
Active elasticity drives the formation of periodic beading in damaged axons

Davide Riccobelli∗

MOX – Dipartimento di Matematica, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

(Dated: June 9, 2021)

In several pathological conditions, such as coronavirus infections, multiple sclerosis, Alzheimer’s
and Parkinson’s diseases, the physiological shape of axons is altered and a periodic sequence of
bulges appears. Experimental evidences suggest that such morphological changes are caused by the
disruption of the microtubules composing the cytoskeleton of the axon. In this paper, we develop a
mathematical model of damaged axons based on the theory of continuum mechanics and nonlinear
elasticity. The axon is described as a cylinder composed of an inner passive part, called axoplasm,
and an outer active cortex, composed mainly of F-actin and able to contract thanks to myosin-II
motors. Through a linear stability analysis we show that, as the shear modulus of the axoplasm
diminishes due to the disruption of the cytoskeleton, the active contraction of the cortex makes
the cylindrical configuration unstable to axisymmetric perturbations, leading to a beading pattern.
Finally, the non-linear evolution of the bifurcated branches is investigated through finite element
simulations.

I. INTRODUCTION

The current pandemic of Sars-Cov-2 is raising grow-
ing concerns for its effects on the central nervous system.
During the acute stage, signs of delirium, post-traumatic
stress, depression, encephalitis, and neurocognitive disor-
ders have been reported in patients affected by COVID-
19 [1–3]. Other coronavirus diseases, such as the SARS
and the MERS, can cause similar symptoms [4]. Experi-
ments on mice have shown that human coronaviruses can
attack the central nervous system, causing cytopathic ef-
fects on neurons [5], namely the cells of the nervous tis-
sue. They are composed of the soma, that is the cen-
tral part containing the nucleus and the organelles, the
dendrites, and a single axon. Axons and dendrites are
structures which transmit electrochemical signals to and
from the soma, respectively. In particular, the axon is
composed of a long cylindrical filament, called axonal
shaft, which can bifurcate into many branches at its end,
called telodendria. In the experiments of Jacomy and
co-workers [5], the human coronavirus OC43 triggers the
formation of a periodic peristaltic pattern along the ax-
onal shaft (see Figure 1). Such a morphological change is
not an exclusive manifestation of coronavirus infections.
Similar periodic swellings have been observed in axons
affected by other pathologies, such as multiple sclerosis
[6], early stages of the Alzheimer’s [7] and Parkinson’s
disease [8], and in response to traumatic stretch injuries
[9]. The formation of periodic bulges in the axon seems
to diminish or even to inhibit its ability of transmitting
electrical signals [10].

In particular, it is believed that oxidative stress is
implicated in the genesis of several neurodegenerative
pathologies, such as the Alzheimer’s disease [11] and
through in vitro experiments it has been observed the
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formation of swellings along the axonal shaft after expo-
sure to hydrogen peroxide (see Figure 1). In this case,
the accumulation of β-tubulin III indicates that micro-
tubules have been disrupted [12]. In healthy neurons, mi-
crotubules are binded together composing the cytoskele-
ton, which is one of the main constituents of the inner
region of the axonal shaft, called axoplasm. The axo-
plasm is surrounded by a cortex, mainly composed of F-
actin filaments and myosin motors. Furthermore, many
neurodegenerative pathologies (such as the Alzheimer’s
and the Pick’s diseases) are characterized by the pres-
ence of misfolded tau proteins which can destabilize mi-
crotubules and disrupt their network, reducing the elastic
modulus of the axoplasm [13–15]. The importance of mi-
crotubule network integrity has been confirmed by other
experiments: after being exposed to nocodazole, a po-

FIG. 1. (Top left) Periodic swellings in a rat axon induced
by human coronavirus OC43, adapted from [5]. (Top, right)
Axonal beading induced by oxidative stress (40 mM of H2O2),
adapted from [12]. (Bottom) Beading of a PC12 neurite after
the exposure to 10µg/ml of nocodazole, adapted from [16].
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tent microtubule depolymerizer, axons undergo a shape
transition, exhibiting a periodic beading pattern along
the axonal shaft and, simultaneously, the number of mi-
crotubules significantly decreases [16, 17].

On these grounds, it has been suggested that axonal
beading may be the result of a mechanical instability trig-
gered by the coupling of the active contractility of the
actin cortex and microtubule depletion [16]. According
to Datar and co-workers, this is reminiscent of the elas-
tic analogue of the Rayleigh-Plateau instability, where
an elastic cylinder can be destabilized by the presence
of surface tension [18]. In the case of an axon, the cylin-
der represents the axoplasm while the contractility of the
F-actin cortex is modeled as the action of the surface ten-
sion. From a linear analysis, it is possible to prove that
the critical wavelength of the elastic Rayleigh-Plateau in-
stability is infinite [18, 19]. This instability shares many
similarities with phase-transition phenomena [20] and it
has been recently shown that the resulting buckling con-
figuration is characterized by a single localized swelling
[21–23] rather than a periodic beading as in damaged ax-
ons. This suggests that some other mechanism is involved
in the buckling of axons. In this respect, it is important
to take into account some aspects. First, the elasticity
of the axoplasm seems to be fundamental in maintain-
ing the shape of the axon [16, 24]. Second, the cortex
is composed of a network of F-actin filaments connected
together by myosin motors and spectrin: it may be over-
simplifying to model it as a surface tension acting on the
axoplasm, neglecting its elasticity. Finally, the thickness
of the actin cortex is about 80-100 nm [25] which is not
negligible compared with the radius of a human axon
(about 300-500 nm [26]).

In this paper, we show how axonal beading can be ex-
plained as the result of a purely elastic instability using a
simple mathematical model based on continuum mechan-
ics. The model is constructed in Section II, while the sta-
bility of the cylindrical shape of the axon is investigated
through a linear analysis in Section III. In Section IV
we report the outcomes of the numerical post-buckling
analysis. Finally, the main results are summarized in
Section V together with some concluding remarks.

II. THE MODEL

We denote by Ω0 the reference domain of the axonal
shaft, which is modeled as a cylinder of radius Ro. Let
X ∈ Ω0 be the material position vector, whose cylin-
drical coordinates are (R, Θ, Z). Within this reference
configuration, we identify two subregions

Ωi0 = {X ∈ Ω0 | 0 ≤ R < Ri} ,
Ωo0 = {X ∈ Ω0 | Ri ≤ R < Ro} ,

which are the subdomains representing the axoplasm and
the peripheral region occupied by the F-actin cortex, re-
spectively.

Let x = χ(X) = X + u(X) be the actual position
vector, where (r, θ, z) are the actual cylindrical coordi-
nates, while χ and u are the deformation and the dis-
placement fields, respectively. We denote by Ω = χ(Ω0)
the actual configuration and let F = Gradχ be the de-
formation gradient. The active contraction of the cortex
is modeled through the so called active strain approach
[27–29]. In particular, a multiplicative decomposition of
the deformation gradient is assumed, i.e.

F = FeFa,

where Fa is the active strain tensor describing the micro-
structural reorganization caused by the cortex contractil-
ity and maps the reference configurations to the relaxed
state ΩR, while Fe accounts for the local elastic distor-
tion, see Figure 2. We remark that the tensor Fa repre-
sents a remodeling of the material: no mass is added or
subtracted during the contraction of the cortex, so that
the mass density remains constant. Mathematically, this
can be enforced by requiring that det Fa = 1 [30]. Fur-
thermore, since actin filaments are mainly directed along
the axial and the hoop direction [31], a possible choice
for the active strain tensor is given by

Fa =


I in Ωi0,

1

λ2
a

ER ⊗ER + λa(I−ER ⊗ER) in Ωo0,
(1)

where I is the identity tensor, λa ∈ (0, 1] is the active
stretch and (ER, EΘ, EZ) is the cylindrical vector basis
in the reference configuration. According to (1), the axo-
plasm is passive while the actin cortex contracts isotrop-
ically along the directions orthogonal to ER.

Furthermore, since the axon is mainly composed of wa-
ter [32], it is reasonable to assume that it is incompress-
ible. In particular, we describe it as an elastic body com-
posed of an incompressible neo-Hookean material, whose
strain energy is given by

Ψ =
µβ
2

(
tr(FTe Fe)− 3

)
β = i, o, (2)

FIG. 2. Representation of the reference configuration Ω0, the
relaxed state ΩR, and the actual configuration Ω according to
the active strain theory.
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where µi and µo are the shear moduli of the axoplasm
and of the cortex, respectively. The balance of linear
momentum in quasi-static conditions is given by

Div P = 0, (3)

where Div is the divergence operator and P is the nominal
stress tensor. Exploiting the Clausius-Duhem inequality,
we get

P =
∂Ψ

∂F
− pF−1, (4)

where p is the Lagrange multiplier enforcing the incom-
pressibility constraint

det F = 1. (5)

Furthermore, the external surface is assumed to be stress
free, i.e.

PTER = 0, (6)

and the total length of the axonal shaft is kept fixed
during the deformation. Finally, the continuity of the
displacement and of the normal stress at the interface
between the cortex and the inner core is enforced, namely{

JuK = 0 at R = Ri,

JPTERK = 0 at R = Ri,
(7)

where J·K denotes the jump operator.
It is straightforward to show that the reference config-

uration is in mechanical equilibrium. In fact, the balance
of the linear momentum reduces to

dPRR
dR

+
PRR − PΘΘ

R
= 0. (8)

Since in this case F = I, using (2) and (4) the nominal
stress tensor can be written as

P =

{
µiI− pI 0 ≤ R < Ri,

µoF−1
a F−Ta − pI Ri ≤ R < Ro.

(9)

Substituting (9) into (8), one obtains
p(R) = C1 0 ≤ R < Ri,

p(R) =
µo
(
λ6
a − 1

)
log(R)

λ2
a

+ C2 Ri ≤ R < Ro,

(10)
where C1 and C2 are constants that are to be fixed by
enforcing the boundary and the interface conditions (6)-
(7). More explicitly, from (6) it is possible to get an
analytical expression for C2

C2 =
µo
(
λ6
a − λ6

a log(Ro) + log(Ro)
)

λ2
a

,

while, imposing the continuity of PRR at R = Ri, we
obtain

C1 = µi +

(
λ6
a − 1

)
µo(log(Ri)− log(Ro))

λ2
a

.

In the next Section, we study the stability of the refer-
ence configuration with respect to axisymmetric pertur-
bations.

III. LINEAR STABILITY ANALYSIS

In order to characterize the bifurcations exhibited by
the elastic body, we exploit the theory of incremental de-
formations [33]. In particular, we introduce a small per-
turbation of the reference state: let δu be the incremental
displacement field, we denote by Γ its gradient. We in-
troduce the incremental nominal stress tensor, given by

δP = A : Γ + pΓ− δpI,

δPij = AijhlΓlh + pΓij − δp δij ,
(11)

where summation over repeated indices is assumed, δp is
the increment of the Lagrange multiplier p, δij is the Kro-
necker delta, and A is the fourth-order tensor of elastic
moduli. It is defined as

A =
∂2Ψ

∂F∂F

∣∣∣∣
F=I

Aijhl =
∂2Ψ

∂Fji∂Flh

∣∣∣∣
F=I

.

From the expression of the strain energy (2), one obtains
Aijhl = µβ(Fe)iα(Fe)hαδjl. By linearization of the fully-
nonlinear equations (3)-(5) we get the incremental form
of the balance of linear momentum and of the incom-
pressibility constraint{

Div δP = 0,

tr Γ = 0.
(12)

These partial differential equations are complemented by
the following interface and boundary conditions

δPTER = 0 for R = Ro,

JδPTERK = 0 for R = Ri,

JδuK = 0 for R = Ri.

(13)

Let δu be an axisymmetric field such that δu =
u(R, Z)ER + w(R, Z)EZ . The following variable sep-
aration of the incremental displacement and pressure is
assumed: 

u(R, Z) = U(R) cos(kZ/Ro),

w(R, Z) = W (R) sin(kZ/Ro),

δp(R, Z) = P (R) cos(kZ/Ro).

(14)

We first solve analytically the incremental equation in
the axoplasm. Since Aajhl = µiδahδjl and the pressure p
is constant for R < Ri (see (10)), the incremental equa-
tions (12) reduce to
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RRo (kpRW ′ −RRoP ′ +Ro(µi + p)U ′ +RRo(µi + p)U ′′)− U

(
k2µiR

2 +R2
o(µi + p)

)
= 0,

− k2pRW − k2µiRW + kRRoP − kpRRoU ′ − kpRoU + µiR
2
oW
′ + µiRR

2
oW
′′ = 0,

kRW +RRoU
′ +RoU = 0,

where ′ denotes the derivative with respect to the radial
coordinate. Following the procedure exposed in [34], it
is possible to prove that a set of independent solutions,
which are continuous at R = 0 and bounded, is given by

U1 = I1

(
kR

Ro

)
,

W 1 = −I0
(
kR

Ro

)
,

P 1 = 0,

U2 = RI0

(
kR

Ro

)
,

W 2 = −2Ro
k
I0

(
kR

Ro

)
−RI1

(
kR

Ro

)
,

P 2 = 2µiI0

(
kR

Ro

)
,

(15)

where Ij is the modified Bessel function of the first kind
of order j.

While it is possible to solve analytically the incremen-
tal problem in the axoplasm, in the cortex the pressure
field p depends on R, making the differential equations
much more complicated. Nevertheless, they can still be
solved numerically. However, the incremental problem
given by (12)-(13) is numerically stiff and it is convenient
to reformulate it in a more suitable form. In particular,
we exploit the Stroh formalism [35] to recast the problem
into a system of first order differential equations. The
Hamiltionian structure of this formulation [36] allows us
to construct a robust numerical procedure. Among the
different algorithms that have been proposed in the lit-
erature, here we use the impedance matrix method [37],
which allows us to write the incremental problem as a dif-
ferential Riccati equation. Finally, a bifurcation criterion
is constructed by enforcing the continuity of the incre-
mental stress and displacement at the interface between
the cortex and the axoplasm for non trivial incremental
displacements. The details and the explicit computations
are reported in Appendix A. In the next Section, we show
and discuss the outcomes of the stability analysis.

A. Results of the linear stability analysis

The problem is nondimensionalized with respect to
the length scale Ro and the shear modulus µi, introduc-
ing the aspect ratio ρ = Ri/Ro and the stiffness ratio
µ = µo/µi. When microtubules are depolymerized, the

shear modulus of the axoplasm decreases, so that the ra-
tio µ increases. Thus, it is natural to adopt µ as control
parameter of the bifurcation.

Figure 3 shows the marginal stability curves obtained
for several values of the active stretch λa. The critical
wave-number kcr and the critical stiffness ratio µcr are
defined as the coordinates of the minima of the stability
curves. Interestingly, in contrast to the elastic Rayleigh-
Plateau instability [18, 23], the linear analysis predicts
a finite critical wave-number, see Figure 4: as the in-
ner shear modulus µi diminishes due to microtubule dis-
ruption, the straight axon buckles exhibiting a periodic
peristaltic pattern. The critical wave-number appears to
depend linearly on the aspect ratio ρ and, as one could
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FIG. 3. Marginal stability curves showing the control parame-
ter µ = µo/µi versus the dimensionless wave-number k for ρ =
0.8 (top) and ρ = 0.9 (bottom), λa = 0.2, 0.3, 0.4, 0.5, 0.6.
The arrow denotes the direction in which λa grows.
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FIG. 4. Plot of µcr and kcr versus λa and ρ.

intuitively expect, the critical stiffness ratio diminishes
as λa decreases (i.e. when the actin cortex is more con-
tracted). In general, the critical wave-number belongs to
the interval [0.5, 0.76] for all the considered values of ρ
and λa. This means that, depending on ρ and λa, the
wave-length of the pattern ranges between 8.37Ro and
12.56Ro.

Datar and co-workers [16] observed that the wave-
length of the pearling pattern induced by nocodazole on
PC12 neurites increases linearly with the radius of the
axon. In particular, the experimentally measured wave-
length is ' (11.7761± 0.7060)Ro, in agreement with the
outcomes of the stability analysis. It is to be remarked
that human axon exposed to nocodazole seems to exhibit
a longer wave-length [16]. This behavior may be caused
by the spatially inhomogeneous depolymerization of the
cytoskeleton induced by nocodazole: this drug first dis-
rupt the microtubules close to the axonal growth cone,
so that only the final part of the axonal shaft exhibits
the formation of beads. The study of axonal beading in-
duced by a spatially inhomogeneous depolymerization is
beyond the scope of this paper and will be addressed in
a future work.

The linear analysis presented in this section can be
easily generalized to arbitrary, non axisymmetric pertur-
bations following an analogous procedure. The computa-
tions are not reported explicitly but, when the symmetry
is broken by the perturbation, the axon appears to be

stable.
Compared with previous works on the buckling of lay-

ered elastic cylinders, the instability investigated in this
paper shows some interesting features. Indeed, the for-
mation of periodic patterning in cylindrical structures
induced by active processes, such as growth [38, 39] or
swelling [40], has been widely investigated: the surface in-
stability is usually triggered by a coating where the hoop
[41] or the axial stress [42] is compressive. Conversely,
in this paper the F-actin cortex contracts in both these
directions.

While the linear analysis detects the stability thresh-
old, it does not provide information on the behavior of
the buckled axons far away from the bifurcation point.
In the next Section, a numerical approximation of the
non-linear problem is proposed to overcome this limita-
tion.

IV. POST-BUCKLING ANALYSIS

In order to study the post-buckling evolution of the
bifurcated branches, the fully non-linear equations are
discretized by means of the finite element method. The
Python library FEniCS is used to implement the numer-
ical code. Assuming axisymmetry, for fixed values of λa
and ρ, we use as computational domain the rectangle

{(X, Y ) = (Z/Ro, R/Ro) ∈ (O, 2π/kcr)× (0, 1)},

where kcr is the theoretical critical wave-number aris-
ing from the linear stability analysis. Periodic boundary
conditions are imposed for X = 0 and X = 2π/kcr. Fur-
thermore, the position of the origin is fixed to avoid rigid
displacements.

Using a structured triangular mesh, the displacement
and the pressure fields are discretized by using piecewise
quadratic polynomials and piecewise constant functions,
respectively. Such a mixed formulation is numerically
stable for problems arising from incompressible elasticity
[43]. The maximum diameter of the elements is 0.0354.
A small sinusoidal imperfection (having an amplitude of
2.5·10−5) is applied to the mesh to trigger the instability.

The code is implemented using the parameter contin-
uation library developed in [44]: starting from µ = 1,
the control parameter µ is iteratively incremented of a
quantity ∆µ. The nonlinear problem is solved for using
a Newton method, adopting the solution obtained for µ
as initial guess for µ+ ∆µ.

A. Results of the numerical simulations

Let ∆r be the amplitude of the beading pattern at the
free surface, that is

∆r = max
Z∈[0, 2πRo/kcr]

r(Ro, Z)− min
Z∈[0, 2πRo/kcr]

r(Ro, Z).
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FIG. 5. Bifurcation diagram showing the normalized beading
amplitude ∆r/Ro versus the control parameter µ. The solid
and dashed lines correspond to two distinct simulations where
ρ = 0.8 and ρ = 0.9, respectively, while λa = 0.5 in both
the cases. The orange circles denote the theoretical stability
thresholds arising from the linear analysis.
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FIG. 6. Bifurcation diagram showing the energy ratio
Enum/Eth versus the control parameter µ. The solid and
dashed lines correspond to two distinct simulations where
ρ = 0.8 and ρ = 0.9, respectively, while λa = 0.5 in both
the cases. The orange circles denote the theoretical stability
thresholds arising from the linear analysis.

In Figure 5, we depict the bifurcation diagram obtained
from the numerical simulations for ρ = 0.8 and ρ = 0.9
when the active stretch λa is 0.5 [45]. We observe that
the bifurcation diagrams exhibit the typical shape of a
supercritical pitchfork bifurcation, with a continuous in-
crease of ∆r/Ro at the onset of the instability. We re-
mark that there is a perfect match with the theoretical
stability thresholds computed through the linear anal-
ysis. Counterintuitively, despite the marginal stability
threshold is higher, the normalized beading amplitude
∆r/Ro increases faster as the aspect ratio ρ is incre-
mented, resulting in a more pronounced pattern in the
nonlinear regime. Denoting by Enum and Eth the ener-
gies of the buckled and of the undeformed reference con-

FIG. 7. Deformed configurations predicted by the finite el-
ement simulations for ρ = 0.8 (snapshot “a”) and ρ = 0.9
(snapshot “b”) when µ = 2000, λa = 0.5. In the lower part
of the axons it is shown the deformed image of the axoplasm
(green) and of the actin cortex (blue).

figuration, respectively, in Figure 6 we plot the energy
ratio Enum/Eth versus the control parameter µ. Finally,
the buckled configurations for µ = 2000 are reported in
Figure 7. Interestingly, the actin cortex is thinner in
correspondence of the bulges provoked by the disruption
of the cytoskeleton, while it is thicker where the axonal
radius is minimal.

V. CONCLUDING REMARKS

Summing up, we have characterized the physical mech-
anisms underlying axonal beading due to microtubule
disassembly. Modeling the axonal shaft as a cylindrical
bilayer composed of an active hyperelastic material, the
reference configuration undergoes a mechanical instabil-
ity whenever the ratio between the shear modulus of the
cortex and of the axoplasm reaches a critical value, that
is when the elastic modulus of the axoplasm decreases be-
low a critical threshold. The simple model presented in
this paper captures the main features of axonal beading:
the elasticity of both the F-actin and the microtubules
network appears to be fundamental to describe both the
onset and the post-buckling evolution of the bifurcated
branches. While the wave-length of the instability is con-
trolled by the dimensionless parameters λa and ρ, which
are the active strain and the aspect ratio respectively, the
amplitude of the pattern is dictated by the ratio between
the shear modulus of the cortex and of the axoplasm. The
wave-length predicted by the linear analysis is in agree-
ment with experiments performed on PC12 neurites [16].
Furthermore, the postbuckling morphology predicted by
the finite element simulations is in qualitative agreement
with the experimental one (compare Figure 1 (bottom)
and Figure 8).

For the sake of simplicity, in this paper, we have as-
sumed that the depolymerization of the microtubules is
spatially homogeneous. However, in some cases the dis-
ruption of the cytoskeleton is faster close to the growth
cone, as happens in human axons exposed to nocoda-
zole [16]. This can lead to a spatial modulation of the
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FIG. 8. Buckled morphology of the axon predicted by the finite element simulations for ρ = 0.9 when µ = 2000, λa = 0.5.

wave-length of the pattern that will be studied in a fu-
ture work. Furthermore, future efforts will be devoted
to study the influence of the axoplasm poroelasticity on
the shape transitions exhibited by the axon. In fact, the
axoplasm is composed of both a solid and a fluid phase.
Modeling the axon as a poroelastic mixture, where the
microtubule depolymerization gives rise to an exchange
of mass between the liquid and solid phase, may lead to
a better fit of the experimental shapes even when the
depolymerization is spatially inhomogeneous. Another
interesting aspect that deserves further study is the role
of F-actin disruption in the process of axonal retraction
[16].

Appendix A: Stroh formulation and impedance
matrix method

In this appendix, we first rewrite the incremental equa-
tions (12) as a system of first order differential equations
exhibiting an Hamiltionian structure using the Stroh for-
malism [35]. This technique requires to consider δPRR
and δPRZ as additional unknowns of the problem, as-
suming the variable separation

δPRR(R, Z) = SRR(R) cos(kZ/Ro), (A1)

δPRZ(R, Z) = SRZ(R) sin(kZ/Ro). (A2)

By substituting (A1) into (11), we obtain an expression
for the pressure P (R) (see (14))

P (R) = U ′(R)
(
λ4
aµo + p(R)

)
− SRR(R).

It remains to determine a system of four equations for
the unknowns U, V, SRR, SRZ . These equations are the
incremental form of the incompressibility constraint and
of the balance of the linear momentum (three scalar equa-
tions), see (12), and the constitutive equation for δPRZ ,
given by (11). They can be written as the following sys-
tem of ordinary differential equations:

η′ =
1

R
Nη, (A3)

where η = [U, W, RSRR, RSRZ ] and N(R) is the 4 × 4
Stroh matrix, having the following block form

N =

[
N1 N2

N3 −NT1

]
, (A4)

where N1, N2, N3 are 2 × 2 matrices such that N2 = NT2
and N3 = NT3 . Their expressions are given by

N1 =

 −1 −kR
Ro

kRp

λ4
aµoRo

0

 , N2 =

0 0

0
1

λ4
aµo

 ,
N3 =

[
α1 α2

α2 α3

]
,

where

α1 = p

(
2− k2R2p

λ4
aµoR

2
o

)
+

µo

(
k2R2

R2
o

+ λ6
a + 1

)
λ2
a

,

α2 =
kR
(
λ4
aµo + p

)
Ro

,

α3 =
k2R2

(
λ6
aµo + µo + 2λ2

ap
)

λ2
aR

2
o

.

We can now numerically solve the incremental problem
by using the equation (A3). A very robust numerical
scheme is based on the impedance matrix method. More
explicitly, we introduce the conditional impedance matrix
Z(R, Ro) [37], so that

RS(R) = Z(R, Ro)U(R), (A5)

where U = [U, W ] and S = [SRR, SRZ ]. Plugging (A5)
in (A3), we get the following equations

U′ =
1

R
(N1U + N2ZU), (A6)

Z′U + ZU′ =
1

R
(N3U− NT1 ZU). (A7)

Substituting (A6) into (A7), we obtain a Riccati differ-
ential equation:

RZ′ = −ZN1 − NT1 Z− ZN2Z + N3. (A8)

The Riccati equation is complemented by the the initial
condition Z(Ro, Ro) = 0, corresponding to the boundary
condition δPER = 0 for R = Ro [37].

Finally, a bifurcation criterion is constructed by en-
forcing the continuity of the incremental stress and dis-
placement at the interface. Identifying with

Ui = lim
R→R−

i

U(R), Si = lim
R→R−

i

S(R),

Uo = lim
R→R+

i

U(R), So = lim
R→R+

i

S(R),
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then, from (13) and (A5), we obtain

Si = So = Z(Ri, Ro)Uo = Z(Ri, Ro)Ui. (A9)

Using (11), (A1) and (A2), denoting by
S1
RR, S

2
RR, S

1
RZ , S

2
RZ the components of S corre-

sponding to the solutions (15) for the axoplasm, we
introduce the matrices Σ(R) and Ω(R), defined as

Σ(R) =

[
S1
RR(R) S2

RR(R)
S1
RZ(R) S2

RZ(R)

]
,

Ω(R) =

[
U1(R) U2(R)
W 1(R) W 2(R)

]
.

From (A9), non-trivial solutions exist whenever [46, 47]

det

(
Σ(Ri)− Z(Ri, Ro)Ω(Ri)

)
= 0. (A10)

The Riccati equation (A8) is integrated numerically from
Ro to Ri using the software Mathematica (version
12.2), incrementing the control parameter µ for fixed val-
ues of λa, k and ρ until the bifurcation criterion (A10) is
reached.
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