In orbit fragmentation reconstruction and collision risk estimation.

Andrea Muciaccia, Giudici Lorenzo, Camilla Colombo
Politecnico di Milano
Verso una capacità nazionale di Sorveglianza dello Spazio, Bologna, Italia
6 September 2022
Background

- Increasing number of objects around the Earth
 - Several new launches
 - Several breakup events every year
 - New fragments detected by SST

- Needs to
 - Properly track the objects
 - Investigate the origin of newfound fragments
 - Perform collision risk estimations

Evolution of the number of objects

- ESA, “ESA’s Annual Space Environment Report”, 2022
Fragmentation detection

PUZZLE

- Initially developed for ASI to support SST services

Objectives:
- Detection of fragmentations
- Characterisation of masses and energy

Main features:
- No assumption of breakup
- Using *comparison metrics* and *convergence analysis*
- Osculating or *mean* orbital elements

Functionalities:
- Short-term (days) investigation
 - Uncertainty propagation (using a GMM approach)
- Long-term (months up to years) investigation

STARLING 2.0

- Developed within an ESA project
- Dual goal
 - Characterisation and Propagation of fragments clouds through a continuum approach
 - Estimation of the probability of impacts with defined targets
- Approach
 - Dynamics agnostic model
 - Up to 6D phase space of slow varying Keplerian elements and A/M
 - Kinetic gas theory analogy

European Space Agency contract 4000133981/21/D/KS
Test case

Definition

Fragmentation detection

- **General:**
 - Collision: Iridium 33 – Cosmos 2251
 - Date of the event: 10 February 2009
 - Size of initial set: 1500 TLEs (including parent(s) and generated fragments - 22 objects)
 - Reference date of initial TLE set: 18 February 2009

- **Objective:**
 - Identification of the event (epoch, involved objects, etc.)

Collision risk analysis

- **General:**
 - Event characteristics (e.g., location): from PUZZLE
 - Timespan of the analysis: 15 years
 - Targets: 175 active objects (2009)

- **Objective:**
 - Collision risk analysis on targets
Test case

Fragmentation detection

- Event epoch (minimum distance between the objects set at 5 km):
 - Estimate: 10 February 2009, 16:55:40
 - Margin: ± 0.417 min
- Families of objects in the estimated interval:
 - 2 orbital families (Collision)
- Objects associated to the event:
 - 22 objects
 - Parent ID: 22675 (Cosmos 2251), 24946 (Iridium 33)
- Computational time*: ~ 9 min

*Intel(R) Core(TM) i7/7700 CPU @ 3.60GHz
Test case

Collision risk analysis

- Fragments cloud generation and propagation
- Estimation of the cumulative collision probability between the fragments generated by the breakup and the targets
- Selection of the 10 most at-risk objects

\[P_{\text{target}} = \text{cumulative collision probability associated to a single target} \]

\[P_{\text{total}} = \text{cumulative collision probability associated to the entire set of targets} \]
Test case

Collision risk analysis

Target: DMSP 5D-3 F-15 (cross section: 28.16 \(m^2\))

Impact rate over time between the generated fragments and the target

Mean impact rate and cumulative collision probability over time
Conclusions

- Identification fragmentation as early as possible
- Modelling the fragmentation event detected
- Performs analysis of effects on orbiting objects
The research activities described in this presentation were performed within European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 679086 – COMPASS).

In orbit fragmentation reconstruction and collision risk estimation.

Andrea Muciaccia, Lorenzo Giudici, Camilla Colombo
Politecnico di Milano
andrea.muciaccia@polimi.it

@COMPASS_ERC
www.compass.polimi.it