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Abstract 
The present work studies the potential of surrogate models for the global optimization of 
complex chemical processes. In particular, a modular plant for the conversion of biogas 
to methanol is considered. The Aspen HYSYS simulation of this plant was run 480 times, 
which ensured the even distribution of points in the input space. The evenness of this 
design of experiments was evaluated using a discrepancy measurement called the Mixture 
Discrepancy. With the simulation data, some of the most widely used surrogate models 
such as regression models and the Kriging Gaussian process were trained. The most 
accurate model for the prediction of each output variable was selected and used for the 
optimization of the OPEX. The optimization complemented the trained surrogate models 
with the Mesh Adaptive Direct Search (MADS) algorithm. For this purpose, the open-
access computational implementation of the MADS algorithm called NOMAD was used. 
With the surrogate-based optimization, the computational times were reduced an 88% 
with respect to the simulation-based optimization. In addition, the accuracy of the 
surrogate model was paramount, as an average 0.75% prediction error was found. 
Consequently, the models proved sufficient for optimizing the studied process, resulting 
in a 22.2% reduction in the OPEX. 
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1. Introduction 
The mathematical complexity of a chemical process increases rapidly with the number of 
involved unit operations or the presence of intricate thermodynamics or kinetics 
(McBride and Sundmacher, 2019). To tackle these complexities while maintaining 
computational accuracy, surrogate models, a form of supervised machine learning, have 
gained relevance (Alizadeh et al., 2020). These mathematically simpler models require 
data from the process to be trained. Consequently, the quality of the surrogate is related 
to the quality of the extracted data (McBride and Sundmacher, 2019).  
Considering the high accuracy presented by surrogate models in several applications 
(Alizadeh et al., 2020; Pishkari et al., 2023), this study presents the development of a 
surrogate model for a modular plant for the production of methanol from biogas. A one-
shot space-filling design using the maximin-optimized LHS complemented with 
discrepancy measurements is adopted to guarantee uniform distribution and unbiased 
representation of the domain. The surrogate models trained were selected considering the 
most commonly used in chemical engineering. These models include polynomial 
regressions, regression trees and support vector machines, previously used by Galeazzi et 
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al. (2023) for surrogate modeling of an amine-washing section of a plant. Additionally, 
the Kriging Gaussian process, known for its effectiveness in managing complex 
mathematical systems, was incorporated. The most accurate surrogate model was then 
used to optimize the Operational Expenditures (OPEX) through a black-box derivative-
free optimization powered by the NOMAD open-access software (Le Digabel, 2011).  

2. Problem statement and process description 
The objective of the present work is to optimize the OPEX of a modular plant which 
produces methanol from biogas. This module has been installed in a heat and power plant 
in Italy, and corresponds to the industrial validation of the BIGSQUID process, an 
innovative technology licensed by the Politecnico di Milano (Fedeli and Manenti, 2022; 
Negri et al., 2022). The BIGSQUID (BIoGaS to liQUID) process comprises five main 
steps: biogas upgrading to remove H2S, biogas reforming to produce syngas, syngas 
purification to reach the synthesis requirements, methanol synthesis from syngas, and 
methanol purification (See Figure 1). 

 
Figure 1: Overview of the BIGSQUID process to produce methanol from raw biogas. 

For this process, a rigorous Aspen HYSYS simulation was developed by Fedeli and 
Manenti (2022) for the SuPER team of the Politecnico di Milano. Even if the number of 
unit operations shown in Figure 1 seems small and manageable, the presence of two 
recycle streams in the simulation, which involve critical process variables, considerably 
increased its complexity. The average simulation time was found to be around 2.77 
seconds, while the convergence rate obtained from preliminary experiments was 60%. In 
a first attempt to optimize the process, the Aspen HYSYS optimizer failed. This failure 
condition was maintained even when different initial points were tested. This lack of 
convergence may be correlated to the low convergence rate of the simulation, the high 
correlation of the variables and their complex interactions. For the mentioned reasons, a 
different optimization approach should be considered. To avoid increasing the complexity 
of the problem through complex optimization software such as GAMS, the surrogate 
approach for the optimization presented an interesting alternative. The surrogate models 
were trained from real data extracted from the simulation using a computer with a 
processor 11th Gen Intel® CoreTM i9-11900 @ 2.50GHz and 32 GB of RAM. 

3. Data generation 
The input variables for the rigorous simulation and the surrogate model were selected and 
delimited considering their physical, chemical, and process-related constraints. The 
variables are shown in Figure 1, and their boundaries are presented in Table 1. 
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Table 1: Input variables to the black-box model of the BIGSQUID process. 

Stream Description Variable Nominal 
value 

Minimum 
value 

Maximum 
value 

BIOGAS Raw biogas 
F (kg/h) 600.0 500.0 700.0 

xCO2 0.46 0,4 0,5 
xCH4 0.53 0,45 0,7 

DEMIWATER Make-up in 
reforming recycle F 10 9 25 

2cc Compressed 
BIOGAS P (bar) 16.0 12.0 20.0 

BRProduct Reformer outlet T (C) 950.0 800.0 1000.0 

5b BRPRoduct after 
cooling T (C) 5.0 5.0 25.0 

CompressedSyngas Purified syngas  P (bar) 60.0 50.0 70.0 

WATER Water for syngas 
purification F (kg/h) 5000.0 4500.0 6000.0 

CLEANWATER Make-up for syngas 
purification recycle T (C) 10.0 5.0 25.0 

TOREACTOR Synthesis reactor 
inlet syngas T (C) 250.0 220.0 270.0 

7 Synthesis reactor 
outlet  T (C) 10.0 5.0 25.0 

 
Data from Table 1 was used in a Design of Experiments (DoE) based on the maximin-
optimized LHS, one of the most widely implemented DoE methods in the chemical 
industry (McBride and Sundmacher, 2019). The number of samples was set on 480, which 
was the lowest number of samples to minimize the Mixture Discrepancy, an accurate 
metric for the evaluation of the space-filling characteristics of a DoE (Zhou et al., 2013). 
These samples were introduced to the Aspen HYSYS simulation of the BIGSQUID. With 
the simulation data, the dataset for the training of the surrogate models was obtained.  

4. Surrogate modeling 
The input/output relation of the variables was determined by training 10 regression 
models, previously considered by Galeazzi et al. (2023), plus the Kriging Gaussian 
process. All the models were trained once for each output variable. The accuracy of the 
models was determined using the average Mean Absolute Error (MAE) of a 5 k-fold 
cross-validation. As the MAE was calculated over normalized data, the reported MAE is 
a representation of the relative error of the models. Equations 1 and 2 show the data 
normalization process and the MAE calculation, respectively. The output variables, their 
description inside the process and the best surrogate model for its prediction using the 
MAE as evaluation metric is presented in Table 2. In addition, Figure 2 presents the parity 
plots of the output variables, which confront the simulated (real) and predicted values for 
each variable. 

𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 =
|𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛|

|𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑛𝑛| (1) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑦𝑦𝑚𝑚𝑟𝑟𝑛𝑛𝑚𝑚𝑟𝑟 − 𝑦𝑦𝑚𝑚

𝑝𝑝𝑟𝑟𝑛𝑛𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝�𝑚𝑚

𝑛𝑛
 (2) 
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Table 2. Best Surrogate Models 

Stream Description Variable Best model MAE (%) 

METHANOL Outlet methanol 
stream 

F (kg/h) Kriging 1,00% 
xMeOH Kriging 1,37% 

Qreactor Reformer heat 
requirement Q (kW) Kriging 1,59% 

QP100 Reformer make-up 
recycle pump Q (kW) Linear Regression 0,00% 

Qk2 Syngas compressor 
before purirfication Q (kW) Kriging 0,57% 

Duty Synthesis reactor 
cooling requirement Q (kW) Kriging 1,00% 

Q104 Cooling of refrigerant Q (kW) Kriging 1,61% 
Q107 Cooling of refrigerant Q (kW) Kriging 1,33% 

K100 First stage compressor 
of raw biogas Q (kW) Third Order Polynomial 

Regression 0,01% 

K100-1 
Second stage 
compressor of raw 
biogas 

Q (kW) Third Order Polynomial 
Regression 0,03% 

QP-02 Reformer recycle 
pump Q (kW) Kriging 1,17% 

P101 Syngas purification 
recycle pump Q (kW) Second Order 

Polynomial Regression 0,00% 

Q03 Syngas cooling during 
purification Q (kW) Kriging 0,27% 

Average 0,77% 

5. Optimization 
The objective function for optimization is the OPEX of the system described as:  
 

min𝑂𝑂𝑂𝑂𝑀𝑀𝑂𝑂 = �𝐶𝐶𝑚𝑚𝑄𝑄𝑚𝑚

11

𝑚𝑚=1

 

𝑠𝑠. 𝑡𝑡. : 𝑙𝑙𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗∀𝑗𝑗 ∈ {1, … ,12} 

         10.0 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑀𝑀.𝐹𝐹 ≤ 0 

          0.90 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑀𝑀. 𝑥𝑥𝑀𝑀𝑛𝑛𝑀𝑀𝑀𝑀 ≤ 0 

 

(3) 

Where i represents each of the 11 output energetic streams of Table 2, Ci represents the 
cost of each energetic stream and Qi its heat flow. The cost of each energetic stream 
depends on the utility required and was extracted from Turton et al. (2012). Moreover, j 
represents each of the 12 input variables of Table 1 delimited by its lower lj and upper uj 
boundaries. Streams BIOGAS and CLEANWATER have not been considered for 
optimization as they are disturbances of the process and not optimization variables. 
Finally, the required flowrate and purity of methanol in the plant, which correspond to 10 
kg/h and 90% respectively, were set as the constraints for the METHANOL stream. 
By implementing the trained surrogate models and the derivative-free open-access black-
box optimizer NOMAD, the optimization process was repeated. In this case the 
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optimization time was 86 seconds, which represents a reduction of 88% in the 
computational time with respect to the original optimization with the simulator, which 
required around 700 seconds. The results were validated by introducing the found optimal 
values to the Aspen HYSYS simulation. Nevertheless, the objective function and the 
constraints were not respected. To determine the cause of the mismatch, a sensitivity 
analysis with the surrogated model was proposed. The results of the sensitivity analysis 
showed a high sensitivity of the variable DEMIWATER, which monotonically (and 
almost linearly) increased the total OPEX. Considering this behavior, the upper boundary 
of the variable was re-set to 15 kg/h in Table 1. 
With the new boundaries for DEMIWATER, the surrogate modelling methodology 
presented in this work was repeated. In this case, the validated results were satisfactory, 
and reduced the OPEX 22.2% compared to the base case. Table 3 presents a summary of 
the results from both optimizations, before and after the sensitivity analysis compared to 
the nominal case. As an important remark, Figure 2 and Table 2 present the results of the 
surrogate model trained after the sensitivity analysis. 
 
 

 
Figure 2. Parity plots of the output variable of the BIGSQUID process after the surrogate 

modeling process. Dotted lines delimit the zone with a prediction error below ± 5%.  
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Table 3. Results for the optimization of the BIGSQUID process. 

Variable UoM Original Before Sensitivity After Sensitivity 
BRProduct.T °C 950.0 849.8 800.0 
DEMIWater.F kg/h 10.0 9.0 9.0 

CompressedSyngas.P bar 60.0 66.9 59.0 
TOREACTOR.T °C 250.0 265.0 255.9 

7.T °C 10.0 5.1 20.3 
5b.T °C 5.0 5.2 25.0 
2cc.P bar 16.0 12.0 12.0 

WATER.F kg/h 5000.0 4664.0 4500.0 
OPEX Surrogate $/y 22195 14929 17286 
OPEX HYSYS $/y 23569 20195 18329 

OPEX reduction % 0.0% 14.3% 22.2% 

6. Conclusions 
In this work, the surrogate-based optimization of a complete industrial process was 
successfully done. The methodology proposed allowed the training of highly accurate 
surrogate models for the surrogate-based optimization of a biogas to methanol modular 
plant. With the study, the values of the input variables which reduced the OPEX of the 
process of the biogas modular plant by 22.2% were found and validated with the rigorous 
simulation. The presented methodology ensures the complete consideration of the input 
domain by implementing a space-filling design, allows the determination of critical 
variables via surrogate-based sensitivity analysis, reduces the computational times for the 
optimization of the process and ensures the determination of an accurate optimum of the 
process by implementing the MADS algorithm by NOMAD. 
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