team.

Electric propulsion trajectories are determined through the formulation of a low-
thrust optimal trajectory problem (LOTP), a specialisation of the optimal control 
problem (OCP) for time-continuous systems [6, 18]. No analytic solutions exist 
for this optimal problem, but several numerical techniques, traditionally divided in 
direct and indirect methods [4], have been developed to solve the LOTP. Indirect 
methods [20, 28] aim at finding the solution of the necessary optimality conditions 
derived by calculus of variations. Instead direct methods [10, 17] transcribe the opti-
mal control problem into a parameter optimisation problem, and then use nonlinear 
programming (NLP) to find the optimal solution. Both of them are solved by means 
of gradient methods [25], which require the explicit use of the first and sometimes 
second order derivatives of the problem. For this reason, the functions of the LOTP 
are required to be differentiable, and thus, continuous [5].

Duty cycles, them being time-dependent and discontinuous constraints, are thus 
not straightforwardly introduced in both methods. They yield a small convergence 
radius, preventing the convergence of the solver [22]. Homotopy, or continuation, 
is a suitable method to deal with discontinuous structures. The homotopic approach 
allows solving the original, difficult and discontinuous problem, starting from an 
easier and affordable one [19, 34]. In particular, it has been applied to indirect meth-
ods to overcome discontinuity problems as bang-bang control in fuel optimal solu-
tions [3, 11, 35].

In this paper, a new technique, here called homotopic direct collocation (HDC) 
algorithm, is derived to generate OC trajectories by enforcing duty cycles through a 
homotopic approach applied to a Hermite-Simpson direct collocation method, mak-
ing the problem only gradually discontinuous. This is achieved imposing to a fuel 
optimal not OC trajectory heavier weights to the intervals corresponding to coast-
ing arcs until an OC trajectory is obtained. In the end, HDC tries to answer to the 
question whether is possible to map a real-fuel-optimal but not-OC solution, into a 
fuel sub-optimal but OC solution, and, in case, how to achieve this mapping. To the 
authors’ knowledge, the HDC is the first attempt of applying an homotopic approach 
to a direct collocation algorithm. Usually, the presence of duty cycles is considered 
in early trajectory design phases with the approximation of imposing a minor value 
of the maximum thrust available on board. The benefits of our algorithm is that it 
is not an approximation, thus it provides directly the correct solution with both the 
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thrust and the control angles profiles, and that it is a general approach, allowing 
the modeling of each kind of duty cycle that is needed to be imposed. The results 
obtained from HDC are applied to the case of M-ARGO mission, as solution to the 
needs of the trajectory design of this peculiar mission. The interplanetary transfers 
are computed using a realistic thruster model, which includes variable maximum 
thrust and specific impulse. HDC solutions are shown to have thrusting profiles and 
required propellant mass similar to the solutions without the duty cycle constraint.

The paper is organized as follows. In Sect. 2 a brief review on the low-thrust opti-
mal trajectory problem is given. In Sect. 3 the structure and the main issues of the 
optimal solution of the problem are discussed. The presentation of the HDC algo-
rithm is in Sect. 4. A first example for the validation of HDC is presented in Sect. 5. 
Results applied to M-ARGO mission and conclusions are presented in Sects.  6 
and 7, respectively.

2  The Low‑Thrust Optimal Trajectory Problem

Consider the following dynamics for a spacecraft in spherical coordinates

where x is the state vector

where � and � are the azimuth and elevation angles in J2000 reference system 
respectively, and m is the mass of the spacecraft. The control vector u(t) is a func-
tion of time for low-thrust propulsion models, and is expressed as

where T is the thrust magnitude, � is the in-plane angle such that � ∈ [− 180, 180] 
deg, and � is the out-of-plane thrust angle such that � ∈ [− 90, 90] deg. The thrust 
magnitude is equal to the product between the maximum thrust Tmax and the throttle 
factor u, such that u = 0 means null thrust, and u = 1 means maximum thrust. The 
gravitational pulling aG in Eq.  (1) describes a full-ephemeris model according to 
which
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where r is the position vector of the spacecraft, 𝜇⊙ is the gravitational constant of 
the Sun, and thus the first term of Eq. (4) is the primary acceleration due to the Sun. 
The other terms in the Eq. (4) model the gravitational accelerations given by the 8 
planets of the Solar System, represented by the set P: �i is the planetary gravita-
tional constant of the i-th planet and ri is the position vector of the spacecraft with 
respect to it. The numerical formulation of Eq. (4) employs the method by Betts (see 
Appendix F of [9]) to avoid numerical errors in computing the difference between 
nearly equal numbers. The SRP acceleration aSRP is expressed as

where Q is the solar radiation pressure constant and A is the Sun-projected area. The 
thrusting acceleration aT is represented by

Eventually, in Eq. (1) P is a rotation matrix and S is a skew-symmetric matrix map-
ping the velocity vector, defined as

where P is used to convert aG in spherical coordinates while S is used to write the 
dynamics in a more compact way. The LOTP aims at computing the optimal control 
function u(t) that minimizes a scalar cost function J. In space trajectories design, 
J is commonly represented by the time of flight, ToF, or the propellant mass, mp , 
required. When the objective is to save the propellant mass mp , J is referred as Jf  , 
and the LOTP is called fuel-optimal problem (FOP):

As discussed in Sect. 1, no analytic solutions exist for the LOTP, but there exist sev-
eral numerical techniques to solve it. Direct methods firstly discretised the problem 
imposing the dynamical constraints, and then find the optimal trajectory through 
the solution of a NLP problem. In particular, direct collocation methods transcribe 
the LOTP into a parameter optimisation problem enforcing the dynamics with 
numerical integration schemes, such as Euler or Hermite-Simpson [29], allowing 
the transcription of differential constraints into algebraic ones. In this work it has 
been employed as starting point the software DIRETTO [30], a low-thrust trajectory 
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design tool developed at Politecnico di Milano, which solves the LOTP with a Her-
mite-Simpson direct collocation method and exploits Ipopt1 [33] as NLP solver.

3  Structure of the Optimal Solution

The necessary conditions for optimality of the solution of the FOP are derived by 
introducing the Lagrange multipliers, or costates, � = [�r, �v, �m] associated to the 
state x = [r, v, m] . Indicating the optimal thrust direction as �∗ , it can be shown 
[8, 23] that it is

Inserting this into the necessary conditions for optimality of the LOTP, the 
Euler–Lagrange equations [6, 26] it can be demonstrated that the optimal throttle 
factor, u∗ , is determined as

where S is the switching function, S = −�v
Ispg0

m
− �m + 1 . Accordingly to this Pon-

tryagin’s maximum principle (PMP) [21], the fuel-optimal control has a bang-bang 
profile, having a piece-wise discontinuous structure, either zero or maximum value, 
as in Fig. 1. In particular this represents the fuel optimal thrust profile for the trans-
fer of M-ARGO CubeSat to asteroid 2011 MD starting the June 5, 2023, and lasting 
830 days (see Sect. 6 for more details on the statement of the problem).

The solution of a FOP as in Fig.  1 is fuel-optimal, but not OC, showing long 
thrusting and coasting arcs. A deep-space spacecraft can not thrust for long time 
periods, because it could not perform any other task in the meanwhile, as communi-
cating, controlling its trajectory, and so on. Even for classic spacecraft, thrusting for 
long time periods means accumulating remarkable errors along the trajectory, and 
thus ideally, some coasting phases have to be inserted in between thrusted-arcs.

(9)�
∗ = −

�v

�v
if �v ≠ 0

(10)u∗ =

{
0 if S > 0

1 if S < 0

Fig. 1  The typical bang-bang fuel-optimal thrusting profile

1 https:// coin- or. github. io/ Ipopt/ index. html (Retrieved on October 8, 2020).

https://coin-or.github.io/Ipopt/index.html
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4  The Homotopic Direct Collocation Algorithm

A duty cycle, with the duration of n days, binds the control in an alternation of 
thrusting and coasting arcs, with the duration of n − m and m days respectively, as 
follows

where n and m are the design parameters for the duty cycle. Looking at the control 
profile in Fig. 1, it can be noted that it already presents an alternation of thrusting 
and coasting regimes. Since optimal solutions like this are produced by the solver 
in order to minimize Jf  . If Jf  is written such that the control of the mth day of each 
duty cycle is less convenient in terms of propellant with respect to the controls of 
the remaining (n − m) days, the optimiser can be driven to exclude it from the opti-
mal thrusting profile. The idea is to overweight in Jf  the time intervals in which the 
thrust is not desired by considering penalty factors, or weights. To achieve this, we 
firstly discretised the integral of Jf  in Eq. (8) over each time interval of duration hk , 
and then modified it with penalty weights wk . Since for electric thrusters the specific 
impulse Isp varies with the input power, and so with the distance from Sun, this vari-
ation should be considered in the cost function. The controls are linearly interpolated 
in each segment, such that Tk =

1

2
(T(tk) + T(tk+1)) and Isp,k =

1

2
(Isp(tk) + Isp(tk+1)) . 

In Eqs. (12, 13) Ns is the number of interval [tk, tk+1] considered for the Hermite-
Simpson collocation. For each of them, weights wk are unitary during thrusting arcs, 
while they are selected higher during coasting arcs.

The discontinuity posed by the instantaneous switching of the engine from on 
to off and viceversa in a bang-bang control can be difficult to be solved. Consider 
Fig. 2.

(11)u =

{
[0, 1] if t ∈ [0, tn−m] days

0 if t ∈ [tn−m, tm] days

(12)Jf =

Ns∑

k=1

Tkhk

Isp,k

(13)Jf =

Ns∑

k=1

Tkhkwk

Isp,k

Fig. 2  Instantaneous switching of the bang-bang control
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Theoretically, on each node tm , corresponding to the end of the non-thrusting 
regime of a duty cycle, two different values of the control should be considered, one 
right before that instant, at t−

m
 , with u = 0 , and one right after it, at t+

m
 , with u > 0 . 

The same problem, with inverted values of the control, is present at t(n−m) , corre-
sponding to the end of the thrusting regime. Two different values of the control can 
not be enforced on a single node, but it is allowed to introduce two nodes very close 
each other. Thus a not-equally distributed time grid has been considered, as in Fig. 3.

Given the nature of the grid, it is possible to properly model the thrusting and 
coasting phases. For each duty cycle, considering the vectors of the time intervals 
and of the corresponding weights

the weights have been selected such that 1 < wa < wc < wb . Indeed, since the first 
interval h3 belongs to the last day of thrusting of a duty cycle, it should not be penal-
ised with a weight wa high as the ones in the coasting day. Similarly, the last interval 
h3 belongs to a coasting day, but since it is linked by the linear interpolation to the 
control of the first day of the following duty cycle, its weights wc should model the 
switching-on of the thruster, while not being so penalised as the control weighed by 
wb . Moreover, this selection of the weights ease the convergence, smoothing the dis-
continuity of the control structure.

Due to numerical noise problem, the weights wk can not be imposed arbitrarily 
high in order to obtain an OC solution with a single iteration from a non-OC one. 
This would made the problem almost discontinuous from the very first iteration, 

(14)h =

⎡
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Fig. 3  Duty cycle with the not-equally distributed time grid
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so making it difficult to solve. For this reason, starting from a fuel-optimal not-OC 
solution as initial guess, the weights are introduced gradually increased at each itera-
tion, up to when an OC solution is obtained. The HDC algorithm explicitly operates 
as shown in Fig. 4.

It can be summarised as: 

1. firstly, a fuel non-OC optimal trajectory is computed using the Eq. (12), with an 
indicative number of nodes, an equally divided grid and a ToF left free to vary, 
in order to get a good first guess;

2. the above solution is used as the initial guess of a new optimisation using the 
Eq. (13), with all weights wk unitary, in order to impose the non-uniform time 
grid, and with the ToF fixed to the closest integer to the one computed at step 1. 
The definitive number of nodes of the grid is selected at this stage accordingly to 
the value of the ToF in order to have a correct time discretisation. The result is 
called First Optimal (FO) solution, and it requires the same mp of the first trajec-
tory computed at step 1;

3. the solution of step 2 is selected to be the initial guess of a new optimisation using 
Eq. (13), where the weights wk are slightly increased in the time intervals during 
which the coasting phases are required to be imposed;

4. step 3 is repeated, each time considering the previously computed solution as 
initial guess and a slightly increased value of the weights in correspondence of 
intervals representing the coasting phases, until an OC solution is obtained: the 
final solution is called Homotopic Optimal (HO).

It has been experienced that if too high weights are introduced too early, the opti-
miser starts having convergence problems with the discontinuity of duty cycles. 
In case the convergence is not reached, the initial guess is re-fed to the optimiser, 
employing a slightly smaller value of the weights as compared to the failed value.

Fig. 4  Scheme of the homotopic direct collocation algorithm
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5  A First Example

Considering Fig.  1, the long thrusting blocks for the solution of a FOP are yet 
located in the optimal location given a departure date and a ToF. The HDC idea is 
that the most convenient duty cycles of a solution both fuel-optimal and OC should 
be located around them, and not casually located along all the duration of the cruise. 
Thus, an optimal OC trajectory should be in aspect very similar to the not-OC solu-
tion, but with the long thrusting blocks interrupted when the coasting phases are 
imposed. The authority lost during them is expected to be recovered by HDC with 
thrusting arcs located immediately before and/or after the long thrusting blocks.

To test this intuition, as well as the use of the not-equally distributed grid, a first 
simple example has been assessed. Considering again the interplanetary trajectory 
of M-ARGO CubeSat to asteroid 2011 MD in Fig. 1, we want to force the solver 
to switch off the engine for 20 days around day 200. In order to achieve this, some 
weights wl , for the day 1 and for the day 20 of the coasting arc, and wh , for the 
remaining 18 days, have been selected such that wl < wh after the first step. Starting 
from the FO solution in Fig. 1, 2 homotopic iterations summarised in Table 1 have 
been computed to create the 20-days-long coasting arc in the thrust profile.

As it can be noted, the increase in required propellant mass is limited to 1.44%. 
In Fig. 5, the new thrusting profile, in red, has been reported in comparison with the 
initial FO solution, in black. The coasting arc around the day 200 of transfer is cor-
rectly imposed. The solver, to recover the lost thrust, changes the solution globally, 
elongating the duration of the second thrusting block, and slightly changing the pro-
file around day 400 and day 600.

6  Application to M‑ARGO Mission

M-ARGO will be the first stand-alone CubeSat mission designed by the ESA aimed 
at targeting a near-Earth asteroid. It has the necessity of exploiting OC trajectories, 
and thus it has been used as study case to test the algorithm. All the assumptions 
about the thruster and the mission analysis are taken from [31]. The CubeSat will 

Table 1  Iterations for the 
enforced coasting arc of 20 days

Iteration wl wh mp (kg) Δmp(%)

1-FO 1 1 1.26867 –
2 1.15 1.35 1.28696 1.44

Fig. 5  HDC recover the lost thrust lost changing the control profile
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have a maximum wet mass of 28.2 kg, with the propellant mass constrained to be 
lower than 3.4 kg. The Sun-projected area and the reflectivity parameter have been 
assumed to be 0.3  m2 and 1.3, respectively.

To model the electric thruster it has been assumed that both the maximum thrust, 
Tmax , and the specific impulse, Isp , depend on the engine input power, Pin , which in 
turn depends on the distance of the spacecraft from the Sun, r. This dependence has 
been modeled with fourth-order polynomials:

The values of the 15 coefficients ai , bi and ci in Eqs. (16–18) can be found in [31]. At 
1 AU the maximum thrust is of 1.56 mN, while the specific impulse is of 3582.82 
s. To represent the technological limits of the thruster, Pin has been bounded within 
a minimum, Pin,min , and a maximum, Pin,max , value, 80 W and 130 W respectively.

Initial and final conditions of the LOTP has been retrieved using SPICE Toolkit 
[1, 2] and the JPL Horizons On-Line Ephemeris System [13–15] kernels.2 The 
departure is set from the SEL2 point, while the final conditions are set to rendez-
vous one of the asteroids selected as possible target of the mission. The initial value 
for the mass is mi , the wet mass of the CubeSat, while its final value m(tf ) is left free 
to vary to compute the fuel-optimal solution.

As path constraints, it is imposed that the thrust can not exceed its maximum value, 
that the propellant mass must be positive, and that the ToF can not exceed the maxi-
mum value of 3 years, accordingly to the assumption of the mission analysis.

The duration of the duty cycles is usually thought to preserve a standard work-
ing week. In order to keep the mission lifetime within a reasonable time span, it is 
preferable to not allocate less than six days for thrusting, while one day is at least 
required to perform all the no-thrusting operations. Thus, in this work a duty cycle of 
n = 7 days has been chosen, with m = 1 day for no-thrusting operations, and (n − m) 
= 6 days employable for thrusting. Also not integer values to define n and m can 
be selected. For the not equally distributed time grid, with reference to Fig. 3, the 
choice has been h1 = 86,400 s = 24 h , h2 = 72,000 s = 20 h and h3 = 14,400 s = 4 h.

(16)Tmax = a0 + a1Pin + a2P
2
in
+ a3P

3
in
+ a4P

4
in

(17)Isp = b0 + b1Pin + b2P
2
in
+ b3P

3
in
+ b4P

4
in

(18)Pin = c0 + c1r + c2r
2 + c3r

3 + c4r
4

(19)r(ti) = rL2(ti); v(ti) = vL2(ti) and m(ti) = mi

(20)r(tf ) = rAst(tf ) and v(tf ) = vAst(tf )

(21)T − Tmax(r) ≤ 0; (tf − ti) − 1095 days ≤ 0 and − m(tf ) ≤ 0

2 http:// ssd. jpl. nasa. gov/? horiz ons (Retrieved on May 11, 2020 for kernels).

http://ssd.jpl.nasa.gov/?horizons
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With these constraints, HDC has been used to compute several solutions towards 
the candidate asteroids. In this work, two of them, towards asteroids 2011 MD and 
2014 YD, are presented. They are summarized in Table 2, where they are reported 
the Departure Date (DD), the ToF, and the value of the necessary propellant mass 
mp for the FO and HO solutions. The FO and HO trajectories in J2000 reference 
frame are reported in Figs. 6 and 7: in blue L2 Sun-Earth orbit and departure point, 
in red the target orbit and the rendezvous point, in yellow the coasting arcs, in black 
the thrusting ones.

In the case of the trajectory to the asteroid 2014 YD, for the fixed DD of July 26, 
2024, a first search for the solution with free final time led to a solution with a ToF 
of 645 days. The results of the homotopies are reported in Table 3: the values of the 
weights for the iterations have been selected by trial and error. It has to be noted that 
as the weights increase going from the FO to the HO solution, the propellant mass 
increases too, as the solution is becoming progressively sub-optimal. However, the 
increase in required propellant mass Δmp of the HO is limited up to 4.49%.

In Fig. 8, the iterations of the homotopy have been reported: the black profile is 
the FO solution, the red ones represent the thrusting profile at each iteration, and 
the yellow one represents the maximum available thrust. As expected, the additional 
duty cycles are located around the main thrusting blocks of the FO. It is possible 
to note the spreading of the thrusting blocks as the weights increase, but also the 

Table 2  Summary of the 
solutions computed with HDC

Asteroid DD ToF (d) Solution mp (kg)

2014 YD 26 Jul 2024 645 FO 1.11559
HO 1.16563

2011 MD 05 Jun 2023 830 FO 1.26867
HO 1.30534

Fig. 6  FO and HO solutions for asteroid 2014 YD in J2000 reference frame (Color figure online)
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rising of two new blocks at the beginning of the transfer. The first of them is slightly 
observable in the FO solution, and as the homotopy proceeds it is increasingly 
exploited. The second one, instead, arises from scratch. It can be also noted that the 
thrusting block from day 300 to around 450 is the most convenient one, being the 
last one to be transformed into an OC one.

For what concerns the solution to the asteroid 2011 MD, for the fixed DD, June 
5, 2023, the same considered in Sect. 5, the search for the free-time solution led to 
a trajectory with a value of the ToF of 830 days. The results of the homotopies are 
summarised in Table 4.

The Δmp of the HO is of 2.89%, and the mp required is around 1.31 kg. In Fig. 9, 
the iterations of the homotopy have been reported: the optimal profile is mimicked 
almost perfectly and no additional thrusting blocks appear. However, a sort of merg-
ing of the first two thrusting blocks into a unique operational compliant one can be 
observed, accordingly to the results obtained in Sect. 5.

In addition to the presented solutions, HDC has been used to compute M-ARGO 
trajectories towards other asteroids. The maximum Δmp reached is of 10.38%, with a 

Fig. 7  FO and HO solutions for asteroid 2011 MD in J2000 reference frame (Color figure online)

Table 3  Iterations for the 
solution to asteroid 2014 YD

Iteration wa wb wc �
�
 (kg) Δ�

�
(%)

1-FO 1 1 1 1.11559 –
2 1.02 1.1 1.07 1.11666 0.10
3 1.05 1.2 1.1 1.12154 0.53
4 1.25 1.4 1.3 1.13162 1.44
5 1.35 1.5 1.4 1.13879 2.08
6 1.45 1.6 1.5 1.15296 3.35
7-HO 1.65 1.8 1.7 1.16563 4.49
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(a) Iteration 1, FO solution

(b) Iteration 2

(c) Iteration 3

(d) Iteration 4

(e) Iteration 5

(f) Iteration 6

(g) Iteration 7, HO solution

Fig. 8  Iterations for the solution to asteroid 2014 YD

Table 4  Iterations for the 
solution to asteroid 2011 MD

Iteration wa wb wc mp (kg) Δmp (%)

1-FO 1 1 1 1.26867 –
2 1.02 1.1 1.07 1.27052 0.15
3 1.05 1.2 1.1 1.27706 0.66
4 1.25 1.4 1.3 1.29306 1.92
5 1.35 1.5 1.4 1.30256 2.67
6-HO 1.45 1.6 1.5 1.30534 2.89
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mean value of 4.62%. It has been tested that the solutions with the highest mass incre-
ment are the ones requiring the highest number of iterations, and showing the most 
‘full’ thrusting profiles, meaning that they are almost the OC time optimal—requiring 
the minimum ToF—solutions for their fixed DD. For these solutions, the values of the 
weights can increase up to 250. The computation of these solutions has been useful to 
have a stress-test on HDC: the algorithm works also in critical conditions where the 
thrusting duration is almost at its maximum allowed to be OC.

(a) Iteration 1, FO solution

(b) Iteration 2

(c) Iteration 3

(d) Iteration 4

(e) Iteration 5

(f) Iteration 6, HO solution

Fig. 9  Iterations for the solution to asteroid 2011 MD
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7  Conclusions

In this work a new homotopic direct collocation algorithm (HDC), based on a Her-
mite-Simpson direct collocation and a homotopy approach, has been proposed to 
overcome the issue of imposing the discontinuous constraint of duty cycles to obtain 
OC trajectories. HDC has been tested within M-ARGO mission context, and has 
proved that a mapping of the fuel optimal non-OC solutions into fuel optimal and 
OC ones is possible. HDC trajectories show propellant mass values very close to the 
ones of the solutions without the OC constraint.

This algorithm opens to the possibility of modeling thrusting and coasting phases 
into the low-thrust control profile of each considered mission case, at the cost of a 
minor increase in terms of propellant mass. OC trajectories will have great impact 
especially on CubeSats mission analysis, having them limited propellant and power 
budgets. Enabling deep-space CubeSats to follow OC trajectories will also pave 
the way for major autonomy in space, allowing a great reduction in flight dynamics 
operations costs.
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