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operations

Chuncheng Zhao ∗, Michele Maestrini†, and Pierluigi Di Lizia‡

Polytechnic University of Milan, Milan, Italy, 20156

I. Introduction

In recent decades, near-earth space missions such as on-orbit servicing and active space debris removal among others,

have become increasingly desirable to expand the capabilities of human activities in space [1]. Spacecraft proximity

operations, like rendezvous, inspection, and docking, play a vital role in these missions [2] and they are extensively

studied among academic communities around the world. For such tasks, a waiting phase is paramount to gain time to

receive commands or to gather information on the target satellite [3] while maintaining a safe distance. This phase,

commonly called hovering [1], was preliminary conceived as a mission concept for station keeping about small bodies

[4, 5]. Nonetheless, it has become a crucial preliminary task for proximity operations between satellites. During the

hovering phase, the active spacecraft needs to control its trajectory to maintain the desired relative state and attitude so

that it can perform a given function (e.g., inspection, pose estimation, etc. [6–8]).

From the current state of the art, two main strategies have been adopted to perform hovering. The first is to keep

hovering at a fixed relative position around the target in the LVLH frame, whereas the second strategy tries to limit the

relative trajectory in a bounded region. For the former, Dang et al. [9] studied the relative hovering control including

𝐽2 perturbation. Further, Huang et al. [10] designed nonlinear control strategies for underactuated satellites using a

sliding mode controller. Concerning the second approach, Irvin et al. [11] designed a periodic forced relative orbit (i.e.,

the teardrop orbit) inside a hovering zone using a purely geometrical approach and assuming the absence of orbital

perturbations. To maintain this relative orbit a maneuver of a given amplitude is required after each orbital period.

Consequently, the shape of the relative trajectory poses an upper limit on the duration of the mission given a certain

mass budget. Alternatively, Deaconu et al. [12] found a natural relative orbit that satisfied both the boundary constraints

of the desired hovering zone and a periodicity condition based on the parametric expressions of spacecraft relative

trajectory [13]. In absence of perturbations this relative periodic orbit does not require controls, hence minimizing

the fuel cost. Moreover, in [14] the numerical analysis of the effect of parameters on the periodic relative motion was

conducted, and the method of non-negative polynomials was used to obtain a finite description of admissible periodic

trajectories within a given region. Then, Arantes et al. [15] introduced a novel description of space-restricted periodic
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trajectories using polynomial inequalities, which is simpler and more numerically efficient. Subsequently, a global

stability controller with a three-impulse sequence was designed in Ref. [16] according to the novel admissible trajectory

set. Recently, Sanchez et al. [17] proposed an event-triggered controller to perform hovering with impulsive maneuvers.

As technology evolves, the requirements and operating constraints imposed on the design of space missions are also

constantly tightened. Recent research is shifting towards the adoption of small or lightweight satellites such as Cubesats

[18], thanks to their low energy consumption, easy mass production, and cost-effectiveness. On the other hand, these

small platforms are limited by their reduced resources in terms of computation, power, and actuation capabilities. As a

consequence, the ability to perform attitude and orbital control maneuvers is severely constrained [19]. In addition, the

efficiency of autonomous guidance and control algorithms needs to be constantly taken into account while designing the

algorithms for these satellites due to the limited computing resources available onboard [6, 20].

In this paper, the control design is based on the search of constrained periodic orbits, and it aims at providing

autonomous guidance for a satellite equipped with a low-thrust engine to carry out an inspection mission. However, the

application of unconstrained optimal control laws presents some difficulties in terms of implementation on platforms

with limited actuation capacity. For example, the direction of the thrust in unconstrained cases may vary rapidly. As

a consequence, the required control profile would be unfeasible for a spacecraft equipped with few engines and a

limited slew rate. This issue may be mitigated by constraining the input to lie in a specific direction. Indeed, this work

introduces an operational constraint on the thrust direction during the transfer by assuming that the satellite is equipped

with two opposite thrusters that allow it to perform maneuvers only in the tangential direction [21]. The control purpose

is to reach an optimal target point on a pre-designed target periodic orbit while maximizing the duration of the free drift

relative motion inside the desired hovering region and minimizing the cost of the transfer. To perform this feat, first, an

energy-optimal control problem is solved. The solution to this problem is available in a semi-analytical way, which

makes it suitable for onboard execution on small satellites [22]. Nonetheless, the control profiles retrieved by such

guidance laws are modulated and therefore they may not be realizable on a simple engine that is only capable of being

switched on or off. Subsequently, using this control as an initial guess, a fast semi-analytical method can be devised to

convert the control profile to a bang-bang structure that satisfies the conditions of a fuel-optimal control problem. This

feat can be achieved thanks to the assumption of tangential-only thrust. To conclude, a strategy for long-term hovering

obtained by concatenating phases of free orbital drift and controlled trajectories is proposed.

This paper is organized as follows. Sec. II gives the dynamical models used to obtain the periodicity condition

of the relative orbits and to design the solution of the optimal control problems. Subsequently, Sec. III gives an

analytical method to solve the energy-optimal control problem and presents the semi-analytical method to deal with the

fuel-optimal control problem. Then, Sec. IV presents the building blocks necessary for the selection of target points for

the controller during the long-term hovering strategy. Finally, Sec. V concludes the paper and discusses the limitations

of the current approach.
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II. Dynamical models
This section illustrates the dynamical models used during the control design and the simulation stage. Specifically, a

dynamical system expressed in the inertial Cartesian frame is used to design the optimal control. Conversely, a relative

dynamical model is adopted to design constrained periodic relative orbits.

A. Inertial dynamic

In this paper, the passive spacecraft which is the object of proximity operations will be referred to as the “leader”.

The active spacecraft that is capable of performing maneuvers will instead be called the “follower”. As shown in Fig.1,

the LVLH frame which is centered on the mass center of the leader 𝑆𝑙 is denoted by {𝑆𝑙 , 𝒊, 𝒋 , 𝒌}. The Earth-Centered

Inertial (ECI) frame is denoted by {𝑂, 𝑰, 𝑱, 𝑲}. It is noted that 𝒌 is the radial vector positive toward the center of the

Earth 𝑂, 𝒋 is the cross-track vector opposite to the orbit angular momentum, and 𝒊 is the in-track vector satisfying the

right-handed rule. The relative position 𝝆 of the follower 𝑆 𝑓 is expressed in the LVLH frame. Whereas 𝒓 𝑓 and 𝒓𝑙

represent the inertial position of the two spacecrafts in the ECI frame.Figures: 
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Fig. 1 Inertial Earth-centered frame and LVLH frame.

The control acceleration term is added directly to the formulation of the inertial dynamics for the follower since this

model is more convenient to include orbital perturbations and it makes it possible to retrieve analytical solutions of

the energy-optimal control problem. Based on the assumption of Keplerian motion, the inertial dynamics with 𝐽2 and

atmospheric drag perturbations can be written in the ECI frame as,


𝒓 = ¤𝒗

¤𝒗 = − 𝜇

𝑟3 𝒓 + 𝒂J2 + 𝒂drag + 𝒂𝑐

(1)

where 𝜇 is Earth’s gravitational constant. Throughout this paper, the vector [ 𝒓; 𝒗 ] refers to the inertial state of

the follower omitting the subscript 𝑓 . 𝒂J2 , 𝒂drag, and 𝒂𝑐 represent 𝐽2 perturbation, atmospheric drag, and control
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accelerations respectively. In this paper, it was assumed that the variation of mass of the maneuvering spacecraft

is negligible, which is typical for proximity operations. This assumption allows us to directly deal with control

accelerations in the formulation of the optimal control problems, and it makes it possible to remove the variational

equation of the mass from the state. The 𝐽2 and atmospheric drag perturbations are considered during the propagation

of the disturbed relative motion, yet they are not included in the design of optimal control in this paper. Consequently,

these two perturbed terms are omitted during the derivation of the optimal control problem carried out in Sec. III. In

addition, a model from [23, 24] is used to simulate the realistic non-linear disturbed relative motion for the simulations

carried out in Sec.III and IV.

B. Relative dynamics

This section introduces a simplified relative dynamical model which will be used to design target periodic

orbits. Under the assumption of Keplerian motion and considering that the distance between the leader and the

follower spacecrafts is much smaller than the distance between the leader and the Earth’s center (i.e., ||𝒓𝑙 ||»||𝝆||), the

relative dynamics expressed in the LVLH frame can be described as a state-space representation using linearized

Tschauner–Hempel equations [25],

¤𝑿 (𝑡) = 𝑨(𝑡)𝑿 (𝑡) (2)

where the state vector 𝑿 represents the relative position and velocity, 𝑿 (𝑡) = [𝑥(𝑡); 𝑦(𝑡); 𝑧(𝑡); ¤𝑥(𝑡); ¤𝑦(𝑡); ¤𝑧(𝑡)]. To obtain

a closed-form solution of Eq. 2, a similarity transformation from independent variable time 𝑡 to the true anomaly 𝜈 is

applied as,

𝑿̃ (𝜈) =


𝜌𝜈 𝑰3 03

−𝑒 sin 𝜈𝑰3

√︃
𝑎3 (1−𝑒2 )3

𝜇𝜌2
𝜈

𝑰3

 𝑿 (𝑡) (3)

where the variables 𝑎 and 𝑒 are the leader’s orbit semi-major axis and eccentricity with 𝜌𝜈 = (1 + 𝑒 cos 𝜈). The symbols

𝑰3 and 03 represent the 3 × 3 identity and zero matrices respectively. Based on Eq.3 Yamanaka and Ankersen [26]

formulated a state-space model in the variable 𝜈 for which an analytical state transition matrix could be obtained. This

state transition matrix can then be directly used for the propagation of relative motion from an initial state 𝑿̃ (𝜈0). The

equations of relative position can then be expressed as [13]:

𝑥(𝜈) = 𝑑1 (𝜈0) (2 + 𝑒𝑐𝜈)𝑠𝜈 − 𝑑2 (𝜈0) (2 + 𝑒𝑐𝜈)𝑐𝜈 + 𝑑3 (𝜈0) + 3(1 + 𝑒𝑐𝜈)2𝑑0 (𝜈0)𝐽𝜈0 (𝜈)

𝑦̃(𝜈) = 𝑑4 (𝜈0)𝑐𝜈 + 𝑑5 (𝜈0)𝑠𝜈

𝑧(𝜈) = 𝑑1 (𝜈0) (1 + 𝑒𝑐𝜈)𝑐𝜈 + 𝑑2 (𝜈0) (1 + 𝑒𝑐𝜈)𝑠𝜈 − 3𝑒𝑠𝜈 (1 + 𝑒𝑐𝜈)𝑑0 (𝜈0)𝐽𝜈0 (𝜈) + 2𝑑0 (𝜈0)

(4)
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where 𝑠𝜈 = sin 𝜈 and 𝑐𝜈 = cos 𝜈. 𝐽𝜈0 (𝜈) is an integral term and the specific expression can be found in Ref. [16].

The parameters 𝑑𝑖 (𝜈0) with 𝑖 ∈ [0, 1, 2, 3, 4, 5] are factored terms that only depend on 𝜈0. Inspired by Eq. 4, the

concept of the vector of parameters 𝑫 (𝜈) = [𝑑0 (𝜈), 𝑑1 (𝜈), 𝑑2 (𝜈), 𝑑3 (𝜈), 𝑑4 (𝜈), 𝑑5 (𝜈)] was proposed in [14]. This set

of parameters satisfies,

𝑫 (𝜈) =



0 0 − 3𝑒𝑐𝜈+𝑒2+2
𝑒2−1

𝜌2
𝜈

𝑒2−1 0 − 𝑒𝑠𝜈𝜌𝜈
𝑒2−1

0 0 3(𝑒+𝑐𝜈 )
𝑒2−1 − 2𝑐𝜈+𝑒𝑐2

𝜈+𝑒
𝑒2−1 0 𝑠𝜈𝜌𝜈

𝑒2−1

0 0 3𝑠𝜈 (𝜌𝜈+𝑒2 )
𝜌𝜈 (𝑒2−1) − 𝑠𝜈 (1+𝜌𝜈 )

𝑒2−1 0 2𝑒−𝑐𝜈𝜌𝜈
𝑒2−1

1 0 − 3𝑒𝑠𝜈 (1+𝜌𝜈 )
𝜌𝜈 (𝑒2−1)

𝑒𝑠𝜈 (1+𝜌𝜈 )
𝑒2−1 0 𝑒𝑐𝜈𝜌𝜈−2

𝑒2−1

0 𝑐𝜈 0 0 −𝑠𝜈 0

0 𝑠𝜈 0 0 𝑐𝜈 0

︸                                                                 ︷︷                                                                 ︸
𝑪 (𝜈)

𝑿̃ (𝜈) (5)

Combining Eq. 3 and Eq. 5, we can obtain

𝑫 (𝜈) = 𝑪 (𝜈)


(1 + 𝑒𝑐𝜈)𝑰3 03

−𝑒𝑠𝜈 𝑰3

√︃
𝑎3 (1−𝑒2 )3

𝜇 (1+𝑒𝑐𝜈 )2 𝑰3

 𝑿 (𝑡) (6)

Eq. 6 gives a direct transformation between relative states and the vector of parameters at the time instant 𝑡 (or equivalent

𝜈), which will be useful in the fuel-optimal control problem. Moreover, by looking at Eq. 4, it can be noticed that

the relative motion in the out-of-plane direction is naturally periodic. Conversely, to obtain periodic in-plane motion

the parameter 𝑑0 must be set to 0, which eliminates the effect of the drifting term 𝐽𝜈0 (𝜈). Therefore, the periodicity

condition at the initial moment 𝑡0 or 𝜈0 is written as,

𝑑0 (𝜈0) = 𝑒𝑠𝜈0𝑥(𝑡0) −

√√
𝑎3 (1 − 𝑒2)3

𝜇(1 + 𝑒𝑐𝜈0 )2 ¤𝑥(𝑡0) +
2 + 3𝑒𝑐𝜈0 + 𝑒2 (1 − 𝑠2

𝜈0 )
1 + 𝑒𝑐𝜈0

𝑧(𝑡0) +
𝑒𝑠𝜈0

1 + 𝑒𝑐𝜈0

√√
𝑎3 (1 − 𝑒2)3

𝜇(1 + 𝑒𝑐𝜈0 )2 ¤𝑧(𝑡0) = 0 (7)

From Eq. 7 it is also possible to observe that the periodicity condition is only related to in-plane states. In addition, the

vector of parameters 𝑫 will be constant for a periodic orbit [14]. Hence, by introducing the periodicity condition into

5



Eq. 4 and by substituting it into Eq. 3, an analytical solution of periodic orbit can be retrieved directly [12, 13].

𝑥(𝜈) = (2 + 𝑒𝑠𝜈) (𝑑1𝑠𝜈 − 𝑑2𝑐𝜈) + 𝑑3

𝑦̃(𝜈) = 𝑑4𝑐𝜈 + 𝑑5𝑠𝜈

𝑧(𝜈) = (1 + 𝑒𝑠𝜈) (𝑑1𝑐𝜈 + 𝑑2𝑠𝜈)

⇒

𝑥(t) =
(
(2 + 𝑒𝑐𝜈)

√︃
𝑑2

1 + 𝑑
2
2 sin

(
𝜈 − arctan 𝑑2

𝑑1

)
+ 𝑑3

)
/(1 + 𝑒𝑐𝜈)

𝑦(𝑡) =
√︃
𝑑2

4 + 𝑑
2
5 sin

(
𝜈 + arctan 𝑑4

𝑑5

)
/(1 + 𝑒𝑐𝜈)

𝑧(𝑡) =
√︃
𝑑2

1 + 𝑑
2
2 sin

(
𝜈 + arctan 𝑑1

𝑑2

) (8)

In this formulation, the dependency from 𝜈0 has been omitted to simplify the notation.

III. Low-thrust optimal control
This section is dedicated to the mathematical developments necessary to retrieve the optimal control solutions of the

hovering problem. First, the mathematical derivation of an analytical method for the design of low-thrust energy-optimal

control will be presented, which is based on the seminal work of De Vittori et al. [22]. Then, Sect. III.B will present

a semi-analytical solution to the fuel-optimal control problem based on [27, 28]. To avoid directly dealing with the

solution of this problem, the control law derived from the solution of the energy optimal problem will be used to provide

an initial guess that will speed up its convergence.

A. Energy-optimal control

To be able to retrieve an analytic solution, the control design will disregard the effects of the drag and Earth’s

nonhomogeneous gravitational field. As mentioned in the introduction, the control thrust is provided by two engines

firing in opposite directions, which are restricted to operate exclusively in the tangential direction. This constraint

serves a dual purpose. Firstly, it mitigates the need for fast attitude slewing maneuvers that may be required to track an

unconstrained control profile. Secondly, it facilitates the formulation of the fuel-optimal control problem through the

utilization of a semi-analytic technique as illustrated in Sec. III.B. Hence, the control acceleration vector is aligned with

𝒗/𝑣. Then, by inserting this constraint into the dynamics,


¤𝒓 = 𝒗

¤𝒗 = − 𝜇

𝑟3 𝒓 + 𝑎𝑡 𝒗𝑣

Initial Conditions:


𝒓 (𝑡0) = 𝒓0

𝒗(𝑡0) = 𝒗0

(9)

Here 𝒂𝑐 = 𝑎𝑡𝒗/𝑣, and 𝑎𝑡 is the magnitude of tangential control acceleration. Since the tangential thrust is assumed to be

applied in the orbital plane of the follower, the out-of-plane target relative state (the 𝒋 direction of LVLH) can not be

reached. Therefore, the distance between the controlled final relative states and target relative states is introduced as a

terminal cost to approach the target point as close as possible.

𝜑(𝑿 𝑓 ) =
(
𝑿 𝑓 − 𝑿𝑡

)T
𝑄

(
𝑿 𝑓 − 𝑿𝑡

)
, 𝑄 = 𝑑𝑖𝑎𝑔(𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6). (10)
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Here 𝑿 𝑓 is the vector of controlled final relative states, 𝑿𝑡 is the vector of target relative states, and 𝑄 is a positive

definite weight matrix. On the other hand, the tangential thrust does not prevent the periodicity condition of terminal

states in Eq. 7 to be included as a final state constraint 𝜓(𝑿 𝑓 ) = 𝑑0 = 0. Under these assumptions, the augmented cost

function with a fixed final time 𝑡 𝑓 can be expressed as,

𝐽 = 𝜑(𝑿 𝑓 ) +
∫ 𝑡 𝑓

𝑡0

(
1
2
𝑎2
𝑡 + 𝝀T

𝑟 (𝒗 − ¤𝒓) + 𝝀T
𝑣

(
− 𝜇
𝑟3 𝒓 + 𝑎𝑡

𝒗

𝑣
− ¤𝒗

))
𝑑𝑡 (11)

Consequently, the Hamiltonian is,

𝐻 =
1
2
𝑎2
𝑡 + 𝝀T

𝑟 𝒗 + 𝝀T
𝑣 (−

𝜇

𝑟3 𝒓 + 𝑎𝑡
𝒗

𝑣
) (12)

where the only controllable variable is 𝑎𝑡 . From Pontryagin’s minimum principle, the optimal control law minimizing

the Hamiltonian yields,

𝑎∗𝑡 = −𝝀𝑣 ·
𝒗

𝑣
(13)

Then, this optimal control problem can be solved as [29],



¤𝒓 = 𝒗

¤𝒗 = − 𝜇

𝑟3 𝒓 −
(
𝝀𝑣 · 𝒗

𝑣

) 𝒗
𝑣

¤𝝀𝑟 =
𝜇

𝑟3 𝝀𝑣 − 3𝜇𝒓 ·𝝀𝑣

𝑟5 𝒓

¤𝝀𝑣 = −𝝀𝑟 + 𝝀𝑣 ·𝒗
𝑣2

(
𝝀𝑣 − 𝝀𝑣 ·𝒗

𝑣2 𝒗
)

Boundary Conditions:



𝒓 (𝑡0) = 𝒓0

𝒗(𝑡0) = 𝒗0

𝝀𝑟 (𝑡 𝑓 ) =
𝜕(𝜑 (𝑿 𝑓 )+𝜅𝜓 (𝑿 𝑓 ) )

𝜕𝒓 𝑓

𝝀𝑣 (𝑡 𝑓 ) =
𝜕(𝜑 (𝑿 𝑓 )+𝜅𝜓 (𝑿 𝑓 ) )

𝜕𝒗 𝑓

(14)

In this equation, 𝜅 is an additional unknown Lagrange multiplier corresponding to the final state constraint. Reference

[29] provides a thorough overview of how this coefficients is included in the formulation of the optimal control problem.

This two-point-boundary-value problem can be transformed into an Initial Value Problem (IVP) aiming to find the

initial costates (𝝀𝑟0 , 𝝀𝑣0 ). To this aim, Eqs. 14 are linearized around the nominal uncontrolled dynamics, and the State

Transition Matrix (STM) 𝚽 is employed to analytically propagate variations of initial states and costates within the

given time frame. This assumption allows us to integrate the Keplerian dynamics and retrieve the STM only once for the

desired time window, which significantly reduces computational time. The STM can be computed from the following

set of ODEs,

¤𝚽(𝑡, 𝑡0) = 𝑨(𝑡)𝚽(𝑡, 𝑡0) 𝚽(𝑡0, 𝑡0) = 𝑰𝑛×𝑛 (15)
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where 𝑨 is the Jacobian of the dynamics system expressed in Eq. 14 and evaluated on the nominal Keplerian orbit as:

𝑨 =



03×3 𝑰3×3 03×3 03×3

−𝑨34 03×3 03×3 𝑨24

03×3 03×3 03×3 𝑨34

03×3 03×3 −𝑰3×3 03×3


, 𝑨24 = −

[
𝒗

𝑣

( 𝒗
𝑣

)T
]
, 𝑨34 =

𝜇

𝑟3
𝑛

𝑰3×3 −
3𝜇
𝑟5
𝑛



𝑟𝑛𝑥
2 𝑟𝑛𝑥𝑟𝑛𝑦 𝑟𝑛𝑥𝑟𝑛𝑧

𝑟𝑛𝑥𝑟𝑛𝑦 𝑟𝑛𝑦
2 𝑟𝑛𝑦𝑟𝑛𝑧

𝑟𝑛𝑥𝑟𝑛𝑧 𝑟𝑛𝑦𝑟𝑛𝑧 𝑟𝑛𝑧
2


. (16)

Here 𝒓𝑛 = [𝑟𝑛𝑥 ; 𝑟𝑛𝑦; 𝑟𝑛𝑧] represents the inertial position of nominal trajectory. Next, the variations of initial states are

linearly mapped into variations of final states thanks to the STM,



𝛿𝒓 𝑓

𝛿𝒗 𝑓

𝛿𝝀𝑟 𝑓

𝛿𝝀𝑣 𝑓


=



𝚽11 𝚽12 𝚽13 𝚽14

𝚽21 𝚽22 𝚽23 𝚽24

𝚽31 𝚽32 𝚽33 𝚽34

𝚽41 𝚽42 𝚽43 𝚽44





𝛿𝒓0

𝛿𝒗0

𝛿𝝀𝑟0

𝛿𝝀𝑣0


(17)

Since the initial states are fixed, 𝛿𝒓0 = 0 and 𝛿𝒗0 = 0, and the previous expression can be simplified. Moreover, since

the costates are zero on the nominal trajectory, then 𝛿𝝀 = 𝝀 at all times. Meanwhile, the variations of the final states are

imposed given that specific target position and velocity are required to achieve the desired target state on a relative

periodic orbit: 𝛿𝒓 𝑓 = 𝒓 𝑓 − 𝒓 𝑝, 𝛿𝒗 𝑓 = 𝒗 𝑓 − 𝒗𝑝. Here 𝒓 𝑝 and 𝒗𝑝 represent the final nominal states obtained from the

propagation of simple Keplerian motion. As a consequence, the IVP can be solved by a system of 13 equations with 13

unknowns (i.e., [𝒓 𝑓 ,𝒗 𝑓 ,𝝀𝑟0, 𝝀𝑣0, 𝜅]) which is formulated by introducing these assumptions in Eq. 17 and by adding the

boundary conditions presented in Eq.14.



𝒓 𝑓 − 𝒓 𝑝 −𝚽13𝝀𝑟0 −𝚽14𝝀𝑣0 = 0

𝒗 𝑓 − 𝒗𝑝 −𝚽23𝝀𝑟0 −𝚽24𝝀𝑣0 = 0

𝜕(𝜑 (𝑿 𝑓 )+𝜅𝜓 (𝑿 𝑓 ) )
𝜕𝒓 𝑓

−𝚽33𝝀𝑟0 −𝚽34𝝀𝑣0 = 0

𝜕(𝜑 (𝑿 𝑓 )+𝜅𝜓 (𝑿 𝑓 ) )
𝜕𝒗 𝑓

−𝚽43𝝀𝑟0 −𝚽44𝝀𝑣0 = 0

𝜓(𝑿 𝑓 ) = 0

(18)

B. Fuel-optimal control

The fuel-optimal control problem can leverage the results of the energy-optimal control problem to help convergence

and an outline of the solution is provided in Fig. 2.
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Fig. 2 Proposed procedure for the solution of the fuel-optimal control problem.

First, an initial guess of firing windows (i.e., those parts of the trajectory that have full thrust) is acquired according

to a procedure devised in [22]. This method starts by determining the equivalent burning time of the energy-optimal

control (i.e., 𝑎𝑡 ) that is estimated based on the definition of a maximum acceleration 𝑎max for the fuel-optimal control

problem. Then, the bisection algorithm determines a threshold value of acceleration 𝑎th so that the initial guess for the

firing windows matches this total burning time. Indeed, 𝑎th is used to determine when thrusters are switched on (i.e.,

|𝑎𝑡 | ≥ 𝑎th). Fig.3(a) provides a schematic diagram of how the Nominal Firing Windows can be obtained.
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(b) Expansion (red) and reduction (yellow) of the firing
windows

Fig. 3 Overview of the firing window determination process from the initial guess (a) to the final one obtained
after optimization (b).

After having obtained an initial guess for the optimization problem, a Non-Linear Programming (NLP) problem is set

up to find the optimal bang-bang thrust profile by adjusting the firing windows so that some constraining conditions are

satisfied. The first constraint imposed in the NLP is that the centers of the thrusting arcs are fixed. Then, the amplitude

9



of each firing window can be expanded or shortened by multiplying them by their associated factors 𝛼𝑘 , 𝑘 = 1, 2, ..., 𝐿,

where 𝐿 is the number of firing windows as illustrated in Fig.3(b). Additionally, a constraint is added to verify that

subsequent thrusting arcs do not intersect. As a consequence, the number of firing windows cannot be increased, but it

can be reduced if any of the 𝛼 factors decreases to zero. Moreover, it must be noticed that the final time provided by the

solution of the energy-optimal control problem barely constitutes an initial guess for the final time retrieved by the

solution of the fuel-optimal control problem. If the final firing window is enlarged past the nominal control time, then

the control time is extended to completely include the last maneuver. The objective of this NLP problem is to find an

optimal vector of factors 𝜶∗ that minimizes a custom objective function under the above-mentioned constraints. The

objective function selected for the fuel-optimal problem combines both the final distance to a target point and the total

fuel cost (i.e., represented by the total burning time) as:

𝐹 (𝛼) = 𝜂[Δ𝑡1 (𝛼1) + Δ𝑡2 (𝛼2) + · · · + Δ𝑡𝐿 (𝛼𝐿)] + 𝜑(X 𝑓 ) (19)

where 𝜂 is a weight factor to balance the contribution to the fuel cost.

When a guess structure of firing windows is available, the trajectory is analytically propagated with an asymptotic

method with constant tangential acceleration [27]. The adoption of analytical propagations inside the optimization

problem provides a significant boost to the computational time required for the solution of the fuel-optimal control

problem. To apply Bombardelli’s method for analytical propagation of the accelerated dynamics, the nominal firing

windows are converted from time ranges to true anomaly ranges as shown in [30]. The complete process for the solution

of the fuel-optimal control problem is summarized in Algorithm 1.

C. Numerical validation

Some simulations are conducted to demonstrate the efficacy of the control methods proposed in this section. The

Simulink model of Ref. [24] is adopted as a ground truth dynamical model which is based on the nonlinear Gauss

variational equations including Earth 𝐽2 oblateness effect and atmospheric drag as perturbations sources. The parameters

used for simulating are given in Table 1. In this paper, the two spacecrafts are considered to be similar, so ballistic

coefficients, that is 𝐵 =
𝑆𝐶𝐷

𝑚
, are set as 𝐵𝑙 = 150.30kg/m2 and 𝐵 𝑓 = 153.40kg/m2, respectively. The values of the

follower have been directly taken from [24]. This ballistic coefficient represents an average value between the ISS and

the ATV as taken from [17]. The initial classical orbital elements of the leader are a perigee altitude of 𝑃 = 450km, an

eccentricity of 𝑒 = 0.1, and an inclination of 𝑖 = 30◦ while the rest of the elements are set to 0 [17, 24].

The hovering zone is defined as a cube along the positive 𝒊 direction of the LVLH frame and it can be defined by

upper (overline) and lower (underline) bounds, {𝑥 = 40m, 𝑥 = 100m, 𝑦 = −30m, 𝑦 = 30m, 𝑧 = −30m, 𝑧 = 30m} [16, 17].

Finally, the relative state is set to [80m; 10m;−5m;−0.0112m/s; 0m/s;−0.0100m/s] with a corresponding vector of
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Algorithm 1 NLP for the solution of the fuel-optimal control problem.
Input: Earth’s gravitational constant: 𝜇. Maximum acceleration: 𝑎max. Initial inertial state of the follower: 𝑰0. Initial

inertial states of leader: 𝑰𝑙0. Nominal true anomaly interval of firing-on windows: Δ𝜈on
𝑘

. Vector containing nominal
true anomaly sequence of accelerated and non-accelerated dynamics: 𝝂seq.

Output: Optimized firing window.
1: Set all the values of the vector of factors 𝜶 to 1 to preserve the input nominal firing windows.
2: while Stopping criterion not met do
3: Initialize the Flag to label the number of firing windows: 𝑘 = 1;
4: Total propagation time initialization: 𝑡𝑝 = 0 ;
5: Compute the total number of firing windows: 𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ(Δ𝜈on

𝑘
);

6: for the index 𝑗 = 1 : 2 : 𝑙𝑒𝑛𝑔𝑡ℎ(𝝂seq) do
7: if thrusters at 𝜈seq ( 𝑗 , 𝑗 + 1) are on then
8: Propagate the accelerated states with Bombardelli’s method:

[𝑰 𝑓 , 𝑡on] = 𝐵𝑜𝑚𝑏𝑎𝑟𝑑𝑒𝑙𝑙𝑖𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑰0, 𝛼𝑘Δ𝜈
on
𝑘
, 𝑎max, 𝜇);

9: Update the initial states: 𝑰0 = 𝑰 𝑓 ;
10: Update the propagation time: 𝑡𝑝 = 𝑡𝑝 + 𝑡on;
11: Update the Flag of firing-on window: 𝑘 = 𝑘 + 1;
12: else if thrusters at 𝝂seq ( 𝑗 , 𝑗 + 1) are off then
13: Calculate initial true anomaly 𝑡ℎ0 of non-accelerated windows from inertial states 𝑰0;
14: Calculate true anomaly range Δ𝜈off of coasting windows:
15: if thrusters are off at the end arc then
16: if 𝑘 ≤ 𝐿 then
17: Δ𝜈off = 𝝂seq ( 𝑗 + 1) − Δ𝜈on

𝑘
(𝛼𝑘 − 1)/2 − 𝑡ℎ0;

18: else
19: Δ𝜈off = 𝝂seq ( 𝑗 + 1) − 𝑡ℎ0;
20: end if
21: else if thrusters are on at the end arc then
22: if 𝑘 < 𝐿 then
23: Δ𝜈off = 𝝂seq ( 𝑗 + 1) − Δ𝜈on

𝑘
(𝛼𝑘 − 1)/2 − 𝑡ℎ0;

24: else
25: Δ𝜈off = 𝝂seq ( 𝑗 + 1) − Δ𝜈on

𝑘
(𝛼𝑘 − 1) − 𝑡ℎ0;

26: end if
27: end if
28: Convert true anomaly range Δ𝜈off to time range 𝑡off ;
29: Propagate the non-accelerated states with Keplerian dynamics:

𝑰 𝑓 = 𝐾𝑒𝑝𝑙𝑒𝑟𝑖𝑎𝑛𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝑰0,Δ𝜈
off , 𝜇);

30: Update the initial states: 𝑰0 = 𝑰 𝑓 ;
31: Update the propagation time: 𝑡𝑝 = 𝑡𝑝 + 𝑡off ;
32: end if
33: end for
34: Analytical propagation of final inertial states of leader: 𝑰𝑙 𝑓 = 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑆𝑇𝑀 (𝑰𝑙0, 𝑡𝑝 , 𝜇);
35: Convert final inertial relative states (𝑰 𝑓 − 𝑰𝑙 𝑓 ) to final relative states 𝑿 𝑓 ;
36: Equality constraint: periodicity condition at 𝑿 𝑓 ;
37: Inequality constraints: no-intersection of two firing-on windows;
38: Cost function: 𝜂[Δ𝑡1 (𝛼1) + Δ𝑡2 (𝛼2) + · · · + Δ𝑡𝐿 (𝛼𝐿)] + 𝜑(X 𝑓 ).
39: Adjust 𝜶 according to the optimizer (e.g., Matlab’s fmincon).
40: end while
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Table 1 Parameters of simulation

Parameters Value
Gravitational parameter of Earth 𝜇 = 3.986004 × 105km3/s2

Radius of the Earth 𝑅𝑒 = 6.378136 × 103km
𝐽2 parameter 1.08263 × 10−3

Ballistic coefficients 𝐵𝑙 = 150.30kg/m2,𝐵 𝑓 = 153.40kg/m2

Initial orbital elements of leader 𝑃 = 450km, 𝑒 = 0.1, 𝑖 = 30◦, Ω = 0, 𝜔 = 0, 𝜈 = 0
Boundary values of hovering zone 𝑥 = 40m, 𝑥 = 100m, 𝑦 = −30m, 𝑦 = 30m, 𝑧 = −30m, 𝑧 = 30m

parameters 𝑫 = [0;−5;−8.521; 70.106; 11; 0]. This selection ensures that the relative orbit is periodic according to Eq.

7 and it lies inside the hovering zone. Fig.4 shows the results of the propagation from these initial conditions until the

disturbed trajectory arrives at the boundary of the hovering region. Once the disturbed motion reaches this boundary,

the fuel-optimal control is adopted to bring the follower back to a relative periodic orbit that lies inside the admissible

region.
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Fig. 4 Simulation of disturbed motion.

For this preliminary validation, the initial relative orbit is adopted as the target of the control. By further setting the

control time to 1 orbital period of the leader, the target point is also fixed. The details about the design of an optimal

target point will be discussed in Sec. IV. Next, both energy-optimal and fuel-optimal control problems are solved and

simulated with unperturbed dynamics to demonstrate the ability to reach the desired conditions with the designed

controls. In subsequent analyses, the perturbations will be added and their effect during control will be assessed.

Fig.5 shows an example of the solution achieved by the proposed methods. The adopted weight matrix for the

energy-optimal problem is𝑄 = 𝑑𝑖𝑎𝑔(1, 1, 1, 100, 100, 100), and the maximum acceleration is set as 𝑎max = 3×10−6m/s2

[22, 28]. In addition, the weight factor 𝜂 is set to 5 and it is kept unchanged for all following analyses. It is visually

evident from Fig.5(a) and Fig. 5(b) that the tangential control designed by the solution of the energy-optimal control

problem ends at a final point which has an error in the 𝑦 state with respect to the target point. As mentioned during the
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Fig. 5 Comparison of tangential energy-optimal control (EOC) and fuel-optimal control (FOC).

controller design, this behavior is expected. The thrust is indeed bound to be executed in the tangential direction of

the follower. However, given the small magnitude of the relative states, the leader and follower exhibit very similar

orbital elements. This results in a control authority that is approximately exerted in the 𝒊-𝒌 plane of the LVLH frame of

the leader. As a consequence, the out-of-plane component cannot be fully controlled. Moreover, the solution of the

fuel-optimal control problem shows small in-plane state errors with respect to the target point. As a consequence, the

final periodic orbit obtained slightly differs from the targeted one both out-of-plane and in-plane as illustrated in Fig.9.

In the next section, a remedy to this problem will be presented by incorporating the boundaries of the target periodic

orbit into the NLP as additional inequality constraints. The explanation for this behavior is rooted in the fact that the

centers of the firing arcs remain fixed during their optimization. This limitation narrows the search space for feasible

solutions for the fuel-optimal problem. A possible solution to this problem was obtained in [19] by combining closed

loop and open loop controls. Despite these small final errors, the trajectory achieved after control is still guaranteed to

be periodic, thanks to Eq. 7, which is imposed as a final constraint in the NLP. Finally, the nominal firing windows

(NFW) defined by the bisection method and their optimized version obtained by NLP (OFW) are shown in Fig.5(c).

IV. Long-term hovering control
The strategy to perform long-term hovering control is developed in this section. The key idea is to design and execute

a control action every time the follower spacecraft exits the hovering region due to the presence of orbital perturbations.

To do so, the operations are divided into two main phases: a drifting phase, also named as hovering phase, and a control

phase. The former is defined as a phase of uncontrolled relative motion inside the hovering region. The latter is defined

as the controlled phase that brings the spacecraft from the boundary of the hovering region to the desired optimal

target point. These two phases together form one cycle: long-term hovering control can be achieved via the design of

multiple consecutive cycles. The recomputation of target periodic orbits is necessary after each drift phase. Indeed, the

parameters determining the shape of the periodic orbit may change based on the leader’s orbit eccentricity, which is
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influenced by orbital perturbations. Once a target orbit is selected, various target points on this orbit can be obtained by

adjusting the control duration. Performance metrics such as fuel consumption and the duration of drifting phases can

then guide the selection and evaluation of target periodic orbits and their corresponding optimal target points. This

process aims to provide a target relative state for optimal control design in each cycle. The selection of target points that

maximize the drift time between cycles is motivated by the need to limit the number of maneuvers required for a more

extended mission. Reducing the number of maneuvers allows for longer operational phases. However, it’s important to

note that longer drift times may necessitate larger maneuvers to recover the trajectory. All these considerations will be

taken into account in the following analyses. To better clarify the long-term hovering procedure, the cycle to conduct

operations is presented in Fig. 6.
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Fig. 6 Overview of the approach for long-term hovering.

A. Selection of the target periodic orbit

The first step before executing a control phase is to select a target periodic orbit. This subsection proposes a simple

technique to find the vector of parameters 𝑫 of a relative periodic orbit that lies inside a prescribed hovering zone based

on polynomial inequalities description of space constraints [15, 23]. The description of the set of periodic orbits that

satisfy the boundary constraints of a hovering zone is written as,

𝑆𝐷 =

{
𝑫 ∈ 𝑅6 |𝑑0 = 0, 𝑔𝑢 (𝑫) ≤ 0,∀𝑢 ∈

[
𝑥, 𝑥, 𝑦, 𝑦, 𝑧, 𝑧

]}
(20)

where the functions 𝑔𝑢 (𝑫) are multivariate polynomials in 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5. First, a multivariate polynomial in

𝑑1, 𝑑2, and 𝑑3 is defined for the 𝑥 state,

𝑔̂𝑥 (𝑑1, 𝑑2, 𝑑3) =
6∑︁

𝑟=0

6∑︁
𝑠=0

4∑︁
𝑤=0

𝜃𝑟𝑠𝑤 (𝑒, 𝑥)𝑑𝑟1𝑑
𝑠
2𝑑

𝑤
3 , and if 𝑟 + 𝑠 + 𝑤 > 6, 𝜃𝑟𝑠𝑤 = 0. (21)
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In this expression, 𝑥 could be substituted either with its upper or lower bound 𝑥 and 𝑥. 𝜃𝑟𝑠𝑤 (𝑒, 𝑥) are the coefficients

of the term 𝑑𝑟1𝑑
𝑠
2𝑑

𝑤
3 . This procedure can be done for all relative states, providing the following set of six polynomial

inequalities,

𝑔𝑥 (𝑑1, 𝑑2, 𝑑3) = 𝑔̂𝑥 ≤ 0, (22)

𝑔𝑥 (𝑑1, 𝑑2, 𝑑3) = 𝑔̂𝑥 ≤ 0, (23)

𝑔𝑦 (𝑑4, 𝑑5) = (𝑑4 − 𝑒𝑦)2 + 𝑑2
5 − 𝑦

2 ≤ 0, (24)

𝑔𝑦 (𝑑4, 𝑑5) = (𝑑4 − 𝑒𝑦)2 + 𝑑2
5 − 𝑦

2 ≤ 0, (25)

𝑔𝑧 (𝑑1, 𝑑2) = 𝑑2
1 + 𝑑

2
2 − 𝑧

2 ≤ 0, (26)

𝑔𝑧 (𝑑1, 𝑑2) = 𝑑2
1 + 𝑑

2
2 − 𝑧

2 ≤ 0, (27)

The equations from 22 to 27 are conveniently used to determine whether a periodic orbit lies within the hovering zone

defined by the boundary values. By solving these inequalities for their limit value (i.e., 0), it is possible to create a

system of 6 equations in 6 unknowns, enabling the identification of the corresponding vector of parameters 𝑫. First, it

is possible to solve the equations related to the 𝑦 boundary [𝑦′, 𝑦′] as it is decoupled from the 𝑥 and 𝑧 states,

𝑔̃𝑦′ (𝑑4, 𝑑5) = (𝑑4 − 𝑒𝑦′)2 + 𝑑2
5 − 𝑦

′2 = 0, (28)

𝑔̃𝑦′ (𝑑4, 𝑑5) = (𝑑4 − 𝑒𝑦′)2 + 𝑑2
5 − 𝑦

′2 = 0, (29)

Eqs.28 and 29 represent two circles about the point (𝑑4, 𝑑5) whose centers are (𝑒𝑦′, 0) and (𝑒𝑦′, 0), and whose radii are

𝑦′ and 𝑦′ respectively. The solutions of these two equations depend on the parameters 𝑒, 𝑦′, and 𝑦′. In our analyses, it is

assumed that 0 < 𝑒 < 1 while 𝑦′ and 𝑦′ have opposite signs with the same magnitude. This assumption is reasonable

since it requires having a hovering zone that is centered about 𝑦 = 0. In this case, there will always be two solutions that

are at the intersections of two circles. In the 𝑥-𝑧 plane, the equations are,

𝑔̃𝑥′ (𝑑1, 𝑑2, 𝑑3) = 𝑔̂𝑥 = 0, (30)

𝑔̃𝑥′ (𝑑1, 𝑑2, 𝑑3) = 𝑔̂𝑥 = 0, (31)

𝑔̃𝑧′ (𝑑1, 𝑑2) = 𝑑2
1 + 𝑑

2
2 − 𝑧

′2 = 0, (32)

𝑔̃𝑧′ (𝑑1, 𝑑2) = 𝑑2
1 + 𝑑

2
2 − 𝑧

′2 = 0, (33)

As for the in-plane direction, Eqs.32 and 33 can also be interpreted as the equations of two circles centered at (0, 0). If

𝑧′ and 𝑧′ have opposite signs but the same magnitude, all points on these circles satisfy these two conditions. Owing
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to this assumption the 𝑧 coordinate of the center of the periodic orbit will also be 0. Conversely, for the 𝑥 states, the

problem will become to find a point (𝑑1, 𝑑2) on the circle described by Eqs. 32 (or 33) that satisfies both Eqs.30 and 31

with set (𝑥′, 𝑥′). Unfortunately, these equations can not always be satisfied for a random combination of (𝑥′, 𝑥′, 𝑧′, 𝑧′)

because the in-plane coordinates are coupled as seen in Eq.8. Instead of directly solving Eqs. 30-33 for (𝑑1, 𝑑2, 𝑑3), this

paper introduces an algorithm summarized in Algorithm 2 to obtain a feasible set of parameters. This procedure aims to

find a periodic orbit with an 𝑥 coordinate of the center that is close to a desired location while minimizing 𝑥-range

excursion based on the given 𝑧 boundaries.

Algorithm 2 Solve a periodic orbit with given magnitude of 𝑦 and 𝑧 orbit boundaries [𝑦′, 𝑧′] and initialized 𝑥 orbit
boundaries [𝑥, 𝑥]
Input: Eccentricity of leader: 𝑒. The expected 𝑥-center of periodic orbit: 𝑥𝑐.

The boundary values: [𝑥, 𝑥,−𝑦′, 𝑦′,−𝑧′, 𝑧′].
Output: The vector of parameters 𝑫 of solved periodic orbit.

1: 𝑑0 = 0;
2: For 𝑦 state: Solve equations 28 and 29 to get (𝑑4, 𝑑5).
3: if 0 < 𝑒 < 1 then
4: The assumption of (−𝑦′, 𝑦′) causes 𝑑4 = 0. 𝑑5 has two solutions with same magnitude but opposite sign;
5: else if 𝑒 = 0 then
6: The solutions of (𝑑4, 𝑑5) are points on the circle of 𝑑2

4 + 𝑑
2
5 = 𝑦′2.

7: end if
8: Begin optimization problem to keep the 𝑥 coordinate of the center of the target orbit close to 𝑥𝑐 while minimizing

the range [𝑥, 𝑥]:
9: while the stopping criterion is not met do

10: Select a set of parameters (𝑑1, 𝑑2, 𝑑3) with lower boundary (−𝑧′,−𝑧′, 𝑥) and upper boundary (𝑧′, 𝑧′, 𝑥);
11: Solve Eq.21 to retrieve the the maximum and minimum real roots: [𝑥𝑙 , 𝑥𝑢] = 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑥 (𝑒, 𝑑1, 𝑑2, 𝑑3);
12: Compute the cost function ∥𝑥𝑙 − 𝑥𝑢∥2 + (𝜁 ∥(𝑥𝑙 + 𝑥𝑢)/2 − 𝑥𝑐 ∥)2; 𝜁 is a weight factor to balance the need to

constrain the 𝑥-range of the orbit (first term) with the distance of its center from a desired position (second term).
13: Impose equality constraints: 𝑑2

1 + 𝑑
2
2 = 𝑧′2;

14: Impose inequality constraints: 𝑥 ≤ 𝑥𝑙 ≤ 𝑥; 𝑥 ≤ 𝑥𝑢 ≤ 𝑥; 𝑥 < 𝑑3 < 𝑥.
15: Adapt the set of parameters (𝑑1, 𝑑2, 𝑑3) according to optimizer.
16: end while
17: 𝑫 = [𝑑0, 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5].

The decision to minimize the amplitude of the target relative trajectory in the 𝑥 variable stems from a sensitivity

analysis, revealing that the hovering boundary region is consistently violated in the 𝒊 direction of the LVLH frame unless

𝑦 and 𝑧 boundaries of the periodic orbit are sufficiently close to the boundaries of the hovering zone. Additionally, as

the size of the relative orbit increases, the amplitude of the relative perturbations also grows, resulting in a faster drift.

According to Eq.7 there are no theoretical limits to the minimum size of the relative periodic orbit that can be achieved.

By setting all parameters 𝑫 = 0 apart from 𝑑3 the relative trajectory is constrained to periodically oscillate along the 𝒊

direction only. However, reducing the size of the orbit too much is not viable for the specific problem addressed in

this paper. In fact, It is crucial to ensure that the follower spacecraft has a sufficient variation in viewing angle relative

to the leader during inspections. Moreover, for some specific sensors used for relative navigation it is paramount to

grant some out-of-plane motion in order to retain observability of relative states [31]. Therefore, setting adequate orbit
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boundary values requires a balance of different task demands. In the effort to extend the drift duration, it is desirable to

locate the 𝑥 of the center of the relative periodic orbit as far as possible in the opposite direction of the drift caused by

perturbations. Consequently, we adopt the conservative choice of setting 𝑥𝑐 as the center of the hovering zone.

B. Selection of optimal target point

After a target periodic orbit is designed, the target point on it should also be selected to provide it to the optimal

control module designed in Sec. III. Therefore, the optimal target point on the desired periodic orbit should be evaluated

considering the fuel cost and the drift time. The exact drift time can be obtained by simulating the disturbed dynamics

until the boundary of the hovering region is reached. However, this procedure is extremely time-consuming and,

therefore, not suitable for onboard computation. As a consequence, an estimation method based on a short-term

propagation of disturbed dynamics is exploited to approximately predict the drift time. The devised approach is not only

fast but also reliable to estimate an optimal target point compared to the numerical simulations. This approach relies

on heuristics that emerged after an extensive preliminary study of the effects of perturbations on various points of a

target orbit. Results from several propagations indicated that the average drift velocity imposed by 𝐽2 perturbation alone

does not depend on time. In contrast, a short-term estimation of the average drift velocity caused by drag perturbation

alone is not representative of the drift obtained after longer propagations. Indeed, the drift velocity imposed by drag

seems to accumulate almost linearly over time, regardless of the initial point of the propagation on the relative orbit.

An example of this behavior is illustrated in Fig. 7, where the average drift position and velocity after a simulation

of varying durations are presented. Considering these results, a heuristic was devised to approximate the effect of

drag on the drift. In particular, it was decided to create a linearly varying average drift velocity 𝑣drag = 𝑝1 + 𝑝2𝑡. The

coefficients (𝑝1, 𝑝2) can be determined by fitting this expression with the data from several pairs of drift velocity 𝑣𝑚 and

corresponding propagation time 𝑡𝑚 obtained for one of the target points.
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Fig. 7 Only drag perturbation.

By further assuming that the impact of perturbations could be estimated as their linear superposition (i.e., 𝐽2 and drag

separately) it was possible to devise a fast method of approximation of the total drift rate. This approach is outlined in
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detail in Algorithm 3 and its comparison with the drift time obtained by the exact simulation of the perturbed dynamics

for a test case is illustrated in Fig. 8. The approximated drift time shows a similar trend to the one obtained from exact

simulations. Despite not predicting the correct drift time overall, this technique can be leveraged to compare target

points among them and select the one that approximately provides the largest drift time while undergoing perturbed

motion.
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(c) 𝐽2 and drag

Fig. 8 Comparison of simulated and calculated drift time.

The analyses conducted in this section are based on simulations where the perturbed motion starts exactly from

the points on a target periodic orbit. However, as it was shown in Sec. III, for both energy-optimal and fuel-optimal

control problems the target relative state cannot be reached exactly. Consequently, the periodic orbit that follows after

the control phase will be different from the target one. Nonetheless, it was observed that the drift time obtained by the

designed estimation method was not impacted by this error. That is an expected behavior since the drift in the 𝒊 direction

is the main one and the 𝑥-𝑧 orbit boundary is decoupled from the 𝑦 orbit boundary. Therefore, the estimated results

from the exact case, which are immediate to retrieve, can be directly applied to the tangential case for the selection of

the optimal target point. To further mitigate this issue in the fuel-optimal scenario, Eqs.6 is used to convert the final

relative states into the parameters 𝑫, and Eqs.22, 23, 26, and 27 are included as inequality constraints of final relative

states in the NLP used to solve the fuel-optimal control problem. Fig. 9 shows the effect of the application of these

additional constraints to the same test case presented in Sec. III.C.

The optimal target point is not selected solely based on the maximum estimated drift time. An additional analysis for

estimating the fuel cost for varying control time durations was also conducted. In Fig. 10(a), it can be observed that the

cost of the transfer to different target points converges around a minimum value after a control time of nearly one period.

Moreover, this trend remains consistent regardless of the shape of the leader’s orbit. Therefore, there is no additional

benefit in extending the control time beyond this threshold. This conclusion is further supported by examining the

convergence of the NLP used for the fuel-optimal control problem. As depicted in Fig. 10(b), the algorithm struggles

to converge for control durations that deviate too much from multiple integers of the orbital period of the leader. In
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Algorithm 3 Approximated method to obtain the optimal target point.
Input: 𝑥 boundary values of the hovering zone and the computed target periodic orbit (TPO).
Output: Estimated optimal target point.

1: Calculate the distance between the 𝑥 boundary of the hovering zone and the TPO: 𝑑lower, 𝑑upper.
2: Choose a certain number of target points on the TPO;
3: For each target point, the drift velocity 𝑣J2 can be computed in the same way:

Starting from chosen target points, the motion perturbed by 𝐽2 is propagated for 1 period and its drift is averaged to
obtain 𝑣J2 ;

4: For each target point, the drift velocity 𝑣drag is assumed to be the same:
Starting from one target point, the drag-perturbed motion is propagated to get: (𝑣𝑚, 𝑡𝑚), 𝑚 = 1, 2, 3, . . .;
The average drift velocity 𝑣drag = 𝑝1 + 𝑝2𝑡 is obtained by fitting (𝑝1, 𝑝2) to the data (𝑣𝑚, 𝑡𝑚).

5: for All chosen target points do
6: if the drift direction imposed by the drag is negative then
7: if

(
𝑣J2 + 𝑝1

)
· 𝑡 + 𝑝2 · 𝑡2 = 𝑑upper has a positive root then

8: The disturbed motion arrives at the upper boundary of the hovering zone and the drift time is the positive
root of this equation;

9: else
10: The disturbed motion arrives at the lower boundary of the hovering zone and the drift time is calculated by(

𝑣J2 + 𝑝1
)
· 𝑡 + 𝑝2 · 𝑡2 = 𝑑lower.

11: end if
12: else if the drift direction imposed by the drag is positive then
13: if

(
𝑣J2 + 𝑝1

)
· 𝑡 + 𝑝2 · 𝑡2 = 𝑑lower has a positive root then

14: The disturbed motion arrives at the lower boundary of the hovering zone and the drift time is the positive
root of this equation;

15: else
16: The disturbed motion arrives at the upper boundary of the hovering zone and the drift time is calculated by(

𝑣J2 + 𝑝1
)
· 𝑡 + 𝑝2 · 𝑡2 = 𝑑upper.

17: end if
18: end if
19: end for
20: select the target point with longest drift time.
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Fig. 9 Comparison of periodic orbits for different control strategies : energy-optimal (EOC), fuel-optimal(FOC),
and fuel-optimal with additional constraints.
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conclusion, using longer propagation times results in larger final state errors after control. This trend is attributed to the

fact that perturbations were not considered during control design, yet their presence still affects the trajectory when

control is applied. This additional limitation led to the final decision to select only optimal target points that can be

reached with a control duration of around one period of the leader’s orbit.
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Fig. 10 Motivation for the selection of 1 period control duration.

C. Numerical simulations of multiple cycles

In this section, the long-term hovering procedure is simulated in MATLAB and Simulink, with an i7-10700 2.90GHz

CPU. The planning hovering horizon consists of 40 cycles within a general range of orbit eccentricity of the leader to

verify the algorithm’s effectiveness. Since the analyses conducted in the previous section show that the solution of

the fuel-optimal control problem may not always converge, in such cases, the control obtained at the final iteration of

the optimization is adopted. To understand the impact of failures in the convergence of the optimal control problem

two strategies were preliminary tested. The first strategy implemented the initial guess of the optimal control problem

in case of solver failures. When analyzing this approach, large final state errors appeared in relation to the desired

target point of the control. These errors resulted in relative orbits that were not quasi-periodic at the end of the control

phase, and hence shortened the free drift time of the follower substantially. As a consequence, it was observed that the

cumulative drift time flattened with the number of hovering cycles. Moreover, the accumulated state errors caused an

increase in the control effort necessary to compensate for the drift, which in turn was reflected in a sharp increase of the

cumulative Δ𝑣. To sum up, an increase in cost and the constant need for replanning represent the biggest concerns for

the proposed long-term hovering strategy. Conversely, the second approach adopted the control history provided by the

final iteration of the nonlinear programming solver regardless of its convergence. This strategy is the one adopted to

generate the results reported in this paper as it provided satisfactory performances which will be illustrated in the following.
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First, the orbit eccentricity 𝑒 of the leader is set at four values, 1 × 10−4, 0.05, 0.1, and 0.2. In these cases,

the maximum acceleration 𝑎max is varied as 5 × 10−6m/s2, 1 × 10−5m/s2, and 1.5 × 10−5m/s2. The parameters for

Algorithm 2 are 𝑦′ = 𝑧′ = 5 m, 𝑥𝑐 = 70 m, and 𝜁 = 20. The remaining parameters are reported in Table 1. The

number of cycles for which the fuel-optimal problem reaches convergence is recorded in Table 2, where it is shown that

convergence can be achieved in more than 90% of the cases. The cumulative fuel cost and the cumulative drift time of

these analyses are plotted in Fig 11. In these cases, it is possible to observe that the trend is approximately linear with

the number of cycles. This result shows that despite the 10% of cases where the solver failed to converge, it was still

possible to avoid the constant need for replanning and the associated increase in cumulative cost. Indeed, these were the

two main issues that the proposed algorithm could encounter, as identified by preliminary analyses.

Table 2 Fraction of converged cycles for fuel-optimal control problem.

Maximum acceleration Eccentricity 𝑒

𝑎max (m/s2) 0.0001 0.05 0.1 0.2
5 × 10−6 0.950 1 1 1
1 × 10−5 0.925 1 1 0.950

1.5 × 10−5 0.850 0.950 0.975 0.975

0 20 40

Number of Cycles

0

0.05

0.1

0.15

A
c
c
u

m
u

la
te

d
 f

u
e

l 
c
o

s
t 

 v
 [

m
/s

] e=0.0001,a
max

=5 10-6

e=0.0001,a
max

=1 10-5

e=0.0001,a
max

=1.5 10-5

e=0.05,a
max

=5 10-6

e=0.05,a
max

=1 10-5

e=0.05,a
max

=1.5 10-5

e=0.1,a
max

=5 10-6

e=0.1,a
max

=1 10-5

e=0.1,a
max

=1.5 10-5

e=0.2,a
max

=5 10-6

e=0.2,a
max

=1 10-5

e=0.2,a
max

=1.5 10-5

(a) Cumulative Δ𝑣

0 10 20 30 40

Number of Cycles

0

1

2

3

4

5

6

7

A
c
c
u
m

u
la

te
d
 i
n
-c

u
b
e
 t
im

e
 [
s
]

10
6

(b) Cumulative drift time.

Fig. 11 The simulation results of various combinations of eccentricity and maximum acceleration.

Fig. 11(a) shows that for orbits with smaller eccentricity, the cumulative cost decreases with increasing 𝑎max.

Moreover, the larger the eccentricity the smaller the total required cost. Conversely, the cumulative drift time reported

in Fig. 11(b) does not show such trends. The cumulative drift time useful for inspection and other monitoring activities

ranges from ≈ 70 days for orbits with very small eccentricity to ≈ 130 days for orbits with intermediate values of

eccentricity. Overall, the average cost for a day of mission is always ≈ 10−3 (m/s)/day and it ranges from 3 × 10−4

(m/s)/day (for orbits with larger eccentricity) to ≈ 2 × 10−3 (m/s)/day (for almost circular orbits).
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During this analysis, the computational cost of the control design was also considered. Table 3 reports the average

time needed for control design for the different combinations of maximum acceleration and eccentricity. Additionally,

Fig. 12(a) shows the time breakdown for one of these cases: 𝑎max = 1 × 10−5m/s2 and 𝑒 = 0.1. Each bar in this figure

represents the total time cost for the design of a control cycle.

Table 3 Average computational time used to design the controls of the long-term hovering strategy (40 cycles).

Maximum acceleration Eccentricity 𝑒

𝑎max (m/s2) 0.0001 0.05 0.1 0.2
5 × 10−6 0.691 [s] 0.498 [s] 0.653 [s] 0.613 [s]
1 × 10−5 0.432 [s] 0.649 [s] 0.501 [s] 0.660 [s]

1.5 × 10−5 0.376 [s] 0.465 [s] 0.544 [s] 0.506 [s]
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Fig. 12 Simulation results of the case with 𝑒 = 0.1 and 𝑎max = 1 × 10−5m/s2.

It is important to notice that a big portion of the computational time is employed for interface operations (“OTHER”

in Fig. 12(a)). These operations include all those complementary steps that are necessary to retrieve the final control

(e.g., state conversions, mapping from time to true anomaly, etc.) but are not part of the optimization. Conversely, the

time needed for the solution of the energy-optimal and of the fuel-optimal control problems (i.e., EOCP and FOCP

respectively in Fig.12(a)) is limited, showing the benefit of adopting semi-analytical methods.

Moreover, Fig. 12(b) shows the final periodicity condition error obtained from the different steps of the control

design. Both fuel-optimal and energy-optimal controls (i.e., FOC and EOC respectively in Fig.12(b)) are designed

with unperturbed dynamics, therefore they can satisfy the final periodicity condition. However, the designed control is

applied in a simulator including perturbations, which causes a final state error. Despite the presence of perturbations

that are not accounted for during control design, the final periodicity condition error is still deemed acceptable (i.e., in

the order of 10−3). In the course of many analyses conducted during the development of this work it was observed that
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small violations of the periodicity condition (i.e., in the order of 10−6) produced drift times of ≈ 30 periods or more (on

average). With an error of 10−3, the average drift time dropped to ≈ 20 periods, as illustrated in this paper. Finally, for

final errors in the periodicity condition of 10−2 or more, the drift time fell below 5 periods on average. This outcome

constitutes a significant result of the trade-off analysis between the need to reduce control time to avoid accumulation of

perturbations while also having enough flexibility to reduce the maneuver cost and increase the drift time.

V. Conclusion
This paper addresses the challenging problem of devising a long-term control strategy for hovering in proximity

to a target spacecraft. To achieve this feat, the paper presents a solution through several building blocks. Initially,

two semi-analytic control strategies are derived, considering thrust constrained along the tangential direction. These

strategies offer a control law suitable for satellites with limited actuation capacity.

Although the control design phase neglects the effects of perturbations, the results demonstrate that for short propagation

times, perturbations have a negligible impact on relative trajectories. However, tangential control does not bound the

out-of-plane motion of the follower, potentially leading to violations of the hovering region in this direction during

extremely long hovering missions, which are not addressed in this work.

Subsequently, the paper introduces a strategy for selecting a bounded periodic orbit that maximizes residence time within

the predefined hovering region, enabling longer operations. This involves determining relative orbital parameters that

constrain the orbit within the hovering zone through spatial constraints defined by polynomial inequalities. Additionally,

a fast approach for evaluating the optimal target point on a periodic orbit is provided. The analyses suggest that a control

duration of one period offers a promising candidate for fuel-optimal control, reaching a lower bound for fuel cost with

minimal errors in the controlled final states due to orbital perturbations.

All these steps are integrated into a cyclic procedure for a long-term hovering strategy, incorporating insights from

previous tests. The focus on obtaining semi-analytic procedures for optimal control solutions produced a reduction of

the computational effort, making the proposed strategy a promising preliminary approach for onboard application in

underactuated satellites. Finally, several simulations showcase the effectiveness of the proposed methods for different

magnitudes of maximum acceleration and various shapes of the leader’s orbit.
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