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A B S T R A C T

This paper presents a novel approach to address uncertainties and enable demand response in Electric
Vehicle (EV) charging station optimization. A two-stage optimization strategy is proposed, integrating Robust
Optimization and explicit Model Predictive Control (eMPC). The first stage involves day-ahead planning using
Robust Optimization technique to limit the hourly power consumption of EVs, considering worst-case scenarios
caused by uncertainties in EV consumption and CO2 emissions. The objective is to minimize environmental
impact by reducing CO2 emissions. An Explicit Model Predictive Control strategy is developed in the second
stage for real-time operation. The explicit solution, calculated offline, models uncertainties such as the initial
state of charge of the battery energy storage, photovoltaic power production, and EV power consumption.
During real-time operation, the explicit solution is accessed using measured data from the charging station,
refining the schedule derived from the first stage. The proposed solution is implemented and evaluated at an
EV charging station in Trieste, Italy. The results demonstrate a significant 69% reduction in CO2 emissions
compared to a deterministic approach while maintaining a real-time computation time of less than 0.1 s.
1. Introduction

1.1. Motivation

To date, there are approximately 1.8 million charging points world-
wide. According to [1], the lifecycle emissions of an EV provide a
reduction of close to 30% in comparison with a conventional vehicle.
In addition, a country with a higher share of renewable energy could
help reach a 50% CO2 emissions reduction during EV usage. Thus,
charging stations that are not only fed by the electrical grid but also
by renewable energy as photovoltaic (PV) power plants and battery
energy storage systems (BESS), could endow a higher reduction of the
CO2 emissions.

Commonly, these charging stations’ energy management system
(EMS) is focused especially on reducing operational costs, congestion
management [2], and energy availability [3]. Still, little attention has
been paid to the emissions due to energy use from the grid [4,5]. Due to
the random connection of electric vehicles (EVs) to the charging station
within electrical systems with variable power generation sources, the
environmental benefits of using EVs could be compromised if they

∗ Corresponding author.
E-mail address: anakarina.cabrera@polimi.it (A. Cabrera-Tobar).

are connected during higher energy production from fossil fuels. Thus,
limiting the EV’s demand regarding emissions, power production from
renewable energy, and energy allocation in a BESS [6] is necessary.
However, the main challenges for optimal EMS include managing
uncertainties such as EV connection/disconnection times and power
consumption. Grid-connected charging stations relying on renewable
energy face uncertainties related to PV or wind production, state of
charge if a BESS is employed, and emissions resulting from grid power
consumption.

1.2. Literature survey

Standard optimization techniques commonly used to address uncer-
tainties in EMSs include stochastic, robust, fuzzy, and chance-constra-
ined optimization methods [7–10]. While effective, these techniques
can be time-consuming. Therefore, it is preferable to implement them
as the initial layer of a multi-stage optimization approach [2,11]. In
microgrids, robust optimization emerges as an optimal solution due
to its capability to model uncertainties using sets such as polyhedral,
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Nomenclature

𝜂𝑏𝑎𝑡 Battery efficiency %
𝛩 Space of uncertainties
𝜃 vector of uncertainties for the second stage

of optimization
𝜃𝑒𝑣 EV’s demand uncertainty W
𝜃𝑝𝑣 PV power production’s uncertainty W
𝜃𝑆𝑜𝐶 SoC’s uncertainty %
𝐴, 𝐵, 𝐶, 𝐵𝑑 coefficient matrices of the state space

model
𝐶𝑚𝑎𝑥 Maximum battery capacity Ws
𝐺,𝑊 ,𝐸 coefficients of inequalities constraints
𝑖 Time instant for the second stage of

optimization
𝑘 Time instant for the first stage of optimiza-

tion
𝑚 Number of state variables
𝑁 Planning horizon
𝑛 Number of control variables
𝑁𝑐 Control horizon
𝑃 𝑏𝑎𝑡 Instantaneous battery power W
𝑃 𝑏𝑎𝑡
𝑚𝑖𝑛, 𝑃

𝑏𝑎𝑡
𝑚𝑎𝑥 Lower and upper bounds of 𝑃𝑏𝑎𝑡 W

𝑃 𝑒𝑣 Instantaneous EV power W
𝑃 𝑔𝑟𝑖𝑑 Instantaneous grid power W
𝑃 𝑔𝑟𝑖𝑑
𝑚𝑖𝑛 , 𝑃 𝑔𝑟𝑖𝑑

𝑚𝑎𝑥 Lower and upper bounds of 𝑃𝑔𝑟𝑖𝑑 W
𝑃 𝑝𝑣 Instantaneous PV power W
𝑃𝑖𝑛𝑣 Inverter’s power W
𝑄,𝐻, 𝑐 Cost function coefficients with the corre-

sponding dimensions
𝑆𝑜𝐶 BESS’s state of charge %
𝑆𝑜𝐶𝑚𝑖𝑛, 𝑆𝑜𝐶𝑚𝑎𝑥 Lower and upper bounds of BESS’s 𝑆𝑜𝐶 %
𝑇𝑠 Sampling time s
𝑢 Control input variables
𝑤 Vector of Uncertainties for the first stage
𝑤𝑒𝐶𝑂2 Uncertainty of CO2 emissions kg/kWh
𝑤𝑒𝐶𝑂2

𝑚𝑖𝑛 , 𝑤𝑒𝐶𝑂2
𝑚𝑎𝑥 Lower and upper bounds of 𝑒𝐶𝑂2 W

𝑤𝑒𝑣 EV power consumption uncertainty W
𝑤𝑒𝑣

𝑚𝑖𝑛, 𝑤
𝑒𝑣
𝑚𝑎𝑥 Lower and upper bounds of 𝑤𝑒𝑣 W

𝑥 State space variable

ellipsoids, intervals, etc. Robust Optimization looks for the worst-case
scenario by maximizing the uncertainties [12,13]. For instance, the
authors in [14] apply Robust Optimization in a microgrid to provide
a demand response considering the power generation from renewable
energy as uncertainties, which are modeled as cardinal sets. However,
online optimization using robust optimization in a real-time charging
station can be time-consuming, especially whenever an EV arrives [15].

Therefore, for the second stage optimization, employing a technique
that allows for correcting the energy scheduling from the first layer and
optimizing in real-time without significant computational overhead is
preferable [16]. A promising solution for this purpose is Explicit Model
Predictive Control (eMPC) [17]. eMPC enables offline calculation of
control laws by defining critical regions, with the limitation of these re-
gions determined by the uncertain parameters’ bounds. This technique
suits systems like charging stations with few components and uncertain
parameters. One of the main advantages of eMPC is its ability to store
solutions in a table format that is accessible at any time, making it ideal
for real-time operation using less computational time and resources.
Despite this advantage, eMPC has received limited attention in the field
2

of EMS [18].
The typical uncertainties considered in the literature are electricity
price, power forecast accuracy, and arrival time of the EV. In any
of these studies, the environmental aspect is included in the objec-
tive function or the uncertain parameters. For instance, the research
developed in [10], proposes a chance constraint optimization with a
multi-objective approach to reduce the cost and the emissions with
a weighting scheme for a microgrid. This study’s uncertainties were
the PV, wind production, and the load. However, only the effect from
natural gas was considered for the emissions, disregarding the electrical
grid energy mix. On the other hand, when emissions are considered as
part of the objective function for energy scheduling in a microgrid, only
a fixed CO2 emissions coefficient is taken into account, forgetting the
variable nature of the current electrical system (e.g. [19,20]).

1.3. Research gap and contributions

In summary, considering uncertainties, the current literature on
two-stage optimization for the EMS of a charging station reveals several
notable gaps. Firstly, existing studies often lack incorporating a real
grid’s CO2 emissions factor as part of the constraints, uncertainties, and
objective function. Secondly, there is a noticeable absence of research
utilizing robust optimization and explicit model predictive control
(eMPC) to provide energy scheduling for limiting energy to electric
vehicles (EVs) and reducing purchased power from the grid. Thirdly,
various uncertainties such as PV production, grid CO2 emissions factor,
BESS, State of Charge (SoC), and EV consumption for both day-ahead
and real-time optimization remain limited. Lastly, there is a deficiency
in the availability of easy and practical solutions for real-time operation
considering uncertainties. Table 1 compares the present study with
similar studies regarding two-stage optimization for the EMS of a
charging station, considering uncertainties.

Compared to the existing literature, our study introduces a novel
approach to minimize grid electricity purchases and CO2 emissions in
EV charging stations through demand response. While prior research
has primarily focused on strategies for optimizing energy management,
our methodology integrates both Robust Optimization and eMPC to
address uncertainties effectively, enable demand response, and achieve
real-time control. The first stage involves day-ahead optimization uti-
lizing adjustable robust optimization to schedule EV charging power
and account for uncertainties in EV consumption and variable CO2
emissions factors. Subsequently, real-time explicit model predictive
control (eMPC) is employed to adjust power delivery in response to
uncertainties in EV consumption, PV power production, and BESS’s
SoC. Unlike previous approaches, our framework integrates real-time
CO2 emissions factor and effectively incorporates uncertainties into the
optimization process. Thus, the main contributions are as follows:

• Proposal of a two-stage optimization framework using robust
optimization and eMPC for real-time control under uncertain
conditions.

• Incorporation of uncertainties such as EV consumption, variable
CO2 emissions factors, PV production, and BESS SoC into the
energy scheduling process.

• Investigation of computational efficiency and environmental im-
pact reduction through empirical validation at an EV charging
station in Trieste, Italy.

The rest of the paper is organized as follows: Section 2 describes the
framework of the two-stage optimization. Section 3 explains the robust
optimization. Then, the explicit Model Predictive Control is described
in Section 4 together with the real-time control. In Section 5, the
case studies and the comparison with other methods are described and

analyzed. Finally, the conclusions are drawn in Section 6.
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Table 1
Summary of the literature review of two-stage optimization for EMS for a microgrid with EVs. (RO: Robust Optimization, SO: Stochastic Optimization, CCO: Chance constraint
Optimization, DO: Deterministic Optimization, FO:Fuzzy Optimization, MPC: Model Predictive Control, eMPC: explicit Model Predictive Control).

Reference Objective function Optimization
techniques

Uncertainty

RES power EV’s power Emissions BESS’ SoC

[14] Operation cost: operation, maintenance, profit RO-SO yes no no no

[10] Cost and emissions due to natural gas CCO yes yes no no

[11] Operation cost: operation, maintenance, profit DO-ARO yes yes no no

[21] Reduce peak electricity demand RO-MPC no yes no no

[22] Maximize EV’s admissions regarding the energy
availability

FO-DO yes no no no

[20] Minimize operation cost and emissions (fix CO2
emissions coefficient)

SO-RO yes no no no

[23] Maximize profit SO-RO yes no no no

[24] Minimize cost SO-RO-MPC yes yes no no

[25] Operation cost: operation, maintenance, profit RO-MPC yes no no no

[26] Operation cost: operation, maintenance, profit RO-MILP yes no no no

[27] Operation and environmental cost: operation, RES
power plants, emissions (fix CO2 emissions
coefficient)

RO-MILP yes no no no

[28] Operation cost: operation, maintenance, profit RO-CCO yes yes no no

[29] Operation cost and emissions (fix CO2 emissions
coefficient)

SO-RO yes yes no yes

This work Minimize CO2 emissions RO-eMPC yes yes yes yes
2. Two-stage optimization framework

The PV-based charging station considered for the proposed work
is shown in Fig. 1. The charging station connects to the grid of the
University Campus. The main components are (i) PV modules, (ii) BESS,
and (iii) a two-stage inverter. The BESS can be charged using energy
from the PV system or, if necessary, from the campus electrical grid.
The maximum rated power of the PV/BESS inverter is 3.9 kW. The
charging power range of electric vehicles coming to the charging sta-
tion varies from 3 kW to 22 kW. Because the EVs have different power
ranges, the PV/BESS cannot provide all the power the EV needs; thus,
the campus grid will supply it. For this reason, as the grid will supply
energy to the EV, it is essential to control its consumption depending on
the CO2 emissions generated by the grid energy mix. Thus, smart energy
management to reduce its impact is required. The proposed two stage
optimization structure for reducing the CO2 emissions of the charging
station is shown in Fig. 2.

For the first stage (day ahead optimization), the inputs are the
forecast of the PV power production [30], the CO2 grid emissions
factor (𝑒𝐶𝑂2 ) profile, and the BESS’s initial state of charge (𝑆𝑜𝐶𝑡=0).
The technique used for the first stage is Robust Optimization, and it
is performed once every 24 h at the beginning of the day. It gives the
daily power profile for the grid, the PV panels, and the battery. The
output of this stage is the maximum power the charging station can
provide to the EV.

In this stage, the main uncertainties are the 𝑒𝐶𝑂2 and the EV’s
charging power (𝑃 𝑒𝑣), varying between 0 and 22 kW. The uncertainties
are modeled as sets of intervals. For the 𝑒𝐶𝑂2 , the set is limited by
its minimum and maximum values for the day. Thus, every day these
factors will change. Meanwhile, the EV uncertainty set is constructed
using its minimum and maximum values. In this stage, PV power
production is not considered as an uncertainty due to the accuracy of
the forecast.

The 𝑒𝐶𝑂2 is calculated for every hour using the forecast of the
power generation of the electrical grid in Italy, provided by ENTSO-
e service [31]. This factor will determine the emissions caused by the
EV’s connection to the grid. This factor varies according to the source
of the power generation at the electrical grid [32].

Then, the second stage develops any correction to the schedule
by considering the maximum values permitted from the day ahead
3

Fig. 1. Schematic of the charging station at the University of Trieste.

planning. This stage develops the real-time control and also provides an
optimal response depending on the future state of charge of the BESS.
This control considers the uncertainties as disturbances in real-time. As
the optimization for the second stage could be time-consuming, and it
is necessary to predict the BESS’s SoC for a time horizon, an eMPC.

The following sections explain the problem formulation for each
stage and the real-time control.



Sustainable Energy, Grids and Networks 38 (2024) 101381A. Cabrera-Tobar et al.

𝑈

𝑊

s
e
t

s

𝑈

𝑋

𝑊

F
t
S
b
m
n
i
t
i

𝑥

𝑢

𝑤

Fig. 2. Proposed EMS considering a two stage optimization.
f
𝑆
d

𝑆

e
o
p

𝑃

d
a
g
f

s

𝑆

𝑃

𝑃

3

E
o
d
a
a
g
t
i
b
t
a
m
p
𝑒

3. First stage optimization: robust optimization

Robust optimization minimizes an objective function while guaran-
teeing a set of constraints to be satisfied under the worst-case scenario
due to uncertainties. For this purpose, it chooses the best option under
a maximization of the uncertainties (min–max objective) [33].

In this section, the problem takes the form of an uncertain discrete
linear system:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐵𝑑𝑤𝑘, (1)

where 𝑥𝑘 ∈ R𝑛, 𝑢𝑘 ∈ R𝑚, 𝑤𝑘 ∈ R𝑝, referring to the state, the control
variable and the uncertain disturbances at time step 𝑘, respectively. The
formulation of the problem is given under a polytopic state and input
constraints for a defined planning horizon (𝑁).

𝑋 = (𝑥𝑘 𝑥𝑘+1 ...𝑥𝑘+𝑁 ), ∀𝑊 ∈ W𝑁 (2)

= (𝑢𝑘 𝑢𝑘+1 ...𝑢𝑘+𝑁−1), ∀𝑊 ∈ W𝑁 (3)

= (𝑤𝑘 𝑤𝑘+1 ...𝑤𝑘+𝑁 ). (4)

The function 𝑓 (𝑈,𝑊 ) corresponds to the predicted state after 𝑘 time
teps, which varies due to the uncertainties and the control input at
ach time step. The objective function for a robust optimization takes
he form:

min
𝑢

max
𝑤

𝑓 (𝑈,𝑊 ) (5)

ubject to:

∈ U𝑁 , ∀𝑊 ∈ W𝑁 , (6)

∈ X𝑁 , ∀𝑊 ∈ W𝑁 , (7)

∈ W𝑁 . (8)

or the current application, the dynamic of the charging station takes
he form presented in Eq. (1), where the state (𝑥𝑘) represents the BESS’s
oC (𝑆𝑜𝐶𝑘). The control input vector 𝑢𝑘 consists of two elements: the
attery charging/discharging power (𝑃 𝑏𝑎𝑡

𝑘 ) and the power from/to the
ain grid (𝑃 𝑔𝑟𝑖𝑑

𝑘 ). The second is a dependent variable of 𝑃 𝑏𝑎𝑡
𝑘 and is

ot directly controllable. The uncertain vector (𝑤𝑘) contains, as one of
ts variables, the uncertainty of the EV’s power consumption and the
ime-dependent CO2 emissions factor 𝑒𝐶𝑂2

𝑘 . Thus, the vectors appearing
n the discrete state space model are:

𝑘 = [𝑆𝑜𝐶𝑘], (9)

𝑘 =
[

𝑃 𝑏𝑎𝑡
𝑘 𝑃 𝑔𝑟𝑖𝑑

𝑘

]

, (10)

𝑘 =
[

𝑤𝐸𝑉
𝑘 𝑤𝑒𝐶𝑂2

𝑘

]

. (11)
4

e

The dynamic BESS’s model calculates the predicted BESS’s SoC
or the next time step (𝑆𝑜𝐶𝑘+1) with the current measurement of the
𝑜𝐶𝑘 and the ratio between its maximum capacity 𝐶𝑚𝑎𝑥 and 𝑃 𝑏𝑎𝑡

𝑘 for a
etermined sampling time (𝑇𝑠):

𝑜𝐶𝑘+1 = 𝑆𝑜𝐶𝑘 −
𝜂𝑏𝑎𝑡𝑇𝑠
𝐶𝑚𝑎𝑥

𝑃 𝑏𝑎𝑡
𝑘 . (12)

The dependent control variable (𝑃 𝑔𝑟𝑖𝑑
𝑘 ) can be determined by the

nergy balance equation (Eq. (13)). It governs the charging station’s
peration at each time step (k), ensuring that the sum of the battery
ower, grid power, and PV power equals the EV power consumption:
𝑏𝑎𝑡
𝑘 + 𝑃 𝑔𝑟𝑖𝑑

𝑘 + 𝑃 𝑝𝑣
𝑘 = 𝑃 𝑒𝑣

𝑘 . (13)

The objective function looks to minimize the total CO2 emissions
ue to the connection of the charging station with the grid when an EV
rrives, which depends on the hourly CO2 emission factor (𝑒𝐶𝑂2

𝑘 ). The
eneral objective function without uncertainties takes the following
orm:

min
𝑝𝑔𝑟𝑖𝑑

=
𝑁−1
∑

𝑘=0
𝑒𝐶𝑂2
𝑘 ⋅ 𝑃 𝑔𝑟𝑖𝑑

𝑘 (14)

.t

𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑘 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥, (15)
𝑔𝑟𝑖𝑑
𝑚𝑖𝑛 ≤ 𝑃 𝑔𝑟𝑖𝑑

𝑘 ≤ 𝑃 𝑔𝑟𝑖𝑑
𝑚𝑎𝑥 , (16)

𝑏𝑎𝑡
𝑚𝑖𝑛 ≤ 𝑃 𝑏𝑎𝑡

𝑘 ≤ 𝑃 𝑏𝑎𝑡
𝑚𝑎𝑥. (17)

.1. Uncertainties

The objective function introduced above assumes that 𝑒𝐶𝑂2
𝑘 and the

V power consumption is certain. To account for uncertainties, then the
bjective function has to be minimized under the worst-case scenario
ue to the uncertainties corresponding to the EV’s consumption (𝑤𝑒𝑣)
nd the CO2 emissions factor (𝑤𝑒𝐶𝑂2 ) respecting the main constraints
nd the power balance. These uncertainties are modeled as intervals
iven by 𝑤𝑒𝑣

𝑘 ∈ [𝑃 𝑒𝑣
𝑚𝑖𝑛, 𝑃

𝑒𝑣
𝑚𝑎𝑥]𝑘 and 𝑤𝑒𝐶𝑂2

𝑘 ∈ [𝑒𝐶𝑂2
𝑚𝑖𝑛 , 𝑒𝐶𝑂2

𝑚𝑎𝑥 ]𝑘 that affects
he constraints, the state model, the objective function, and the control
nputs at every time step (𝑘 = 1,… , 𝑁 − 1). The intervals are defined
y their possible minimum and maximum values. In the case of 𝑤𝑒𝑣,
he minimum and maximum power values of the EV users for the day
re considered. On the other hand, for the 𝑤𝑒𝐶𝑂2 , the minimum and
aximum values are calculated every day after receiving the grid’s
ower generation forecast from ENTSO-e. With the available data, the
𝐶𝑂2 is calculated for every hour as shown in [32]. Because this is an
stimation of the grid’s generation, these values cannot be assumed as
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certain, and thus, we take only the minimum and the maximum values
to set the boundaries of the interval corresponding to 𝑤𝑒𝐶𝑂2 .

The problem formulation, including the uncertainties, takes the
ollowing form:

min
𝑝𝑔𝑟𝑖𝑑

max
𝑤𝑘

=
𝑁−1
∑

𝑘=0
𝑤𝑒𝐶𝑂2

𝑘 ⋅ 𝑃 𝑔𝑟𝑖𝑑
𝑘 (18)

.t
𝑏𝑎𝑡
𝑘 (𝑤𝑘) + 𝑃 𝑔𝑟𝑖𝑑 (𝑤𝑘)𝑘 + 𝑃 𝑝𝑣(𝑤𝑘)𝑘 = 𝑃 𝑒𝑣

𝑘 , (19)

𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑘(𝑤𝑘) ≤ 𝑆𝑜𝐶𝑚𝑎𝑥, (20)
𝑔𝑟𝑖𝑑
𝑚𝑖𝑛 ≤ 𝑃 𝑔𝑟𝑖𝑑

𝑘 (𝑤𝑘) ≤ 𝑃 𝑔𝑟𝑖𝑑
𝑚𝑎𝑥 , (21)

𝑏𝑎𝑡
𝑚𝑖𝑛 ≤ 𝑃 𝑏𝑎𝑡

𝑘 (𝑤𝑘) ≤ 𝑃 𝑏𝑎𝑡
𝑚𝑎𝑥 (22)

𝑒𝑣
𝑚𝑖𝑛 ≤ 𝑃 𝑒𝑣

𝑘 ≤ 𝑤𝑒𝑣
𝑚𝑎𝑥, (23)

𝑒𝐶𝑂2
𝑚𝑖𝑛 ≤ 𝑒𝐶𝑂2

𝑘 ≤ 𝑤𝑒𝐶𝑂2
𝑚𝑎𝑥 . (24)

The output of the robust optimization corresponds to the optimized
alues of 𝑃 𝑏𝑎𝑡

𝑘 and 𝑃 𝑔𝑟𝑖𝑑
𝑘 for the worst-case scenario. Then, the max-

mum value the charging station can provide to the EV is calculated
sing Eq. (13). Thus, the main output variable from the first stage
ptimization is the hourly profile of the maximum power to charge the
V (𝑃 𝑒𝑣

𝑚𝑎𝑥𝑘
), which will be part of the main constraints for the second

tage.

. Second stage optimization: Explicit model predictive control

In the current application, eMPC is used to give the optimal response
f the charging station under disturbances. The performance of this
MPC is similar to a conventional MPC, but it adds an extra step
ecause the solution is calculated offline, considering the disturbances
s uncertain parameters. The uncertainties are modeled as bounded
arameters. The eMPC creates regions of operation that are formed
onsidering the main constraints, the limits of the uncertainties and the
alue of the objective function. These regions are saved as functions,
here the main parameters are uncertainties.

Then, in online mode, at every time step, the control checks the
tate of the system, SoC, EV, PV and evaluates the regions to get the
alues for the 𝑃 𝑏𝑎𝑡 and the 𝑃 𝑔𝑟𝑖𝑑 . The formulation of the eMPC is based
n the state model of the state of charge of the battery, at every time
tep (i).

The dynamic discrete model to characterize the operation of the
harging station responds to the same equations presented in the
revious section (Eqs. (1)–(13)). The state and the control vectors for
he discrete model are: 𝑥𝑖 = [𝑆𝑜𝐶𝑖], 𝑢𝑘 = [𝑃 𝑏𝑎𝑡

𝑖 , 𝑃 𝑔𝑟𝑖𝑑
𝑖 ]. However, for

he eMPC formulation, the uncertainties (𝛩) considered are the PV
ower production (𝜃𝑝𝑣𝑖 ), the EV consumption (𝜃𝑒𝑣𝑖 ) and the BESS SoC
𝜃𝑆𝑜𝐶𝑖 ) at every time step 𝑖 as these parameters influence the eMPC’s
erformance. Thus, the vector state, the control, and the uncertainties
ectors are:

𝑖 = [𝑆𝑜𝐶𝑖], (25)

𝑖 =
[

𝑃 𝑏𝑎𝑡
𝑖 𝑃 𝑔𝑟𝑖𝑑

𝑖

]

, (26)

𝑖 =
[

𝜃𝑝𝑣𝑖 𝜃𝑒𝑣𝑖 𝜃𝑆𝑜𝐶𝑖
]

. (27)

he main objective function aims to minimize the use of the grid to
rovide power to the EV and the BESS when this is discharged, and it is
ood timing to charge it without causing an increase in emissions. The
inimization is calculated for a prediction horizon (𝑁𝑝). The objective

unction (𝐽 (𝑖)) includes the power from the grid, the BESS, and the
ower from the PV. The EV can charge with a combination of power
rom these three sources. Furthermore, the grid or the PV modules can
lso charge the BESS. Thus, the same priority is given to each power
ource. The objective function is expressed as follows:

min 𝐽 (𝑖) =
𝑁𝑝−1
∑

(𝑃 2
𝑔𝑟𝑖𝑑 (𝑖) + (𝑃 2

𝑏𝑎𝑡(𝑖) + 𝑃 2
𝑝𝑣(𝑖))). (28)
5

𝑖=1
b

The constraints for the eMPC are the same as the robust opti-
ization detailed in Eq. (14). However, another constraint is added

egarding the power limitation provided to the EV, which is limited
y the 𝑃 𝑒𝑣

𝑚𝑎𝑥𝑘
calculated in the first stage (0 ≤ 𝑃 𝑒𝑣

𝑖 ≤ 𝑃 𝑒𝑣
𝑚𝑎𝑥 𝑘).

The formulation of the eMPC is based on multiparametric program-
ing (MPP), which solves the problem offline according to the ranges

f uncertain parameters [17,34–36]. The objective function, presented
n Eq. (28), takes the form of:

(𝜃) = min
𝑢∈R

(𝑄𝑢 +𝐻𝜃 + 𝑐)𝑇 𝑢

s.t. 𝐺(𝜃)𝑢 ≤ 𝐹 + 𝐸𝜃

𝜃 ∈ 𝛩 ⊂ R𝑞

𝜃𝑚𝑖𝑛𝑙 ≤ 𝜃𝑙 ≤ 𝜃𝑚𝑎𝑥𝑙 , 𝑙 = 1,… , 𝑞.

(29)

n this equation, 𝛩 is the space of the uncertainty parameters, 𝑄 ∈
(𝑛𝑥𝑛), 𝐻 ∈ R(𝑛𝑥𝑞), 𝑐 ∈ R𝑛, 𝐺 ∈ R(𝑚𝑥𝑛), 𝐺 ∈ R(𝑚𝑥𝑛), 𝐹 ∈ R𝑚, and

𝐸 ∈ R(𝑚𝑥𝑞). The mathematic transformation is developed using MPT
Toolbox from Matlab, and it is explained in [37]. The solution takes
the form of:

[𝑢(𝑖)] = 𝛼 ⋅ 𝜃1(𝑖) + 𝛽 ⋅ 𝜃2(𝑖) + 𝛾 ⋅ 𝜃3(𝑖), (30)

where, 𝛼, 𝛽, and 𝛾 are coefficients to determine the control law (𝐶𝐿𝑖)
for a specific value that takes the uncertain parameter in time 𝑖.

For the current application, the control law is in function of three
uncertainties: (𝜃𝑝𝑣), (𝜃𝑒𝑣), (𝜃𝑠𝑜𝑐). The control law takes the following
form:

[𝑃 𝑏𝑎𝑡
𝑖 𝑃 𝑔𝑟𝑖𝑑

𝑖 ] = 𝛼 ⋅ 𝜃𝑝𝑣𝑖 + 𝛽 ⋅ 𝜃𝑒𝑣𝑖 + 𝛾 ⋅ 𝜃𝑠𝑜𝑐𝑖 . (31)

n MPP formulation, the uncertainties are modeled as intervals. In
his case, the uncertainties are limited by their min and maximum
alue possible: 𝜃𝑝𝑣 ∈ [𝑃 𝑝𝑣

𝑚𝑖𝑛 𝑃 𝑝𝑣
𝑚𝑎𝑥], 𝜃𝑒𝑣 ∈ [𝑃 𝑒𝑣

𝑚𝑖𝑛 𝑃 𝑒𝑣
𝑚𝑎𝑥] and 𝜃𝑆𝑜𝐶 ∈

𝑆𝑜𝐶𝑚𝑖𝑛 𝑆𝑜𝐶𝑚𝑎𝑥].
The output of the second stage is the control variables: 𝑃 𝑏𝑎𝑡

𝑖 , 𝑃 𝑔𝑟𝑖𝑑
𝑖 ,

nd 𝑃 𝑒𝑣
𝑖 . The first two endow the power profile of the charging station,

nd the last one limits the power to charge the EV.

.1. Real time control

The control operation of this algorithm happens in various periods
f time. The eMPC runs just once in the lifetime of the system and
ffline. The control laws are saved as a lookup table; the control
lgorithm can evaluate them anytime. At the beginning of the day
t = 00:00), the state of the charging station is evaluated, which
eans measuring the BESS’s SoC and the EV’s power consumption in

he case it is connected. Moreover, the daily hourly profiles of the
O2 emissions and the PV power production are calculated. Then, the
obust optimization runs and the maximum EV’s, BESS’s, and the grid’s
ourly power profile for the day are calculated and saved. Then, at
very time step (𝑖), the values of the uncertain parameters: 𝜃𝑝𝑣, 𝜃𝑒𝑣,
𝑠𝑜𝑐 are measured. The first stage of optimization limits the maximum
alue that can take the uncertainty of 𝜃𝑒𝑣. With the real value, the
olution saved by the eMPC is evaluated for the entire 𝑁𝑝, and the
orresponding values of 𝑃 𝑏𝑎𝑡 and 𝑃 𝑔𝑟𝑖𝑑 are calculated. The solution sent
o the charging station is only for one sampling time. This is repeated
very sampling time for all day. The steps for the algorithm are shown
n Algorithm 1.

. Analysis and results

The algorithm developed considering two-stage optimization was
valuated at the charging station in Trieste. The platform is illustrated
n Fig. 3, where the Control room communicates with the Transmission
ystem Operator (TSO) by API services, with the different sensors from
he PV system using RS485 serial protocol and the EV charging station

y the internal University network.
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Algorithm 1 Real time control
1: Run eMPC (one time)
2: Save Control laws
3: if 𝑡 = 00 ∶ 00 then
4: 𝐶𝑂2(𝑡 = 1 ∶ 24), 𝑃 𝑝𝑣(𝑡 = 1 ∶ 24)
5: 𝑆𝑜𝐶𝑡0 , 𝑃

𝑒𝑣
𝑡0

6: Run Robust optimization
7: 𝑢𝑘 ← 𝑃 𝑔𝑟𝑖𝑑

𝑚𝑎𝑥 𝑘, 𝑃
𝑏𝑎𝑡
𝑚𝑎𝑥 𝑘,

8: 𝑃 𝑒𝑣
𝑚𝑎𝑥 𝑘 ← 𝑃 𝑔𝑟𝑖𝑑

𝑚𝑎𝑥 𝑘 + 𝑃 𝑏𝑎𝑡
𝑚𝑎𝑥 𝑘 + 𝑃 𝑝𝑣

𝑘 ,
9: end if

10: for i=1:288 do
Require: 𝑃 𝑝𝑣

𝑖 , 𝑃 𝑒𝑣
𝑖 , 𝑆𝑜𝐶𝑖

11: if 𝑃 𝑒𝑣
𝑖 ≥ 𝑃 𝑒𝑣

𝑚𝑎𝑥 𝑖 then
12: 𝑃 𝑒𝑣

𝑖 ← 𝑃 𝑒𝑣
𝑚𝑎𝑥 𝑖

13: else
14: 𝑃 𝑒𝑣

𝑖 ← 𝑃 𝑒𝑣
𝑖

15: end if
16: Evaluate Control laws
17: 𝑃 𝑔𝑟𝑖𝑑

𝑖 , 𝑃 𝑏𝑎𝑡
𝑖

18: end for

Fig. 3. Control architecture for the proposed EMS.

The robust optimization is calculated daily, which varies depending
on the minimum and maximum values of the 𝑒𝐶𝑂2 emissions predicted
for the day. For this, the Control room communicates with ENTSO-
e, which provides the expected power generation for every hour and
per type. For the current purpose of this article, the data taken into
account will be the Actual Generation per production type, and the
country chosen is Italy. The production types stored in this data are
biomass, fossil brown coal/lignite, fossil coal-derived gas, fossil gas,
hard fossil coal, fossil oil, oil shale, and fossil peat. It also stores
data on geothermal, hydro pumped storage, hydro run-of-river, and
poundage, hydro water reservoir, marine, nuclear, solar, and wind
(onshore and offshore). For the present analysis, oil shale, fossil peat,
nuclear, marine, and wind offshore are not considered as these sources
have no power for the Italian case. In Italy, fossil brown coal/lignite,
fossil coal-derived gas, and hard fossil coal are considered in the same
6

Table 2
Main parameters of the charging station.

Parameters Min Max Units

𝑃 𝑔𝑟𝑖𝑑 −3.9 22 kW
𝑃 𝑒𝑣 0 22 kW
𝑃 𝑖𝑛𝑣 −4.1 4.1 kW
𝑃 𝑝𝑣 0 4.1 kW
𝑃 𝑏𝑎𝑡 −3.3 3.3 kW
𝑆𝑜𝐶 0 100 %

category known as solid [38]. For the case of gas classification, the
present study will consider only natural gas.

The monthly variation of the 𝑒𝐶𝑂2 is illustrated in Fig. 4, which
shows that, for 2019, February was the month with the higher hourly
maximum 𝑒𝐶𝑂2 , followed by January, October, and November. How-
ever, also July shows a maximum 𝑒𝐶𝑂2 higher than the other years,
close to 0.35 kg/kWh. In 2020, the months with a higher maximum
𝑒𝐶𝑂2 were December, February, and March for winter, August for sum-
mer, and October for Winter. In 2021, however, the higher maximum
𝑒𝐶𝑂2 was from October to December. It can be noticed that during May
and June, for the three years, the factor was reduced and reached its
minimum (0.1 kg/kWh) in 2019. The factor has been increasing in
December, but the average has been reduced in January for these three
years. Considering the average values, 𝑒𝐶𝑂2 goes from 0.27 to 0.21
from January to May and increases to 0.31 in December for 2021. The
same behavior is repeated for the other years, with a negative gradient
from January to May and reversing from June to December. Due to this
variability, it is important to consider this variation in the EMS for a
more environmental decision.

In this article, the analysis of the Robust-eMPC methodology con-
siders the everyday emissions during May 2022 (Fig. 5). As can be
seen every day, the emissions factor varies during the day. This can
be calculated with the daily ahead power forecast from ENTSO-e.
However, this prediction could face some errors due to the variability
of electric power demand and generation. Thus, the 𝑒𝐶𝑂2 calculated
for the current research is an estimation and thus uncertain. Therefore,
the Robust optimization optimizes considering the daily estimated 𝑒𝐶𝑂2

considering the minimum and maximum value estimated for the day.
Three more case approaches are presented for comparison in the

validation of the present algorithm. The case studies are: (i) Normal
Operation, (ii) Deterministic Approach, (iii) Robust and Model Predic-
tive Control, and (iv) Robust and Explicit Model Predictive Control (the
algorithm proposed in this paper). The description of these approaches
is explained in this section. Table 2 presents the corresponding rated
power for all the approaches.

For normal operation (NO), the charging station operates with a
conventional control that manages the energy from different sources.
The control has three orders of priority. The main priority is to charge
the EV with the necessary power when it arrives. The power can come
from the PV/BESS or the grid. Meanwhile, the second priority is to
charge the BESS when PV production is in progress. The PV power is
fed into the grid if BESS is fully charged.

For the deterministic approach (DO), the two stages of optimization
assume to know the exact time of the EVs connection and the exact
𝑒𝐶𝑂2 emissions forecast, together with the PV power production. For
the day ahead, linear programming is chosen with the same objective
function presented in Eq. (14). For the second stage, a conventional
MPC is applied.

For the Robust and conventional MPC (RO-MPC), the first stage
of optimization is developed using Robust Optimization (RO) at the
beginning of the day. Two main uncertainties are considered: CO2
emissions and EV power consumption. The connection or disconnection
of the EV is unknown. An energy schedule is delivered for the day,
focusing on the maximum possible power the charging station can
deliver to the EV. The second stage is developed in real-time using a
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Fig. 4. Box and whiskers plots showing monthly hourly average Emissions factor per month for 2019, 2020, and 2021. In each box, the horizontal line is the median 𝑒𝐶𝑂2 , and
the box’s lower and upper edges are the 25th and 75th percentile, respectively.
Fig. 5. Variable CO2 emissions factor due to the electrical grid in Italy (May 2022).
conventional MPC, which uses the problem formulation presented in
Eq. (28).

Meanwhile, the last case study considers the current proposed algo-
rithm using Robust Optimization and eMPC (RO-eMPC). Same as in the
previous case, the first stage is developed using Robust Optimization
to provide the energy schedule of the charging station for the day. In
offline mode, the explicit solution of an MPC is calculated for any case
scenario. The main uncertainties are PV production, EV consumption,
and BESS’s SoC. The explicit solution saved offline corresponds to the
second stage optimization, which uses the main objective function pre-
sented in Eq. (28) but also adding the uncertain parameters (Eq. (27)).
The uncertainties for the eMPC are limited by the values presented in
Table 3. The explicit solution creates regions as functions of the main
7

uncertainties, as shown in Fig. 6. Then, the decisions are made in real-
time, using the actual measurements, searching for the explicit solution
of the corresponding region, and then calculating the optimal output.

5.1. Energy analysis

This section presents the energy analysis of the various study cases.
We first present the power profile for each of the study cases for
one week of May (from the 9th to 13th of May 2022), during which
various conditions can be seen: variation of EV arrival time, power
consumption, and PV power production. Fig. 7 presents the response
for the NO. Table 4 summarizes the total energy delivered to the EV
for every studied case.

During normal operation, it can be seen that the EV arrival time
is not at night. The University of Trieste set this as mandatory for
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Fig. 6. Regions created using eMPC.

Fig. 7. Power profile of the charging station in normal operation (9th to 13th of May
2022).

the users. As it is a university facility, the EVs do not connect during
weekends. During the week analyzed, it can be seen that the EV demand
varies randomly from 3 kW to 23 kW. Moreover, four EVs could be
connected as maximum at the charging station. The charging station
first supplies the power to the EV using the BESS and the PV system. For
instance, on the second day (day 10th), there are four different profiles
of EV power consumption. The first EV power consumption starts at
8 a.m., consuming power from 14.5 kW, then reduces to 11.26 kW,
finishing its charging at 12 p.m. The second EV power consumption
starts from 12:30 p.m. to 14:25 p.m. and is 11 kW. Then, a third EV
is connected for only two hours in the afternoon from 14:25 p.m. The
power required by this EV is 3.6 kW. Finally, the last EV is connected
from 17:25 to the end of the day with a power consumption of 11.2 kW.

The maximum power that the inverter provides is 4.1 kW. On the
first day, the BESS supplies power to the EV early in the morning.
However, as the BESS’s SoC is depleted, during the rest of the BESS, the
power supplied to the EV uses the power from the PV array and the grid
and not from the BESS. Moreover, as the charging station remains busy,
the BESS does not charge during the day. Thus, on the second day, the
BESS can only provide power after midday as it could charge between
12 and 12:40. The same occurs at the end of the day but could charge
completely at any moment. Thus, it gets depleted at the end of the day.
Only three EVs were connected to the charging station on the third day.
The BESS has time to charge from 10 a.m. to 13:30 p.m.; thus, it can
provide energy to the following EVs. As the BESS is completely charged,
the surplus of PV production is sent to the grid. The following day, as
the BESS is completely charged, the charging station provides a total of
4.1 kW to the EVs, reducing the grid’s power consumption. As can be
8

Table 3
Minimum and maximum values for the main uncertainties considered in
the eMPC formulation.

Uncertainties Min Max Units

𝑃 𝑒𝑣 0 25 kW
𝑃 𝑝𝑣 0 3.9 kW
𝑆𝑜𝐶 0 100 %

Table 4
𝐸𝑒𝑣 for every approach (MWh).

Week NO DO RO-MPC RO-eMPC

2–6 of May 3,44 2,79 1,83 1,83
9–13 of May 4,02 3,38 2,63 2,63
16–20 of May 2,56 2,31 0,82 0,82
23–27 of May 3,03 2,52 1,51 1,51
Total 13,05 11,00 6,79 6,79

seen, when the priority is the load, the BESS is not charged. Because the
charging station also depends on the grid, it is necessary that the EV can
charge during times with higher renewable energy production in the
grid. Thus, leaving it to the BESS to charge with the PV system installed
at the university and being used when the grid cannot provide clean
energy. Also, it is important to notice that the charging station will
consume more power from the grid when the CO2 emissions intensity
factor is higher in the week.

For the DO, the day ahead and the real-time operation are illustrated
in Fig. 8a and 8b, respectively. For the day ahead, the power from the
grid is limited, considering the exact time the EVs arrive. This power
profile is built with the knowledge of the behavior of the EV demand
but not the BESS’s SoC variation during the day. During the day, the
charging station limits the power that it can provide to the EVs. For
instance, on the fourth day, the EV power is limited to 11 kW at 12.30
p.m. despite the EVs needing a power of 23 kW. Moreover, the BESS is
charged at night, commonly from 2 a.m. until 6 a.m. The PV and the
BESS are managed during the real-time operation thanks to the MPC.
It can be seen that the BESS supports the delivery of power to the EV
and it is charged when the emissions intensity factor is low.

The power profile corresponding to the RO-eMPC is presented in
Fig. 9a and Fig. 9b for the day ahead and the real time operation, re-
spectively. The EV’s arrival time and power consumption are unknown
in this case. The day ahead robust optimization provides a conservative
power optimization solution considering the worst-case scenario for EV
consumption and CO2 emissions intensity factor. Compared with DO,
this provides the maximum power that can be supplied to the EV every
hour and not only at certain times. It is important to notice that during
the second week of the test, the EV’s power is especially limited during
the third day as the 𝑒𝐶𝑂2 emissions factor is higher, and the BESS needs
to charge for the following days. Then, compared to DO, the power is
limited to lower values. Moreover, the day-ahead schedules limited the
EV power, depending on the PV power production and the expected
variable emissions factor. For instance, on the first day, the charging
station can provide power close to 17 kW for various hours during
the day in DO. Meanwhile, using RO, the power is limited to less than
10 kW all day, but only at noon; it is permitted to provide a maximum
power of 16 kW for a single hour. Then, it reduces to a maximum of
5 kW. However, on Friday 13th, the charging station’s maximum power
increases per hour, going from 5 kW to 10 kW. This occurs as this day
the grid presents a higher emissions factor during the morning, and
it reduces at night. During real-time operations using MPC or eMPC,
the BESS is used more often than in normal operations or deterministic
purposes. It is important to mention that the response of RO-MPC and
RO-eMPC are similar; only the computational time varies.

5.2. Environmental impact

The CO2 emissions factor varies daily, as illustrated in Fig. 5. Thus,

the response of the proposed technique in this paper varies depending



Sustainable Energy, Grids and Networks 38 (2024) 101381A. Cabrera-Tobar et al.
Fig. 8. Power profiles of the charging station for Deterministic Optimization (DO) (9th
to 13th of May 2022) (a) Day ahead power profile, (b) real-time optimization using
MPC.

Table 5
CO2 emissions generated for every approach ([g]).

Week NO DO RO-MPC RO-eMPC

2–6 of May 739,96 464,17 110,00 113,00
9–13 of May 735,71 536,88 400,00 402.80
16–20 of May 421,56 297,80 61,50 61,50
23–27 of May 548,47 374,73 179,10 181,20
Total 2445,70 1673,58 750,20 759,00

on the day and the studied case. Table 5 summarizes the emissions for
every approach. For instance, during the first week, the CO2 emissions
factor is high, varying from 0.2 to 0.4 kg/kWh. Meanwhile, the vari-
ation is from 0.13 to 0.33 kg/kWh during the third week. In normal
operation, the microgrid supplies the energy to the EV as required.
However, using two-stage optimization, we limit the energy delivered
to the EV depending on the variability of the CO2 emissions factor
and the arrival time. Using the proposed algorithm (RO-eMPC), the
energy supplied to the EV is reduced by 54% in comparison with
normal operation and by about 45%, comparing it with a deterministic
approach. In turn, it represents a reduction of 69% in emissions due
to the grid’s connection. It is important to point out that RO-eMPC
approximates the control laws of the RO-MPC, which in response causes
a small increase of CO2 emissions, a maximum of 2% during the first
week.

5.3. Computational time

The software used for the simulation is Matlab/Simulink. Mean-
while, the solver for the robust and the eMPC optimization is Yalmip,
which also interacts with the MPT 3.0 toolbox [39,40]. Table 6 summa-
rizes the computational time required for each study case. In the first
9

Fig. 9. Power profiles of the charging station for Robust Optimization (RO) (9th to
13th of May 2022) (a) Day ahead power profile, (b) real-time optimization using eMPC.

case, the maximum time that the Robust Optimization takes to solve
the energy schedule for the day can vary from 13 s to 78 s depending
on the available data. However, for the deterministic approach, where
all the data are known and assumed as certain, the computational time
to calculate the energy schedule for the day can vary between 0.2 s to 4
s. For the second stage optimization, Fig. 10 presents the computational
time at every time step MPC or eMPC. The time varies at every time
step, depending on the available data. On average, the use of the eMPC
represents a reduction of time from 30 to 70% in comparison with a
conventional MPC.

Robust Optimization helps generate a possible energy schedule
during the day by considering the variable CO2 emissions factor and
the EV’s power consumption uncertainty. Although the computation
time is higher than a deterministic approach, the main advantage is
that it can help reduce the CO2 emissions due to the grid’s connection
and provides a realistic energy schedule during the day, considering
the possible uncertainties. Moreover, using the eMPC for the second
stage optimization helps to have an optimal response when disturbance
happens, such as the arrival of the EV, the PV variation, and the BESS’s
SoC, without affecting the computational time. The eMPC is a good
solution for real-time operation, offering to find a solution in less than
0.1 s.

6. Conclusions

This paper presented a demand response of an EV charging station
using RO-eMPC considering uncertainties like EV’s power consumption
and the grid’s carbon intensity factor. The solution was implemented
in a real charging station located at the University of Trieste in Italy.
The conclusions can be drawn as follows.
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Table 6
Computational time for the first stage optimization [s].

Week Day 1 Day 2 Day 3 Day 4 Day 5

RO DO RO DO RO DO RO DO RO DO

2–6 of May 34.5 4 33 0.6 29 0.5 26 0.4 19 0.6
9–13 of May 38.9 0.6 78 0.5 51 0.4 55 0.4 38 0.6
16–20 of May 17.1 0.3 22 0.4 15 0.3 12 0.3 17 0.2
23–27 of May 13.3 0.2 18 0.4 15 0.3 13 0.3 17 0.2
g
W
W
t
–
a
S

D

c
i

D

R

Fig. 10. Ratio of the computational time for every time step to run MPC and eMPC
9th to 13th of May 2022). The time MPC takes to solve the online optimization varies
rom 50 to 150 times more than with eMPC.

To manage uncertainties, we proposed a two-stage optimization
hat is easy to implement in a real charging station. The first stage
as a robust optimization that runs every day, using information from

he utility service concerning the forecasted power generation from
he grid. Then, the expected carbon intensity factor from the grid is
alculated. Then, the robust optimization adapts the bounds of the
ncertainty regarding the carbon intensity factor and searches for the
ptimal energy schedule for the charging station, focused especially on
he total power that can be provided to the EVs to have less carbon
mission footprint for the day.

The second stage was developed to run in online mode but reducing
he computational time. Thus, eMPC was used for this stage because
ts operation is similar to a conventional MPC, but its solution was
alculated offline, considering uncertainties such as PV production, EV
ower consumption, and the BESS’s SoC.

The solution proposed in this article has been easy to implement and
dapt to the real charging station located at the University of Trieste.
he control algorithm could run in real time taking into account the en-
rgy schedule and the optimal energy management. As the eMPC only
eeds to enter the critical regions, no special computational platform is
eeded to run it, and it only needs 0.1 s to provide an optimal response.
oreover, the robust optimization was also easy to implement and only

ook 13 s to 78 s to provide an energy schedule for the day. The results
howed that with this approach, the CO2 emissions were reduced by
bout 69% as the energy delivered to the EV was limited by the energy
chedule optimal calculated by the Robust Optimization. Compared
ith other studies in the area, this study was the first to consider a
ariable carbon intensity factor considering the grid power generation
ariability.
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