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Derivation of the Gross-Pitaevskii Theory

for Interacting Fermions in a Trap

Andrea Calignano and Michele Correggi

Abstract We study a dilute gas of interacting fermions at temperature T = 0
and chemical potential µ ∈ R. The particles are trapped by an external poten-
tial, and they interact via a microscopic attractive two-body potential with
a two-body bound state. We prove the emergence of the macroscopic Gross-
Pitaevskii theory as first-order contribution to the BCS energy functional in
the regime of vanishing micro-to-macro scale parameter.

1 Introduction

The low-temperature behavior of interacting fermions has been widely stud-
ied in the physics literature (see, e.g, the monographs [23, 25]), in order to
understand phenomena as the occurrence of superconductivity in materials,
i.e., a sudden drop of resistivity below a certain critical temperature. A mi-
croscopic model for such a phenomenon was proposed in the ‘50s in [4] by
J. Bardeen, L. Cooper and R. Schrieffer, and it is nowadays very well known
as the BCS theory: the presence of an attraction between the fermions may
be responsible for the formation of (weakly) bound pairs (Cooper pairs) of
fermions with opposite spin; such pairs behave in all respect as charged bosons
and as such they undergo Bose-Einstein condensation below a certain critical
temperature. The emergence of this collective behavior of Cooper pairs is
the signature of the occurrence of superconductivity in the material, and it
can be understood starting from the minimization of the free energy of the
system given by the BCS energy functional depending on the two-particle
reduced density matrix.

Few years before the appearance of the BCS description of superconduc-
tivity, a much more phenomenological macroscopic explanation was provided
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in [17] by V.L. Ginzburg and L.D. Landau. In the GL theory the supercon-
ducting features of the sample are encoded in an order parameter ψ, i.e.,
a complex wave function minimizing a suitable energy functional, which is
supposed to approximate the free energy of the system (see [2, 7, 8, 9, 22]
and references therein for some recent mathematical results). The connection
between the two models was heuristically investigated in [18], but only much
more recently a rigorous derivation of GL theory from the BCS model was
obtained in [14] (see also the related papers [11, 13, 15, 19, 21]): it is shown
that, in a translational invariant system in presence of slowly varying exter-
nal potentials and close to the critical temperature for the superconductivity
transition, the leading order of the BCS ground state energy is given by the
minimum of the GL functional, provided the attraction admits at least a
bound state and in the limit of zero ratio between the microscopic scale of
the interaction and the macroscopic size of the sample. The zero-temperature
analogue of the same result for a fermionic system in a bounded domain was
successively obtained in [16], while a similar question for the Bogolubov-
Hartree-Fock functional, i.e., the BCS energy functional with the addition of
direct and exchange terms, was studied in [5].

The setting we consider here is quite close to the one addressed in [16, 21],
i.e., we study the zero-temperature behavior of a gas of interacting fermions,
but, unlike the previous references, here we assume the presence of a confining
external potential. The particles interact via a two-body attraction, which is
strong enough to bind two particles together. Naively, one may think that
the fermions at low temperature would arrange in bounded pairs, so forming
a bosonic gas, which then undergoes BE condensation. However, as in [5, 16,
21], one observes that the possibility to form a two-body bound state is in
fact enough to generate the superconductivity transition, even though the
gas does not exactly arrange in two-particle bound pairs.

Let us describe the setting more precisely: we set the length scale of the
trap to be 1, while the microscopic interaction varies on a scale h ≪ 1. The
parameter h thus describes the ratio between the micro- and macroscopic
scales and we study the limit h → 0 of the ground state energy of the BCS
energy functional and of any corresponding minimizer. We do not fix the
number of particles a priori, but we study the grand-canonical problem in
presence of a chemical potential µ.

We stress that the physical setting we are considering is not the typical one
of BCS theory in which the formation of Cooper pairs occurs on a scale much
larger than the mean interparticle distance. On the contrary, here, the size
of bounded pairs is of order h and it is therefore much smaller than the mean
distance travelled by fermions, which, as we are going to see, is of order h1/3

(the density of particles if of order h−1). There is however a physical regime
in which this setting becomes meaningful, namely the BEC/BCS crossover
region (see [21]), where for certain values of the two-particle scatting length,
the picture is very close to the one considered here. Note also that, as a gas
made of almost bosonic pairs, the system is dilute (see also next Remark 1
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and the analogous discussions in [12, 24]), because the density times the
microscopic volume where the interaction acts non-trivially is of order h−1 ·
h3 = h2 ≪ 1.

Acknowledgements The authors thank C. Hainzl for useful comments and re-
marks about the physical interpretation of the model. The support of Istituto
Nazionale di Alta Matematica (INdAM) “F. Severi” via the intensive period “INdAM Quantum Meetings (IQM22)”
is also acknowledged.

1.1 BCS theory of superconductivity

In the BCS model all the information about the state of the system is encoded
in two variables: the reduced one-particle density matrix γ and the pairing
density matrix α. Hence, the system is fully described by an operator

Γ =

(
γ α
ᾱ 1− γ

)
, 0 6 Γ 6 1, (1)

acting on L2(R3) ⊕ L2(R3). The bar denotes complex conjugation, i.e., the
integral kernels of the operators γ, α are γ(x, y) and α(x, y), respectively. For
a given BCS state Γ , the BCS functional at T = 0 in macroscopic units is
given by

EBCS
µ [Γ] := Tr h γ+

∫

R6

dxdy V
(
x−y
h

)
|α(x, y)|2, (2)

where the one-body operator h = −h2∆ + h2W − µ describes the energy of
non-interacting electrons at chemical potential µ < 0. The BCS ground state
energy is

EBCS
µ := inf

06Γ61
EBCS
µ [Γ] . (3)

Assumption 1 (Existence of a ground state) We assume that V is real,
radially symmetric, locally integrable and bounded from below. Moreover, the
two-particle operator −∆+V is assumed to admit a normalized ground state
α0 ∈ L2(R6) with corresponding energy −E0, E0 > 0, which in particular
implies that the negative part of V is non-zero.

Assumption 2 (Spectral gap) Let α0 be the ground state as in Assumption 1
above. We assume that ∃g > 0 and 0 < ε < 1, such that

P⊥
α0

[−(1− ε)∆+ V + E0]P
⊥
α0

> gP⊥
α0

(4)

where P⊥
α0

stands for the projector onto the orthogonal complement of α0.

Assumption 3 (Trapping potential) We also assume that W ∈ C1(R3)
is positive and there exist 0 < β, c1, c2 < +∞ such that

https://sites.google.com/view/iqm22
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{
c1|x|β 6W (x) 6 c2|x|β ,
|∇W (x)| 6 c2β|x|β−1,

for |x| > 1. (5)

We stress that for the class of attractive potentials in Assumption 1, one
can deduce by standard Agmon estimates (see, e.g.,[1]) the exponential decay
of the bound state wave function α0: there exists b > 0 such that

∫

R3

dx |α0(x)|2e2bx < +∞. (6)

Note also that Assumption 3 allows to Taylor expand

W (η + ξ/2) =W (η) + ξ
2 · ∇W (ζ), (7)

with the variable ζ belonging to (η, η + ξ/2). A special case of a potential
satisfying Assumption 3 is obviously given by the harmonic potential. In this
case, the two-body Hamiltonian perfectly decouples in relative and centre-
of-mass coordinates, which allows to get rid of several error terms in the
discussion below.

The condition 0 6 Γ 6 1, which is often call admissibility of Γ , implies
that the operator γ is hermitian, i.e. γ(x, y) = γ(y, x) and that α is such that
α = α†. Furthermore, the operators γ, α : L2(R3) → L2(R3) have a specific
physical meaning (see, e.g., [3] for a formal derivation): given a many-body
fermionic state Ψ , we have

γ(x, y) =
〈
a†xay

〉
Ψ
, α(x, y) = 〈axay〉Ψ (8)

i.e., they represent the one-particle density matrix of the system and the wave
function of a Cooper pair, respectively. Here a†x, ax are the fermionic creation
and annihilation operators. In fact, in absence of any pairing between the
fermions, the system is in the so-called normal state, which is characterized
by a trivial off-diagonal component, i.e., α ≡ 0. The emergence of supercon-
ductivity is then associated to a non-trivial α.

1.2 Gross-Pitaevskii theory

For any D ∈ R, the Gross-Pitaevskii (GP) energy functional is defined as

EGP
D (ψ) :=

∫

R3

dη
{
1
4 |∇ψ|

2 + (W (η) −D)|ψ|2 + gBCS|ψ|4
}
, (9)

where the coefficient gBCS > 0 represents the interaction strength among
different pairs, and whose expression in terms of the microscopic quantities
is provided in Theorem 1. The GP energy can be proven to be bounded from
below for any positive gBCS (see Corollary 1). We denote then the GP ground
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state energy by
EGP
D := inf

ψ∈DGP

EGP
D (ψ), (10)

where DGP = {ψ ∈ H1(R3)|W |ψ|2 ∈ L1(R3)} is the natural minimization
domain for (9). We denote by ψ∗ the corresponding minimizer, which can
be shown to be unique up to choice of the phase by strict convexity of the
functional in |ψ|2.

We point out here that, mathematically speaking, the GP functional intro-
duced above may as well be named Ginzburg-Landau functional, although the
energy does not look exactly as the usual GL energy, which in a homogeneous
sample would read

EGL[φ] =

∫

R3

dη

{
1
4 |∇φ|

2 + g̃BCS

(
1− |φ|2

)2
}
. (11)

However, it is possible (see below and the discussion in [10, Sect. 1]) to reduce
the minimization of (9) to the one of a functional very close to (11) (in fact,
its inhomogeneous counterpart).

Notice that the GP wave function ψ is not normalized in L2 since we
are performing the energy minimization in the grand canonical setting, and
therefore we may think that ‖ψ‖2 is determined by the value of the chemical

potential µ. Let us denote by N such a quantity, i.e., N := ‖ψ∗‖22, and let f0
be the positive minimizer of the GP energy

ẼGP[f ] =

∫

R3

dη
{

1
4 |∇f |

2 +W (η)|f |2 + gBCSN |f |4
}
,

with L2 norm set equal to 1. Such a minimizer satisfies the variational equa-
tion

− 1
4∆f0 +Wf0 + 2gBCSNf

3
0 = µ0f0,

for a chemical potential µ0 = ẼGP + gN ‖f0‖44, where we have set ẼGP :=

inf‖ψ‖
2
=1 ẼGP[ψ]. With the splitting ψ∗ =:

√
Nf0φ∗ and exploiting the vari-

ational equation for f0, one gets

EGP
D = N

{
ẼGP −D + ẼGL[φ∗]

}
,

where the last term is a weighted Ginzburg-Laudau functional explicitly given
by

ẼGL[φ] =

∫

R3

dη f2
0

{
1
4 |∇φ|

2
+ g̃BCSNf

2
0

(
1− |φ|2

)2
}
, (12)

and φ∗ its minimizer.
This makes apparent the connection between the GP and GL functionals,

so that, from this point of view, both names are mathematically equivalent to
identify (9). There is however a strong physical motivation (see also [21]) for
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the choice we made, namely the fact that the physical regime we are inves-
tigating is a BEC one: as described in § 1, the mechanism behind the emer-
gence of a collective behavior in the low-temperature Fermi gas considered
here is not the usual BCS pairing phenomenon, but rather a condensation of
fermionic pairs playing the role of bosonic molecules. The pairs have indeed
a size of order h≪ 1 which is much smaller that the typical distance between
the fermionic particles of order of the trap length scale O(1).

2 Main Results

This section contains our main results about the semiclassical expansion of
the BCS energy.

Theorem 1 (BCS energy). Let µ = −E0 +Dh2, for some D ∈ R and let
Assumptions 1 to 3 be satisfied. Then,

EBCS
µ = hEGP

D +O(h2), (13)

as h→ 0, where

gBCS := (2π)3
∫

R3

dp (p2 + E0)|α̂0(p)|4. (14)

Moreover, for any approximate ground state Γ of the BCS functional, i.e.,
such that

EBCS
µ [Γ ] 6 EBCS

µ + εh, 0 < ε< +∞, (15)

its off-diagonal element α can be decomposed as

α(x, y) = h−2ψ
(
x+y
2

)
α0

(
x−y
h

)
+ r(x, y), (16)

where ψ ∈ DGP satisfies EGP
D (ψ) 6 EGP

D + ε+o(1), α0 is the ground state of
the two-particle operator and the correction r is small in the following sense:

‖r‖2L2 = O(h), ‖∇r‖2L2+
∥∥W |r|2

∥∥
L1

= O(h−1). (17)

Remark 1 (Diluteness). The expansion (16) together with the heuristics
γ ≃ αα (see § 3.4) suggests that the density of the gas in our setting is

proportional1 to h−1 |ψ|2, i.e., the total number of particle is of order h−1.
This vindicates the statement about the diluteness of the system since the
range of the two-body interaction is ∝ h and therefore the diluteness param-
eter h−1h3 = h2 ≪ 1 is small.

1 In fact, it may be possible to prove a weak version of such a statement as in [16,
Proposition 1.11] using the Griffith’s argument, i.e., variation w.r.t. to the external
potential. However, we omit this discussion here for the sake of brevity.
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Remark 2 (Properties of α0). Note that by the estimate (6), α0 ∈ L1 ∪
H1(R3), which guarantees that α̂0 ∈ L∞(R3), so that α̂0 ∈ Lp(R3) for any
p > 2 and gBCS is a finite quantity.

Whether the systems is superconducting in the asymptotic regime h → 0
thus depends on the fact that the GP wave function ψ is non-trivial. For the
GP minimizer this depends on the value of the coefficient D, which in turn
is determined by the chemical potential µ. In fact, one can infer [16, 21] from
the properties of the function

µ 7→ EBCS
µ , (18)

which is continuous, concave, and monotone decreasing, that there exists a
unique critical value µc(h) such that below µc superconductivity is present
and above it the system is in the normal state. The exact definition of µc(h)
is the following:

µc(h) := inf
{
µ < 0

∣∣ EBCS
µ < 0

}
, (19)

i.e., it marks the threshold of the transition from a zero ground state energy
(normal state) to a strictly negative one.

Theorem 2 (Critical chemical potential). Under the assumptions of
Theorem 1, the critical chemical potential at which the superconductivity
phase transition takes place is

µc(h) = −E0 + EWh
2 + o(h2), (20)

as h → 0, where EW is the ground state energy of the one-particle operator
− 1

4∆+W .

3 Proofs

The key ingredient to prove Theorem 1 and Theorem 2 is given by the fol-
lowing Proposition 1, which provides the link between the BCS and GL func-
tionals.

Proposition 1 (BCS and GP functionals). Let µ = −E0+Dh
2, D ∈ R.

Then,

(a) Upper bound: for any ψ ∈ DGP there exists an admissible state Γψ such
that

EBCS
µ [Γψ] 6 hEGP

D (ψ) + Ch2
[
1 +

(
max

{
EGP
D (ψ), 0

})2]
. (21)

(b) Lower bound: let Γ be an admissible BCS state such that EBCS
µ [Γ ] 6 CΓh.

Then, there exists ψ ∈ DGP(R3) such that
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EBCS
µ [Γ ] > hEGP

D (ψ)− Ch2. (22)

Furthermore, there exists a function r such that the following decomposi-
tion holds:

α(x, y) = h−2ψ
(
x+y
2

)
α0

(
x−y
h

)
+ r(x, y). (23)

where the remainder r satisfies the bounds

‖r‖2L2 6 Ch, 〈r |−∆+W | r〉L2 6 Ch−1. (24)

Let us then assume that Proposition 1 holds and prove Theorem 1 and
Theorem 2. The proof of Proposition 1 will be given in next § 3.3 and § 3.4
by separately addressing points (a) and (b) of the statement.

Proof (Theorem 1). To prove the upper bound, we use the admissible trial
state Γψ∗

, where we recall that ψ∗ stands for the minimizer of the GP func-
tional. We then obtain by (21)

EBCS
µ 6 EBCS

µ [Γψ∗
] = hEGP

D (ψ∗) +O(h2) = hEGP
D +O(h2), (25)

since EGP
D (ψ∗) = EGP

D 6 0. In addition to proving a sharp upper bound for
the ground state energy, the estimate above also yields the a priori bound
EBCS
µ [Γ ] 6 Ch for any approximate minimizer Γ of the BCS energy. Hence,

the minimizer satisfies (22), so that we can deduce the estimate from below
matching the upper bound, along with the decomposition of α as in (23).

Proof (Theorem 2). We start from the trivial observation that

EGP
D < 0, ⇐⇒ D > EW , (26)

where we recall that EW is the ground state energy of − 1
4∆+W : indeed, if

D > EW , it suffices to use λψW , λ > 0, as a trial state for the GP energy,
where ψW si the normalized ground state of − 1

4∆+W , to get

EGP
D = λ(EW −D) + gBCSλ

2 ‖ψW ‖4L4 < 0, (27)

for λ small enough. On the other hand, if D 6 EW , the functional is trivially
positive, since

EGP
D (ψ) > (EW −D) ‖ψ‖2L2 . (28)

Note also that ψ∗ is non-trivial if and only if EGP
D < 0.

Next, we prove the upper bound µc(h) 6 −E0+EWh
2+o(h2) by showing

that, if µ = −E0 +Dh2, D > EW , then there exists an admissible BCS state
such that

EBCS
µ [Γ ] < 0. (29)

By Proposition 1, for any ψ ∈ DGP, there exists Γψ admissibile such that

h−1EBCS
µ [Γψ] = EGP

D (ψ) +O(h). (30)
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This in particular holds true for ψ = ψ∗, so that

EBCS
µ 6 EGP

D h+O(h2) < 0, (31)

if D > EW .
Conversely, we now show that, if EBCS

µ = 0 for a certain µ = −E0 +Dh2,

then D 6 EW , so completing the proof. By Theorem 1, indeed, if EBCS
µ = 0,

then EGP
D = O(h) but the GP functional is independent of h and therefore

EGP
D = 0, which in turn implies that D 6 EW by (26).

3.1 GP functional

We discuss some useful properties of the GP functional (9) and its minimiza-
tion. We recall that we denote by EGP the infimum of (9) and by ψ∗ any
associated minimizer.

Proposition 2 (A priori bounds on ψ). There exists C < +∞, depending
on gBCS > 0, such that

‖∇ψ‖2L2 + 〈ψ |W |ψ〉+ ‖ψ‖4L4 + ‖ψ‖2L2 6 C
[
1 + max

{
EGP
D (ψ), 0

}]
(32)

for all ψ ∈ DGP.

Proof. We may assume that D > 0 otherwise the result is trivially obtained
with C = max

{
|D|−1, g−1

BCS, 4
}
. The starting point is the inequality

〈
ψ
∣∣− 1

4∆+W
∣∣ψ

〉
+ gBCS ‖ψ‖4L4 6 D ‖ψ‖2L2 + EGP

D (ψ)

6 D ‖ψ‖22 +max
{
EGP
D (ψ), 0

}
, (33)

which allows to bound from above both the quantities on the l.h.s. in terms
of the L2 norm and the GP energy of ψ. Next, we estimate for R large enough

‖ψ‖2L2 6

∫

|x|6R

dx |ψ|2 +R−β

∫

|x|>R

dx |x|β |ψ|2

6

√
4π
3 R

3/2 ‖ψ‖2L4 + CR−β 〈ψ |W |ψ〉

6 C
[
R3/2g−1

BCS

(
D ‖ψ‖L2 +

√
E
)
+R−β

(√
D ‖ψ‖2L2 + E

)]

where we have set E := max
{
EGP
D (ψ), 0

}
for short. Hence, for R > (CD)1/β ,

we get

(
1− CD

Rβ

)
‖ψ‖2L2 − CR3/2D ‖ψ‖L2 6 C

(
R3/2g−1

BCS

√
E +R−βE

)
,
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which implies

‖ψ‖2L2 6
C

(
1− CD

Rβ

)2
[(
1− CD

Rβ

) (
R3/2g−1

BCS

√
E +R−βE

)
+ C2R3D2

]
(34)

and thus the result.

Corollary 1 (Boundedness from below of EGP
D (ψ)). For any gBCS > 0,

there exists a finite constant C < +∞ such that

EGP
D > −C. (35)

Proof. Again, EGP
D = 0, if D 6 0, and there is nothing to prove, so let us

assume that D > 0. In this case it suffices to observe that EGP
D 6 0, which

can be obtained by simply testing the GP energy on the trivial wave function
ψ ≡ 0. Hence, Proposition 2 implies that ∃C < +∞ such that ‖ψ‖2L2 6 C
for any ψ with non-positive energy, which in turn yields the lower bound
EGP
D > −C|D| and thus the result.

The existence of a minimizer ψ∗ which is also unique up to gauge trans-
formation can be deduced by standard methods in variational calculus, and
any such a minimizer solves the variational equation

− 1
4∆ψ∗ + (W −D)ψ∗ + 2gBCS|ψ∗|2ψ∗ = 0. (36)

Under Assumption 3, one can also show that ψ∗ ∈ C3 ∩ L∞(R3) and it can
be chosen strictly positive.

3.2 Semiclassical estimates

Before attacking the proof of Proposition 1, it is useful to state some technical
but standard semiclassical bounds to be used in the rest of the paper.

Proposition 3 (Semiclassical estimates). Let µ = −E0 + h2D, D ∈ R

and let
αψ(x, y) := h−2 ψ

(
x+y
2

)
α0

(
x−y
h

)
, (37)

for any ψ ∈ DGP. Then, the following estimates hold as h→ 0:

∣∣∣∣Tr hαψ αψ +

∫

R6

dxdy V
(
x−y
h

)
|αψ(x, y)|2

−h
〈
ψ
∣∣− 1

4∆+W −D
∣∣ψ

〉
L2(R3)

∣∣∣ 6 A0h
2, (38)

where
A0 = C

(∥∥W |ψ|2
∥∥
L1

+ ‖ψ‖2L2

)
; (39)
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∣∣Tr hαψ αψ αψ αψ − hgBCS‖ψ‖4L4

∣∣

6 Ch2
[
‖∇ψ‖4L2 +

∥∥W |ψ|2
∥∥2

L1
+ ‖ψ‖4L2 +A0h

]
. (40)

Before discussing the proof of the above Proposition, it is convenient to
state a technical result about the reduced density αψ which is going to be used
several times. In the following we will often use the center-of-mass coordinates

η := 1
2 (x+ y), ξ := x− y, (41)

and use the notation
α̃ψ(η, ξ) := αψ(x, y). (42)

Lemma 1. Let αψ be as (37). Then, for any n ∈ N even,

‖αψ‖nSn 6 Chn−3‖ψ‖nLn ‖|α̂0|‖nLn , (43)

‖∇ξα̃ψ‖nSn 6 h−3‖ψ‖nLn ‖| · | α̂0‖nLn , (44)

where ‖·‖Sn stands for the Schatten norm of order n ∈ N.

Proof. See [5, Lemma 1]. The extension to any n ∈ N is obtained by simply
observing that, thanks to the monotonicity of Schatten norms, ‖αψ‖S∞

6

‖αψ‖Sn for any n ∈ N, which allows to use (43) and (44) repeatedly to extend
the result to all natural numbers.

We are now in position to present the proof of Proposition 3.

Proof (Proposition 3). Using the change to center-of-mass and relative coor-
dinates, one gets

Tr hαψ αψ +

∫

R6

dxdy V
(
x−y
h

)
|αψ(x, y)|2

=
〈
α̃ψ

∣∣− 1
4h

2∆η + h2W (η + ξ/2)− h2D
∣∣ α̃ψ

〉
L2(R6)

+
〈
α̃ψ

∣∣−h2∆ξ + V (ξ/h) + E0

∣∣ α̃ψ
〉
L2(R6)

=
〈
α̃ψ

∣∣− 1
4h

2∆η + h2W (η + ξ/2)− h2D
∣∣ α̃ψ

〉
L2(R6)

. (45)

where we used that α0 is the normalized zero energy eigenvector of the op-
erator −∆+ V + E0. The result then follows from next Lemma 2.

In order to prove the second estimate, we use the cyclicity of the trace and
the symmetry of the Laplacian, to get

Tr∆αψ αψ αψ αψ =
〈
αψ αψ αψ

∣∣ 1
2 (∆x +∆y)αψ

〉
L2(R6)

=
〈
ω̃ψ

∣∣1
4∆ηα̃ψ

〉
L2(R6)

+ 〈ω̃ψ |∆ξα̃ψ 〉L2(R6) , (46)

where we have set for short ω̃ψ(η, ξ) := (αψ αψ αψ)(x, y). Introducing the
coordinates
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X = 1
4 (x1 + x2 + x3 + x4), ξk = xk+1 − xk, k = 1, 2, 3, (47)

and rescaling the relative ones, we obtain

Tr(−h2∆+E0)αψ αψ αψ αψ = h

∫

R12

dXdξ1dξ2dξ3 ψ(X−hs)ψ(X − ht)×

ψ(X + hs)ψ(X + ht) [(−∆+ E0)α0] (ξ1)α0(ξ2)α0(ξ3)α0(ξ∗)

− 1
4h

2 〈ω̃ψ |∆ηα̃ψ 〉L2(R6) , (48)

where ξ∗ := −ξ1 − ξ2 − ξ3 and s, t are functions of ξ1, ξ2, ξ3, i.e.,

s := 1
4 (ξ1 + 2ξ2 + ξ3) , t := 1

4 (ξ3 − ξ1) . (49)

From this expression we are going to extract the quartic term needed to
reconstruct the GP functional times h plus higher order contributions. The
fundamental theorem of calculus allows to rewrite the first term on the r.h.s.
of (48) as

h‖ψ‖4L4

∫

R9

dξ1dξ2dξ3 [(−∆+ E0)α0(ξ1)]α0(ξ2)α0(ξ3)α0(ξ∗)

+ h

∫

R12

dXdξ1dξ2dξ3

∫ 1

0

dτ
d

dτ

(
ψ(X − τhs)ψ(X − τht)×

×ψ(X + τhs)ψ(X + τht)
)
[(−∆+ E0)α0(ξ1)]α0(ξ2)α0(ξ3)α0(ξ∗)

=: hgBCS‖ψ‖4L4 + h2I1, (50)

thanks to the explicit computation

∫

R9

dξ1dξ2dξ3 [(−∆+ E0)α0(ξ1)]α0(ξ2)α0(ξ3)α0((ξ∗))

= (2π)3
∫

R3

dp (p2 + E0)|α̂0(p)|4.

Hence, (48) yields

Tr(−h2∆+ E0)αψ αψ αψ αψ = hgBCS‖ψ‖4L4 + h2 (I1 + I2) , (51)

where
I2 := − 1

4 〈αψ αψ αψ |∆ηαψ 〉L2(R6) . (52)

The estimate on the term containing the external potential immediately fol-
lows from Lemma 2 using Hölder inequality with exponents 1

2 ,
1
3 and 1

6 :
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|TrW αψ αψ αψ αψ| 6 Tr
∣∣∣W 1/2 αψ αψ αψ αψW

1/2
∣∣∣

6

∥∥∥W 1/2αψ

∥∥∥
S2

∥∥∥W 1/2αψ

∥∥∥
S6

‖αψαψ‖S3 6

∥∥∥W 1/2αψ

∥∥∥
2

S2

‖αψ‖2S6

6 Ch‖ψ‖2L6 ‖α̂0‖2L6

∥∥∥W 1/2αψ

∥∥∥
2

L2

6 C‖ψ‖2L6

[∥∥W |ψ|2
∥∥
L1

+ hA0

]
, (53)

by the monotonicity of Schatten norms and Lemma 1. The replacement of
‖ψ‖2L6 with ‖∇ψ‖2L2 + ‖ψ‖2L2 can be done via Sobolev inequality.

Lemma 2. Let αψ be as (37) and A0 as in (39), then

∣∣∣∣〈αψ |W |αψ〉L2(R6) − h−1

∫

R3

dη W (η)|ψ|2
∣∣∣∣ 6 A0. (54)

Proof. Using center-of-mass and relative coordinates as before, we get by the
Taylor expansion (7)

1
2 〈αψ |W (x) +W (y)|αψ〉L2(R6) =

1
2 〈α̃ψ |W (η + ξ/2)| α̃ψ〉L2(R6)

+ 1
2 〈α̃ψ |W (η − ξ/2)| α̃ψ〉L2(R6)

= h−1

∫

R3

dη W (η)|ψ(η)|2 + 1
2h

−4

∫

R6

dηdξ ξ · ∇W (ζ) |ψ(η)|2 |α0(ξ/h)|2 ,

where we recall that α̃ψ(η, ξ) = αψ(x, y). Hence, we have only to estimate
the last term on the r.h.s. of the expression above: by Assumption 3 on W ,
we deduce that, since ζ ∈ (η, η + ξ/2),

1
2h

−4

∫

R6

dηdξ ξ · ∇W (ζ) |ψ(η)|2 |α0(ξ/h)|2

6 C

∫

R6

dηdξ |ξ|
(
hβ−1 |ξ|β−1 + |η|β−1 + 1

)
|ψ(η)|2 |α0(ξ)|2 (55)

which immediately implies the result, via the trivial bounds |x|β−1 6W (x)+1
(again by Assumption 3) and

∥∥∥|·|β/2 α0

∥∥∥
2

L2

6 C,
∥∥∥|·|1/2 α0

∥∥∥
2

L2

6 C, (56)

which follows from (6).

Lemma 3. Let I1, I2 as in (50) and (52). Then, as h → 0,∃C < +∞ such
that

|I1|+ |I2| 6 C‖∇ψ‖4L2 . (57)

Proof. By [5, Proof of Lemma 1], there exist two finite constants C1, C2 such
that
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|I1| 6 C1‖∇ψ‖4L2 ‖|·|α0‖L2 ‖α0‖L2 ‖α0‖L1 ‖V α0‖L1 ,

|I2| 6 C2‖∇ψ‖4L2 .

The result then follows from the properties of α0 (see Remark 2).

3.3 Energy upper bound

The result is obtained by testing the BCS energy functional on a suitable
trial state. We define an admissible state Γψ , with off-diagonal element given
by αψ as in (37) and ψ ∈ DGP, and upper left entry

γψ := αψ αψ + (1 + λh)αψ αψ αψ αψ, (58)

for some λ ∈ R
+.

Remark 3 (Admissibility). The admissibility requirement makes the correc-
tion of order λh necessary. In fact, any correction of order hβ, 0 < β 6 1,
would work, if λ is chosen appropriately, but β = 1 gives the best error bound
in our estimates. Indeed, the state is admissible if and only if γ−γ2−αα > 0
(see, e.g., [5, Eq. (4.8)]), which, assuming that the quartic correction is pro-
portional to λhβ , yields the condition

λhβ − (1 + λhβ)2(αψ αψ)
2 − 2(1 + λhβ)αψ αψ > 0. (59)

Since ‖αψ‖∞ 6 ‖αψ‖6 6 Ch1/2, this bound implies that we may choose
0 < β < 1, and the latter condition would be satisfied for any value of λ. For
β = 1, on the other hand, one is forced to take the parameter λ large enough,
but the inequality may still hold.

We now apply Proposition 3 to get

EBCS
µ [Γψ] = Tr h γψ +

∫

R6

dxdyV
(
x−y
h

)
|αψ(x, y)|2

= Tr hαψ αψ +

∫

R6

dxdyV
(
x−y
h

)
|αψ(x, y)|2 + (1 + λh)Tr hαψ αψ αψ αψ

6 h

∫

R3

dη
{
1
4 |∇ψ|2 + (W −D)|ψ|2 + gBCS|ψ|4

}

+ Ch2
[
‖∇ψ‖4L2 +

∥∥W |ψ|2
∥∥2
L1

+ ‖ψ‖4L2 + 1
]

(60)

as h → 0. The upper bound (21) is thus a straightforward consequence of
(32).
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3.4 Energy lower bound

We consider any admissible BCS state Γ satisfying EBCS
µ [Γ] 6 CΓh, whose

existence is ensured by the analysis in the previous § 3.3. The integral kernel
of α, the upper-right entry of Γ , can be decomposed as

α(x, y) = αψ(x, y) + r(x, y) = h−2 ψ
(
x+y
2

)
α0

(
x−y
h

)
+ r(x, y). (61)

where r is chosen to be orthogonal to α0:

〈α0 ( · /h) |r̃ 〉L2

ξ(R
3) = 0, (62)

where r̃(η, ξ) := r(x, y) and the coordinates η, ξ are defined in (41). With
such a choice, the order parameter ψ is naturally defined in terms of α as
(recall the notation α̃(η, ξ) := α(x, y))

ψ(η) := h−1 〈α0 ( · /h) |α̃ 〉L2

ξ(R
3) = h−1

∫

R3

dξ α0(ξ/h)α̃(η, ξ), (63)

Note also that, because of the orthogonality of r to α0, one immediately gets

‖α‖2L2(R6) = ‖αψ‖2L2(R6) + ‖r‖2L2(R6) = h−1‖ψ‖2L2 + ‖r‖2L2 . (64)

The physical meaning of such a decomposition is apparent: α represents the
wave function of a pair of particles and it almost factorizes in the coordinates
of the center-of-mass reference frame. More precisely, α0 describes the wave
function in the relative coordinate living on the microscopic scale h, while
ψ is the wave function in the in center-of-mass coordinate and varies on the
macroscopic scale.

We start with a preliminary lower bound on the BCS energy functional in
terms of the off diagonal entry α of Γ . Indeed, for any admissible Γ , it can
be seen that one can bound EBCS

µ [Γ] from below in terms of a functional of
α alone.

Lemma 4. Let µ = −E0 + h2D, D ∈ R. For any admissible Γ and for h
small enough,

EBCS
µ [Γ] > Tr hαα+ Tr hαααα+

∫

R6

dxdy V
(
x−y
h

)
|α(x, y)|2. (65)

Proof. The proof is given, e.g., in [16, Proposition 6.2]. We spell it in details
here for the sake of completeness. The admissibility of Γ , i.e., the condition
0 6 Γ 6 1, is equivalent to

γ − γ2 − αα > 0. (66)

Since for h small enough h is positive, as it follows from the trivial bound
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h > E0 −Dh2 > 0, (67)

we can use the monotonicity of the trace and apply the above inequality to
get the result, since (66) implies that γ > αα + αααα (see [16, Eq. (6.2)]).

The next lower bound give more information on the decomposition (61).

Lemma 5. Let µ = −E0 + h2D, D ∈ R, and let Γ an admissible BCS state
with upper-right entry α as in (61). Then, there exists a finite constant C
such that (recall (39)), as h→ 0,

Tr hαα +

∫

R6

dxdy V
(
x−y
h

)
|α(x, y)|2 > h

〈
ψ
∣∣− 1

4∆+W −D
∣∣ψ

〉
L2(R3)

+ 1
2g‖r‖2L2(R6) + h2

[〈
r̃
∣∣− 1

4∆η − ε∆ξ +
1
2W −D

∣∣ r̃
〉
L2(R6

−A0

]
. (68)

Proof. Plugging in the operator bound (67), we can immediately get rid of
the second term in (65) to obtain

EBCS
µ [Γ] > Tr hαα+

∫

R6

dxdy V
(
x−y
h

)
|α(x, y)|2 + (E0 − h2D)‖α‖4

S4 ,

and the last term can be dropped since it is positive. Next, we estimate the
first term, which reads

Tr hαα +

∫

R6

dxdy V
(
x−y
h

)
|α(x, y)|2

=

∫

R6

dηdξ α̃(η, ξ)
(
− 1

4h
2∆η − h2∆ξ + h2W (η + ξ/2)+

V (ξ/h)− µ) α̃(η, ξ).

By plugging in the decomposition (61), we get

Tr hαα = 〈αψ |h|αψ〉+
∫

R6

dxdy V
(
x−y
h

)
|αψ(x, y)|2

+ 〈r |h| r〉 +
∫

R6

dxdy V
(
x−y
h

)
|r(x, y)|2 + 2h2ℜ 〈αψ |Wr 〉 , (69)

since the potential W is the only operator which does not factorize in the
decomposition L2(R6) = L2

η(R
3)⊗L2

ξ(R
3). The sum of the first two terms has

already been estimated in Proposition 3, so that it just remains to consider
the quadratic expression on r and the mixed term.

The mixed term can be controlled by exploiting the Taylor expansion (7)
and the orthogonality (62), obtaining
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2h2 |ℜ 〈αψ |Wr 〉| = 2

∣∣∣∣
∫

R6

dηdξ ξ · ∇W (ζ)ψ(η)α0(ξ/h)r̃(η, ξ)

∣∣∣∣

6 C

∫

R6

dηdξ |ξ|
(
|ξ|β−1

+ |η|β + 1
)
|ψ(η)||α0(ξ/h)| |r̃(η, ξ)|

by the trivial bound |η|β−1 6 |η|β +1. Hence, by Cauchy-Schwarz inequality
we get

2h2 |ℜ 〈αψ |Wr 〉| 6 C ‖ψ‖L2(R3) ‖r‖L2(R6) ×

×
(∫

R3

dξ
(
|ξ|2β + |ξ|2

)
|α0(ξ/h)|2

)1/2

+ C
(∥∥W |ψ|2

∥∥1/2
L1(R3)

+ ‖ψ‖L2(R3)

)[(∫

R6

dηdξ |η|β |r̃|2
)1/2

+ ‖r‖L2(R6)

]
×

×
(∫

R3

dξ |ξ|2 |α0(ξ/h)|2
)1/2

6 Ch5/2
(
‖ψ‖2L2 + ‖r‖2L2 +

∥∥W |ψ|2
∥∥
L1

+
∥∥W |r|2

∥∥
L1

)

where we have estimated
∫

R6

dηdξ |η|β |r̃|2 6 C
∥∥∥W |r|2

∥∥∥
L1(R6)

.

The two terms depending on r can then be absorbed in the corresponding
positive ones coming from the estimate of 〈r |h| r〉 by adding a 1

2 prefactor for
h small enough, while the other two can be included in the A0h

2 remainder
up to the change of the constant C in A0.

The quadratic expression in ξ is bounded from below by means of Assumption 2:

∫

R3

dη
〈
r(η, ·)

∣∣−h2∆ξ + V ( · /h) + E0

∣∣ r(η, ·)
〉
L2

ξ(R
3)

>

∫

R3

dη
〈
r(η, ·)

∣∣−h2ε∆ξ + g
∣∣ r(η, ·)

〉
L2

ξ(R
3)

= g‖r‖2L2(R6) + h2ε ‖∇ξr‖2L2(R6) . (70)

Lemma 6. Let µ = −E0 + h2D, D ∈ R, and let Γ an admissible BCS state
with upper-right entry α as in (61), such that EBCS

µ [Γ] 6 CΓh. Then, there
exists a finite constant C such that

|Tr hαααα− Tr hαψαψαψαψ| 6 Ch2
(
‖∇ψ‖4L2 + A2

0

)
. (71)

Proof. We first rewrite the quartic term via
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αααα− αψαψαψαψ = rαααψ + αψααr + rααr + αψ(αα− αψαψ)αψ,

so that the cyclicity of trace and triangle inequality yields

|Tr hαααα − Tr hαψαψαψαψ | 6
∥∥∥h1/2rαααψh1/2

∥∥∥
S1

+
∥∥∥h1/2αψααrh1/2

∥∥∥
S1

+
∥∥∥h1/2rααrh1/2

∥∥∥
S1

+
∥∥∥h1/2αψ(αα− αψαψ)αψh

1/2
∥∥∥
S1

. (72)

To estimate this four terms, we apply Hölder inequality:

∥∥∥h1/2αψααrh1/2
∥∥∥
S1

6

∥∥∥h1/2αψ
∥∥∥
S6

‖α‖2
S6

∥∥∥h1/2r
∥∥∥
S2

;
∥∥∥h1/2rαααψh1/2

∥∥∥
S1

6

∥∥∥h1/2r
∥∥∥
S2

‖α‖2
S6

∥∥∥h1/2αψ
∥∥∥
S6

;

∥∥∥h1/2rααrh1/2
∥∥∥
S1

=
∥∥∥αrh1/2

∥∥∥
2

S2

6 ‖α‖2
S∞

∥∥∥h1/2r
∥∥∥
2

S2

;

∥∥∥h1/2αψ(αα− αψαψ)αψh
1/2

∥∥∥
S1

6 ‖αα− αψαψ‖S3/2

∥∥∥h1/2αψ
∥∥∥
2

S6

.

Plugging the above bounds in (72), we obtain

|Tr hαααα − Tr hαψαψαψαψ | 6 2
∥∥∥h1/2αψ

∥∥∥
S6

‖α‖2
S6

∥∥∥h1/2r
∥∥∥
S2

+ ‖α‖2
S6

∥∥∥h1/2r
∥∥∥
2

S2

+ ‖αα− αψαψ‖S3/2

∥∥∥h1/2αψ
∥∥∥
2

S6

. (73)

By (68) and the condition on the BCS energy of Γ , we deduce the inequal-
ity

(
1
2g −Dh2

)
‖r‖2L2 + h2

[〈
r̃
∣∣− 1

4∆η − ε∆ξ +
1
2W

∣∣ r̃
〉
L2(R6)

]

6 Ch
[
1 + ‖ψ‖2L2 + hA0

]
, (74)

with A0 defined in Proposition 3. This, for h small enough (e.g., smaller than√
g/(4D)), gives a bound on ‖r‖2L2 as well as its Sobolev norms in terms of

the norm of ψ. Hence, we have

‖αα− αψαψ‖S3/2 = ‖αψr + rαψ + rr‖
S3/2

6 2 ‖αψ‖S6 ‖r‖S2 + ‖r‖2
S2 6 Ch

[
‖ψ‖2L6 + ‖ψ‖2L2 + 1 + hA0

]
,

by the monotonicity of Schatten norms, Lemma 1 and (74). Similarly, by
Sobolev inequality
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‖α‖2
S6 6 C

(
‖αψ‖2S6 + ‖r‖2

S2

)
6 Ch

[
‖ψ‖2L6 + ‖ψ‖2L2 + 1 + hA0

]

6 Ch
[
‖∇ψ‖2L2 + ‖ψ‖2L2 + 1 + hA0

]
. (75)

To conclude, we have to estimate the norms of h1/2 αψ but, for any operator
T , one has

∥∥∥h1/2 T
∥∥∥
S2n

=
∥∥T † hT

∥∥1/2
Sn

6
(
h2

∥∥T †(−∆)T
∥∥
Sn + h2

∥∥T †WT
∥∥
Sn + µ

∥∥T †T
∥∥
Sn

)1/2

6 h
(

1
2 ‖∇ηT ‖S2n + ‖∇ξT ‖S2n +

∥∥∥W 1/2T
∥∥∥
S2n

)
+ (E0 − h2D) ‖T ‖

S2n .

Applying this inequality to estimate the norms above and using once more
the monotonicity of Schatten norms, Proposition 3, Lemmas 1 and 2 and
Sobolev inequality, we obtain

∥∥∥h1/2αψ
∥∥∥
S6

6 h
[
1
2 ‖∇ηα̃ψ‖S2 + ‖∇ξα̃ψ‖S2 +

∥∥∥W 1/2αψ

∥∥∥
S2

]
+E0 ‖αψ‖S6

6 Ch1/2
[∥∥W |ψ|2

∥∥1/2
L1

+ ‖ψ‖L6 +A0 + h ‖∇ψ‖L2

]

6 Ch1/2
[
‖∇ψ‖L2 +

∥∥W |ψ|2
∥∥1/2
L1

+A0

]
,

∥∥∥h1/2r
∥∥∥
S2

6 h
[
1
2 ‖∇ηr‖S2 + ‖∇ξr‖S2 +

∥∥∥W 1/2r
∥∥∥
S2

]
+ E0 ‖r‖S2

6 Ch1/2
[
1 + ‖ψ‖L2 + h1/2

√
A0

]
,

as follows from the a priori estimate (74). Putting together all the bounds
found so far, we get the result.

In order to complete the proof of the lower bound, we need a last ingredi-
ent.

Lemma 7. Let µ = −E0 + h2D, D ∈ R, and let Γ an admissible BCS state
with upper-right entry α as in (61), such that EBCS

µ [Γ] 6 CΓh. Then, there
exists a finite constant C such that

∫

R3

dη
{
|∇ψ|2 +W |ψ|2 + |ψ|2 + |ψ|4

}
6 C. (76)

Proof. Let us denote for short

E :=

∫

R3

dη
{
|∇ψ|2 +W |ψ|2 + |ψ|2 + |ψ|4

}
.

Combining Lemma 6 with (40), we get
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Tr hαααα > gBCSh ‖ψ‖4L4 − Ch2E2, (77)

so that, by Lemma 5, we find

CΓh > EBCS
µ [Γ] > hEGP

D (ψ)− Ch2
(
E2 + 1

)
, (78)

where we used once more the estimate on ‖r‖L2 following from (74). Since

there exists a positive constant c > 0 such that EGP
D (ψ) > cE −D ‖ψ‖2L2 , we

get

E 6
1
c

(
Cγ +D ‖ψ‖2L2

)
+O(h).

However, such a bound gives a control on the norms
∥∥W |ψ|2

∥∥
L1

and ‖ψ‖L4 ,
which can be used as in the proof of Proposition 2 to get an estimate of
‖ψ‖2L2 , i.e., one obtains that there exists a finite constant such that

‖ψ‖2L2 6 C, (79)

which in turn yields the result.

The estimate (78) together with (76) gives the energy lower bound (22).
The combination of Lemmas 4 to 7 provides the proof of the remaining state-
ments about the decomposition of α.
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