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A B S T R A C T

The safe operation of dams is ensured by monitoring systems that collect periodic information on environmental 
conditions (for example, temperature and water level) and on the structural response to external actions. In 
newly built or retrofitted facilities, large networks of sensors can take daily measurements that are automatically 
transferred to servers. In other cases, additional information can be acquired, occasionally or systematically, 
through emerging drone-based non-contact full-field techniques.

The measurements are processed by various analytical and machine learning tools trained on historical data 
sets, capable of highlighting any anomalous recordings. Monitoring data can also support the accurate calibra-
tion of a physics-based model of the structure, usually built in the finite element framework. The analyses carried 
out by the digital twin allow the experimental database to be expanded with the displacements evaluated in the 
event of extreme environmental conditions, damage or collapse mechanisms never occurred before.

This contribution illustrates an integrated approach to the safety assessment of existing dams that combines 
experimental, computational and data processing methodologies. Attention is particularly focused on model 
calibration procedures and on the uncertainties that influence the characteristics of the joints. The presented 
results of the validation studies performed by the Authors on benchmark and real-scale problems highlight the 
merits and limitations of alternative approaches to data exploitation and remote measurement.

1. Introduction

Dams constitute an important asset for many countries. Concrete 
dams located in the Alpine region, built until the 1970s, provide clean 
energy and supply drinking and irrigation water. They also contribute to 
controlling floods that are expected to increase in frequency and in-
tensity due to climate change. In addition, hydropower plants contribute 
to providing balancing services that stabilize the electricity grid, 
fostering the exploitation of non-programmable renewable energy 
sources (like solar and wind) to achieve the European de-carbonization 
targets. Therefore, despite their aging, existing dams are becoming 
increasingly important as they comply with the energy and environ-
mental policies implemented in recent years to address the present 
concern about climate change.

Dam monitoring systems obtain information on the environmental 
conditions (air and water temperatures, water level in the reservoir, 

precipitation) and the deformation of the dam as loads change [1–4]. 
The number and location of the measurements and the recording fre-
quency vary depending on the facility. The collected data are trans-
mitted, stored, and then processed by various analysis tools.

Traditionally, in this context, monitoring data are managed by the 
so-called statistical, or Hydrostatic-Seasonal-Time (HST) model devel-
oped by EDF (Électricité De France) in the late 1950s and subsequently 
improved to reliably support structural health evaluations [5–10]. HST 
approach approximates the structural response by the combination of 
pre-defined functions that consider the effect of water level, temperature 
and aging separately. Parameter values are calibrated for each dam 
based on available measurements.

Monitoring data can be interpreted alternatively by Machine 
Learning (ML) approaches based on more flexible algorithms [11,12]. 
Neural Networks (NN) [13–16], Extreme Learning Machines (ELM) 
[17], Support Vector Machines [18–20], Gaussian Process Regression 
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[21], hybrid Deep Learning models [22] and Boosted Regression Trees 
(BRT) [23–25] have proven to be effective prediction tools for dam 
monitoring when properly optimized and validated. Comparison studies 
have also demonstrated that no ML approach outperforms the others in 
all situations [26].

However, accurate predictions alone do not constitute a complete 
surveillance system. Establishing the limits within which measured ob-
servations are considered reliable is essential, allowing anomalous 
behavior to be detected. Currently, the definition of thresholds is mainly 
based on a multiplicative factor in combination with the standard de-
viation of the residuals of the predictions. In this context, Salazar et al. 
[27] propose updating the limits each year, introducing a weighted 
average of them. This analytical approach allows the identification of 
individual outliers but neglects the multidimensional context. To over-
come this limitation, Mata et al. [28] have recently introduced a 
methodology that complements the traditional approach through the 
consideration of moving averages and moving standard deviations of 
residuals. In addition, they proposed a second approach that operates in 
a multidimensional framework and employs a clustering technique to 
identify anomalies [29]. Alternatively, Chen et al. [30] formulate a 
multi-target forecasting method that exploits the internal relationships 
between target variables.

The source of any anomalous reading should also be identified. 
Outliers may be associated with minor events (for example, the mal-
function or need for recalibration of some instruments) or load combi-
nations that have never occurred before and, therefore, are not included 
in model training. Anomalies could otherwise indicate ongoing degra-
dation processes [9,31–33]. ML tools alone cannot solve these problems, 
especially since measurements in damaged conditions are generally not 
available. Dam failures are rare, and information concerning any past 
event is difficult to transfer from one situation to another. Unlike other 
infrastructures [34,35], practically all dams represent single prototypes 
due to their peculiar geometry, geomorphological and ambient 
conditions.

This issue can be addressed by constructing prediction models of the 
structural response to simulate the most likely critical scenarios [36,37]. 
Finite Element (FE) approaches are mainly used for this purpose, due to 
their generality and flexibility [38–42]. Potentially, the models can also 
account for uncertainties, introducing probabilistic distribution of the 
material properties and environmental conditions. However, stochastic 
methodologies have been mainly applied to simplified models due to 
their high computational costs, only partly mitigated by the consider-
ation of analytical surrogates trained on the results of a limited number 
of finite element simulations [37,43–45]. Reduced models are also used 
for sensitivity studies and parameter identification procedures [46–55].

The presence of artificial (construction and contraction) and natural 
(i.e., cracks) joints constitutes the main non-linearity and uncertainty 
source of operated dams [9,42,56–63]. Joints represent surfaces of po-
tential displacement discontinuity, often introduced on purpose to limit 
the stresses produced by thermal action and other expansion mecha-
nisms [31–33,42,57], and by the interaction with the foundation [62].

Calibrating the mechanical characteristics (friction, roughness, 
cohesion, fracture energy) of dam joints can be challenging. The most 
direct methodology is based on the consideration of core samples 
extracted through the considered interfaces and subjected to large scale 
tests under cycling loading. In fact, it is necessary to take into account 
both the characteristic dimension of the inherent heterogeneity of the 
dam concrete and contact surfaces, and their variability over time due to 
the external (ambient) action [61–65].

Non-destructive approaches have been proposed to detect cracks and 
determine interface parameters using the information collected on site 
during operation [66–70]. Generally, strain-gauges monitor joints 
opening and sliding, while other equipment (such as sonic and ultra-
sonic tomography and geo-radar) is used for surveys, mapping and 
control of the propagation of existing cracks. However, existing dams 
are not always equipped with sensors that provide detailed (in space and 

time) information about the relative displacements at joints. Data can be 
extracted from full-field measurements [71–78], e.g. performed by 
Digital Image Correlation (DIC), photogrammetry and Time-of-Flight 
(ToF) techniques capable of providing adequate precision. DIC appli-
cation to an experiment similar to that described in Ref. [61] allowed to 
measure crack opening displacements with 0.1 mm tolerance [79].

Digital images and photogrammetry data can be collected by 
mounting optical sensors on drones, or Unmanned Aerial Vehicles 
(UAVs), that approach the target locations from different directions 
[80–92]. Several studies have investigated the accuracy and limitations 
of these methodologies. Both laboratory and on site applications have 
been considered, estimating the motion of the UAV based on informa-
tion from background stationary features [88,89]. The effect on image 
quality of ambient actions, such as wind and its fluctuations, has been 
analyzed in Ref. [90]. UAV photogrammetry, used to reconstruct the 
geometry of dams [84–87], showed that the accuracy of the measure-
ments depends on the optimal distribution of Ground Control Points 
(GCPs). In Ref. [84], the vertical contraction joints could not be 
observed on the horizontal sections of the 3-Dimensional (3D) scene. 
However, they could be identified in the Red-Green-Blue (RGB) infor-
mation scale of the point cloud, being darker than the surrounding re-
gion. Three-dimensional DIC was also applied to images acquired with 
two cameras mounted on a UAV, achieving an absolute error smaller 
than 0.34 mm [91]. In Ref. [92], it was shown that rapid changes in 
illumination brightness and shadow on the target area can produce 
blurry images. However, the quality of the acquired data can often be 
enhanced by correction algorithms, possibly based on ML tools imple-
mented in parallel units to improve computing efficiency [93–97].

This contribution aims to provide an overview of the structural 
health assessment of dams, lightning the interplay between different 
competences and methodologies involved in this complex topic. In 
particular, Section 2 focuses on the definition of suitable interpretation 
models and on the calibration of their main parameters based on his-
torical data series, while Section 3 is devoted to the non-destructive 
characterization of dam properties by full-field measurements per-
formed on site. Finally, closing remarks are reported in Section 4.

2. Structural health monitoring of existing dams

Periodic inspections are standard practice in the monitoring of 
existing dams [98,99]. Piezometers, thermometers, plumb line trans-
ducers and optical coordinometers are the main instruments used to 
quantify external actions and structural response. Collected data are 
processed in almost real time to promptly identify any abnormal 
behavior. For this purpose, the measurements are compared with 
models, which can be statistical, deterministic, or hybrid. The use and 
merits of these alternatives are compared in this section through the 
analysis of the results of some relevant applications developed by the 
Authors.

2.1. Data-driven models

Traditionally, dam monitoring data are managed by the HST model. 
This approach approximates the structural response by the combination 
of pre-defined functions, with coefficients calibrated on the measure-
ments. The contribution to the overall displacements generated by the 
water depth in the reservoir is usually defined by polynomials, while the 
effect of temperature and aging is accounted for by harmonic and log-
arithmic (or linear) functions, respectively [6–11].

Alternative ML approaches like NN and ELM [13–17] rely on more 
flexible functions, and weights determined from the available moni-
toring data. BRT do not consider any interpolation [23–27], but these 
models produce accurate predictions with good generalizations capa-
bilities. This methodology was therefore adopted in the present 
demonstrative study as a valid alternative to HST.

BRT combine regression trees, which are part of the decision tree 
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methods, with boosting, a technique that sequentially builds and merges 
a series of models. Modern decision trees are described in detail in Refs. 
[23,24]. They subdivide the observations into a certain number of re-
gions according to the values of the input variables, assuming that the 
system response can be considered constant within each sub-domain. 
For example, Fig. 1(a) visualizes one possible partition of the domain 
defined by the variables WL (water level) and T (temperature). Fig. 1(b) 
displays the piecewise constant approximation of a displacement 
component that represents the structural response. The partitions are 
defined during the training phase based on a heuristic greedy approach, 
i.e. the BRT algorithm selects the best option available at the moment to 
identify the splitting variable and the splitting point that define the re-
gions. The difference between the actual output values and the mean 
values associated with each region defines an error-index, which is 
minimized to define the node of the regression tree shown in Fig. 1(c). 
The recursive binary partitioning process is repeatedly applied to each 
new region until some stopping criterion is satisfied.

Typical input and output data are for instance represented in Figs. 2 
and 3. The measurements refer to the concrete arch dam recently pro-
posed as benchmark problem by the International Committee on Large 
Dams (ICOLD) [100].

The predictions shown in Fig. 3 are produced by BRT trained first on 
an initial monitoring period of 5 years [101]. The training is then 
extended from year to year as new data becomes available to obtain the 
next one-year predictions.

Fig. 4 visualizes the difference between measured and predicted 
values of the training and test sets. The latter starts from the sixth year. 
The red dashed lines indicate the warning thresholds. The limits are 
updated annually by assuming that the density function of the residuals 
of each year follows a normal distribution with mean value μ and 
standard deviation sd. The interval μ ± 2.5sd is considered in this 
application. Monitoring readings that fall within the predefined range 
are classified as regular. Otherwise, they represent anomalies.

In particular, for each of the three years before the one for which the 
limits have to be defined, the mean μi and standard deviation sdi are 
computed on the residuals between the predictions calculated when the 
year is part of the test-set and the measurements. Finally, the estimated μ 
and sd values are obtained as a weighted average of the three μi and sdi, 
to which weights are applied according to the reference year, equal to 1, 
1/2 and 1/3 from the most to the least recent one respectively. This 
average is considered because the residuals of only one year could be 
biased if they correspond, for example, to extreme temperature condi-
tions or water levels not previously considered in the training. 
Increasing the amount of training data leads to progressively more ac-
curate predictions. The reduction in residuals, in turn, leads to narrower 
alert levels.

The alert system is verified by introducing outliers into the data and 
checking whether the disturbances can be detected. In this application, 
20 % of the displacements relevant to the last (13th) year were randomly 
selected. The data were modified to simulate outliers by randomly 

adding or subtracting 8 mm from the original measurements. All 
anomalies were correctly identified by the system. In fact, they corre-
spond to the residuals beyond the limits visible in Fig. 4. Among the 
remaining normal data, just two false outliers were identified in the 10th 
year. Overall, the method proves to be effective in identifying the dis-
turbances although the origin of the anomalies often remains unclear 
unless only the recordings of a specific device are affected. This problem 
can be solved by supplementing data-driven investigations with physics- 
based interpretation models. Their definition and calibration based on 
monitoring data is introduced next.

2.2. Physics-based predictive models

Physics-based models of the structure are key tools to reliably 
interpret the measurements and identify the source of any anomalies. To 
be effective, the models must be accurately calibrated to reproduce the 
real system response. These predictive tools can then be used to simulate 
the most likely critical scenarios and produce synthetic pseudo- 
experimental data to improve the surveillance procedures.

The FE approach is mainly used in the context of dam engineering. 
This methodology is also applied to the present case study, which refers 
to a real arch-gravity dam, schematized in Fig. 5. Notably, the 3D dis-
cretization includes a large portion of the foundation in order to 
correctly reproduce the system response to external actions. The ge-
ometry of the dam body is based on the original design drawings, while 
the rock portion is approximated starting from the available topographic 
data.

The mechanical and thermal properties of concrete and rock are 
initially defined on the basis of geo-mechanical investigations and lab-
oratory tests carried out on specimens produced on the construction site. 

Fig. 1. (a) Partition of a two-dimensional space (T, WL) by recursive binary splitting; (b) perspective plot of the prediction surface; (c) partition tree.

Fig. 2. Air temperatures (acquired by 2 sensors) and water level of the concrete 
arch dam proposed as ICOLD benchmark problem [100]: daily measurements.
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However, a range of variation needs to be considered due to initial 
uncertainties and potential changes over time. Therefore, parameter 
values may be optimized considering the data recorded during the 
lifetime of the structure, derived from seasonal variations of the external 
actions.

Daily time series of the reservoir level and air and water tempera-
tures are available. These data are used as input to the FE analyses. The 
thermal and mechanical problems defined on the discretized domain are 
then solved separately, following the operational procedures proposed 
in Ref. [41]. However, unlike the simplifying assumptions introduced 
therein, actual time series data were used in the present study rather 
than approximated functions.

The thermal problem is approached by a transient analysis carried 

out over the entire monitoring period, solving the discretized (in space 
and time) version of the heat diffusion equation: 

k
(

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)

− ρc
∂T
∂t

=0 (1) 

In relation (1): T(x, y, z, t) represents the temperature field; t is time; x, y,
z are the spatial coordinates; k (thermal conductivity), ρ (density) and c 
(specific heat) are material parameters, usually assumed constant.

Temperature values are imposed on both dam faces, with different 
values for the wet and dry areas. If surface thermometers are installed, 
the recorded temperatures are interpolated linearly and assigned to the 
relevant mesh nodes. Otherwise, as in the present case, the average daily 
air temperature is imposed to the dry faces while a single value is 
assigned to the wetted boundary, equal to the water temperature 
recorded at a certain depth (e.g., 5 m). The temperature distribution 
inside the dam body at a given time is represented in Fig. 6. The 
computational results presented here are obtained by a widely used 
commercial code [102].

Transient results can be strongly influenced by the initial conditions. 
Therefore, a preliminary analysis is performed for an initial period of 
5–6 years until a steady state is achieved. In this phase, the daily air and 
water temperatures correspond to the annual regression of the average 
temperature recorded on each day of the year, obtained from the entire 
historical series. The water level that defines the wetted surface (to 
which water temperatures are applied as boundary conditions) is also 
calculated from the annual regression of the data series at the basin 
level. Subsequently, the daily average of the measured air and water 
temperatures is assumed as input data. When possible, the temporal 
series are validated by the comparison with the temperature values 
recorded by thermometers placed on the structure.

Fig. 3. Measured and predicted displacement near the crest of the concrete arch dam proposed as the ICOLD benchmark problem [100].

Fig. 4. Difference between measured and predicted values in Fig. 3, and the 
corresponding warning levels (red lines) updated year by year. (For interpre-
tation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.)

Fig. 5. Finite element discretization of an existing dam and its foundation.

Fig. 6. Temperature distribution within the dam body resulting from thermal 
analysis in wintertime: middle cross section.
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Temperature variations ΔT induce thermal strains εT
ii (i = x,y,z) in 

the dam body: 

εT
ii (x, y, z, t)=αΔT(x, y, z, t) (2) 

In relation (2), α represents the thermal expansion coefficient, which is a 
material constant. Thermal strains superimpose on the deformation 
produced by the mechanical (gravity and hydrostatic) loads, depending 
on the constitutive law of the bulk materials. Concrete is usually 
assumed isotropic, with linear stress-strain relationships characterized 
by the longitudinal elastic modulus Ec and the lateral contraction ratio 
νc. Rock is generally anisotropic, but in most analyses its mechanical 
contribution can simply be related to the mean parameters Er and νr. 
These moduli can vary from place to place due to the local morphology 
of soils, or to degradation phenomena.

The constitutive parameters define the entries of the so-called stiff-
ness matrix of the system, K, and the discretized version of the equi-
librium equations: 

K • u=R (3) 

where u represents the vector that collects the displacements at the 
discretization nodes and R is the vector of equivalent nodal forces, 
counterpart of the self-weight of the structure, the hydrostatic pressure, 
and the thermal effects.

Monolithic dams usually exhibit a reversible response under normal 
operating conditions. Therefore, all elements of K matrix are constant, 
and the equation system (3) is linear. However, many dams include 
joints placed between the construction blocks and between the structure 
and its foundation. This also applies to the present case study.

Usually, joints are only grouted after concrete setting. As a result, the 
tensile load-bearing capacity is almost null at these interfaces, charac-
terized by non-linear frictional contact. In this case, the stiffness matrix 
K needs to be continuously updated with the opening/closure of the 
joints, and the equation system (3) is solved iteratively while material 
interpenetration is prevented by a penalty approach.

Relative movements between the blocks of the dam analyzed in this 
work are for instance emphasized in Fig. 7 by a large amplification factor 
applied to the displacements resulting at one time-step during the nu-
merical analysis.

In the reality, relative displacements are measured on site by inter-
facial gauges, which are distributed as represented in Fig. 8. G1 and G2 
recordings are compared in Fig. 9 with the corresponding simulation 
results, obtained by assuming the same friction coefficient μ for all 
joints. The agreement is fair for G1, considering the different sampling 
times of the measurements and computations, poorer for G2.

Contraction joints present different configurations. Shear keys have 

significant resistance in the upstream-downstream direction, while 
other alternatives are smoother and weaker. As a result, the coefficient μ 
can vary over a relatively wide range. This parameter can also vary in 
space and time, due to different grouting degrees and degradation of the 
contact surfaces subjected to cyclic actions [56–63]. The relevant values 
can be determined and updated over time by the calibration procedure 
based on the monitoring data collected during the lifespan of the dam, as 
introduced in the next section.

2.3. Parameter calibration and sensitivity analysis

The parameters entering the FE model of the dam-foundation system 
can be identified through iterative optimization. A discrepancy function 
J is introduced to define the distance between a suitable selection of n 
measured displacements um

k and the corresponding simulation results 
uk(p). The latter are function of the sought properties (material and 
interface parameters and their distributions) collected by vector p. The 
best parameter set minimizes J(p), which often corresponds to: 

J(p)=
∑n

k=1

wk
[
um

k − uk(p)
]2 (4) 

The minimization of J(p) is performed within the limits (physical, or 
suggested by experts in the field): 

pmin ≤ p ≤ pmax (5) 

and under the condition that the computed displacements uk(p) satisfy 
the equation system (3). In (4), the coefficients wk represent weights, or 
normalization factors imposed on the displacement components.

An adequate selection of the measurements to be included in (4) can 

Fig. 7. Deformed configuration of the analyzed dam under external action; 
displacement amplification factor 3000. The color scale refers to the upstream- 
downstream displacement component. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.)

Fig. 8. Schematic location of interfacial gauges.

Fig. 9. Relative displacements measured at positions G1 and G2 (Fig. 8) and 
corresponding values computed assuming uniform interface characteristics.
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improve the robustness of the identification procedure and the reli-
ability of its results, which are influenced by measurement noises, 
inaccuracies in the simulation model, uncertainties of the physical sys-
tem. In fact, the discretized version of a solid is usually stiffer than its 
continuous counterpart unless a very fine mesh is implemented, with a 
significant increase in calculation times and costs. Therefore, a balance 
is usually sought between accuracy and effectiveness.

On the other hand, the detailed morphology of the rock beneath the 
dam foundation is often only partially known. In addition, the actual 
temperature distribution is not reconstructed accurately when there are 
few or no thermometers on the concrete surface and, therefore, the 
assumed boundary conditions correspond to the average daily air and 
water temperatures. Actually, the daily temperature history depends on 
the season, since the number of hours with a temperature close to the 
maximum increases in summer, while the temperature in mostly close to 
the minimum in winter. Moreover, solar radiation is not always 
negligible.

However, not all external actions and model parameters affect the 
measurable quantities to the same extent. Low sensitivity means that the 
parameter is difficult to be accurately identified but, on the other hand, 
it also implies that even large errors do not introduce significant dis-
crepancies between the predicted and actual structural response.

Sensitivity analysis can be performed on all available models of the 
system under investigation. Relative importance indexes of the influence 
of environmental (predictive) variables on the measured quantities can 
be defined for the heuristic BRT approach (Section 2.1) according to 
Friedman’s proposal [103]. The index considers the relative presence of 
each predictor, selected as the best partition during the training phase, 
and the error reduction achieved correspondingly. The graphs in Fig. 10
show the different effects produced by the main ambient actions on the 
two dams considered in the present work as reference tests for the 
proposed methodologies.

Other methods, such as Linear or Logistic Regression, consider 
quantifications based on the model coefficients. A methodology appli-
cable to any algorithm, introduced by Breiman [104] for Random Forest, 
computes the increase in the prediction error after the permutation of 
the predictor variable whose relative importance is to be estimated. A 
significant increase in error indicates an important predictor. In all 
cases, importance indexes can guide the variable selection and the 
possible reduction of the model complexity.

Sensitivities can be evaluated from the physics-based model as well. 
The deformation induced by temperature variations depends on the 
thermal expansion coefficient α, relation (2), while that generated the 
hydrostatic load mainly reflects the longitudinal moduli Ec and Er. Nu-
merical studies also indicate that displacements at the dam crest 
commonly show greater sensitivity to changes in Ec, while displace-
ments at the base are equally dependent on Er.

The considerations listed above can be combined with the specific 
features of the HST model (Section 2.1) to define a computationally 
convenient sequential approach to parameter identification with 
improved effectiveness and reduced computational efforts. The pro-
posed methodology is here applied to the model of the real arch-gravity 

dam schematized in Fig. 5.
The HST approach makes it possible to distinguish the hydrostatic, 

thermal, and ageing contributions to the overall displacement of each 
monitored point. This decomposition permits to design a specific iden-
tification procedure that divides the unknown parameters into two 
groups, with significant computing savings. In fact, the time and cost 
required to iteratively minimize function (4) under conditions (3) in-
crease exponentially with the size of the vector p since the gradients of 
the discrepancy function J are evaluated numerically, by finite differ-
ence schemes, in the FE context.

In the present proposal, the elastic moduli are estimated first by 
comparing the displacements due to a monotonic variation of the hy-
drostatic load in the FE model with the relative contribution extracted 
from the statistical model. A second inverse problem is then formulated 
and solved to estimate the thermal coefficient α. In this case, the sea-
sonal contribution of the HST models is compared with the deformations 
produced in the dam body by temperature variations over a one-year 
period, evaluated by FE analysis.

Aging and other degradation phenomena may be reflected in the 
variation of parameter values over time, i.e. p = p(t) [31–33]. If time 
dependency is not explicitly taken into account in the formulation of the 
optimization problems, recalibration performed at certain time intervals 
can be part of the procedures implemented for the dam surveillance and 
for the definition of a digital twin of the structure through model 
updating.

In the computations mentioned so far, the friction coefficient is 
usually kept constant and defined based on previous experience. How-
ever, this assumption may produce some inconsistencies, for example 
shown in Fig. 9. This and other issues can be solved by the synergetic 
combination of suitably defined modelling and experimental techniques 
[105]. In particular, when the measurements required to perform in-
verse analysis in a robust way are not available, or not provided in 
sufficient numbers, additional information can be obtained from the 
full-field remote procedures introduced in the next section. In turn, an 
accurately calibrated simulation model facilitates the interpretation of 
the results of the full-scale non-destructive testing produced by the 
seasonal variation of the external actions on the dam [73].

3. Full-scale non-destructive in-situ testing of dams

The geometrical configuration of dams follows seasonal changes in 
temperature and water levels. The relevant information can be exploited 
to determine the main mechanical characteristics of the structure and 
their evolution over time. Large sensor networks installed in newly 
constructed structures enable detailed monitoring of the facility 
response [30]. However, the number of measuring devices may be 
limited in long-existing dams, and their placement may not be optimal 
for the reliable calibration of simulation models, and for anomaly 
detection.

Additional information can then be acquired, occasionally or sys-
tematically, by non-contact full-field measurement techniques [71–77], 
possibly by mounting the appropriate equipment on drones [81–92], 

Fig. 10. Relative importance indexes of the main input variables for two different dams: a) the ICOLD benchmark problem [100]; b) the real one schematized in 
Fig. 5. The considered predictors correspond to: water level (WL), temperature (T), date (day: D; month: M; year: Y).
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Fig. 11, to overcome the problem of difficult access to some structures or 
dam sectors.

Detailed temperature distributions on the dam surfaces can also be 
obtained through infrared thermography, using ML algorithms to 
analyze the color images acquired by UAVs. This methodology is 
currently in use in various application fields and can provide an accu-
racy of 1 ◦C [106–108].

Vision-based techniques can also measure 3D displacement compo-
nents on the dam surface and joints. A digital image is a two-dimensional 
projection of the 3D scene observed by the camera lens. 3D information 
is retrieved using more than one camera, in stereo arrangement. Alter-
natively, multiple images of the Region of Interest (RoI) are acquired 
using one camera and processed with photogrammetry. ToF sensors can 
also be a good option whenever 3D reconstruction of dam portions is 
needed, e.g. at the joints. This technology is based on infrared radiation 
rather than image acquisition. In principle, other 3D scanning tech-
niques such as fringe projection or active stereoscopy could be applied 
[109,110], but the environmental conditions typical of large dams are 
usually not suitable for these approaches.

The main characteristics of these alternative methodologies are 
illustrated in the following. Their merits and limitations are highlighted 
by the results of the preliminary validation studies carried out by the 
Authors.

3.1. Digital Image Correlation

3D Digital Image Correlation (DIC) techniques combine information 
provided by two calibrated cameras at a relative position that remains 
fixed during image acquisition. Cameras can be mounted on drones as 
UAV fluctuations do not affect the measurements, thanks to the capa-
bility of the 3D DIC to correctly evaluate the target displacement field 
neglecting rigid motions (roto-translations) between the camera and the 
target.

A digital image is composed of an array of discrete pixels, and each 
pixel represents the brightness value of each point of the scene. In DIC 
analysis, a selected reference image corresponds to the initial configu-
ration of the target object, with which subsequent images are compared. 
The RoI in the reference image is then divided into subsets. The location 
of each reference subset is tracked in the next images as illustrated 
schematically in Fig. 12.

The similarity between the reference subset and the target one in the 
deformed configuration is evaluated using a criterion based on cross- 
correlation or sum of squares of the differences of the pixel brightness 
distribution. The methodology is implemented in both open source tools 
[111,112] and licensed commercial software [113–115]. Notably, cross 
correlation is quite sensitive to changes in image resolution.

DIC procedures are made more reliable characterizing the monitored 
surface by a high contrast random isotropic speckle [116]. In dam 
monitoring, a natural speckle may form due to porosity and impurities in 
the concrete surface. However, the uncertainty of the results is more 

than halved by the use of fit-for-purpose speckles [117]. The widespread 
use of DIC over the past three decades has seen the application of speckle 
patterns to regions ranging in size from millimeters to several meters 
[118].

The basic assumption of DIC is that the pattern of the target surface 
does not change significantly during deformation. In this regard, vari-
able lighting with weather conditions can represent an issue as rapid 
changes in brightness and shadow over the target area can produce 
blurry images. Most correlation criteria implemented in DIC procedures 
are robust to both uniform and scaled changes in illumination [76]. This 
has been proven experimentally in the tests performed in Refs. [119,
120], where images were numerically modified to simulate the effects of 
varying brightness. In contrast, uneven change in illumination produces 
substantial errors in DIC results. This limitation was found in Ref. [91] as 
quick variations in shadows and brightness were observed during bridge 
monitoring. The issue of non-uniform lighting in DIC applications can be 
overcome by image correction techniques [121,122]. In fact, it can be 
assumed that the image is formed of a high frequency pattern on a low 
frequency background, which is affected by the non-uniform lighting. 
Image correction is based on eliminating the background from the image 
originally acquired.

Data quality can be enhanced by correction algorithms, possibly 
based on ML tools implemented in parallel units to improve computing 
efficiency [93–97]. In particular, pattern matching procedures allow the 
recovery of accurate quantitative information on displacement discon-
tinuities at joints [123].

UAV based 3D DIC results can achieve sub-millimeter absolute errors 
with the application of speckle patterns [91]. The present challenge is to 
exploit the natural surface texture for DIC application to dams [124].

3.2. Photogrammetry

Photogrammetry uses a series of images to obtain a 3D reconstruc-
tion of the observation scene through the integration of point clouds. 
Usually, images of the monitored structure are acquired from several 

Fig. 11. Vision equipment mounted on drone.

Fig. 12. Illustration of subset tracking between reference and deformed 
configurations.
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locations and at different angles. The procedure includes feature 
extraction, tracking, matching, and geometric verification of different 
images of the RoI. The next steps consist of incrementally register new 
images, triangulate scene points, filter outliers, and refine the recon-
struction using bundle adjustment, i.e. simultaneous refining of the 3D 
coordinates describing the scene geometry. These procedures can 
potentially be addressed by ML approaches and provide reliable high- 
quality results [125].

Several software packages based on Structure-from-Motion (SfM) 
algorithm allow to obtain 3D reconstruction starting from photographs 
taken with conventional cameras. SfM automatically reconstructs the 
geometry of the scene, the positions and the orientation from which the 
photographs were taken, without the need to establish a point network 
with known 3D coordinates [86]. Therefore, SfM can work with images 
taken from random positions, which is a key advantage in the case of 
UAV-based acquisition [126]. Moreover, photographs obtained with 
variable camera orientation improve accuracy and reduce systematic 
errors [92,127]. However, the flight path of the UAV can influence the 
quality of the results. In this regard, a circular path has been found to 
work better than a rectangular one for 3D mapping [128]. In all cases, 
the accuracy of photogrammetric measurements can be increased by 
contrast enhancement techniques [129].

One relevant issue of photogrammetry is that the 3D reconstruction 
is obtained up to a scaling factor, which can be retrieved from the known 
distance between at least two points positioned in the scanned area, 
usually referred to as Ground Control Points (GCPs). Any error in the 
GCP coordinates affects the scaling precision of the 3D model.

GCPs are often located in the global reference system by means of 
GPS devices [84]. However, the use of GPS to estimate the GCPs location 
normally requires that a human operator reaches the GCPs. Therefore, 
the control points are usually located far from the dam surface.

3.3. Time of Flight cameras

Time of Flight cameras are promising tools for the structural health 
monitoring of existing dams. This measuring technology is based on the 
measurement of the time taken by an infrared radiation, generated by a 
scanner, to reach the target and be reflected back to the sensor [81]. This 
operation principle allows recovering the 3D shape of the target with a 
single camera and without the need of multiple image acquisition.

A typical order of magnitude of the uncertainty of ToF cameras 
mounted on drones is a few millimeters [81]. Therefore, ToF sensors can 
allow measuring relative displacements at joints due to seasonal changes 
with adequate accuracy, while monitoring small cracks is difficult.

One of the main specific limitations to ToF use is the sunlight 
disturbance, which can be alleviated by ToF sensors working at 900 nm 
wavelength, in the spectrum region where sunlight is strongly attenu-
ated by the filtering effect of the atmosphere. UAV-based ToF mea-
surements can also be affected by uncertainties due to vibrations 
associated with the mobile and unstable position of the 3D sensor, which 
can be reduced by specifically developed mitigation strategies [130].

3.4. Non-contact measurements of dam surface

The non-contact measurement techniques considered in this work 
cover a variety of applications. In all cases, the large amount of collected 
data can be handled by ML algorithms, while coupling with FE models 
may require specific post-processing of the measurements. The large 
extension of dam surfaces also poses some specific problems, illustrated 
in the following.

3.4.1. Relative displacements at joints
The output of 3D DIC analysis is a displacement field (in-plane and 

out-of-plane components) recovered from data discretely calculated for 
each subset (Fig. 12). Strains can be evaluated by finite differences with 
the application of a smoothing filter. In the presence of discontinuities at 

joints, or produced by cracks, the value of the computed strains is 
immaterial and it is sensitive to the dimension of the smoothing window. 
Still, the strain maps can help detecting and visualizing the position and 
extension of the discontinuities, as for example shown in Fig. 13 [131, 
132]. Images refer to a lab application.

The distribution of opening and sliding displacements at the joints 
can be calculated from the displacement values at the left and right sides 
of the discontinuity surfaces, Fig. 13(b). Image stitching allows consid-
ering large extension domains.

Photogrammetry and ToF sensors return a 3D point cloud (3D model) 
of each scan of the monitored region. A preliminary evaluation of their 
performance for the present purposes has been performed using a tiny 
drone (DJI Tello EDU drone) fitting a 5 MP camera and a Microsoft 
Azure Kinect device equipped with 12 MP color camera and 1 MP ToF 
camera. In the preliminary study the Azure Kinect was not mounted on 
the drone due to its insufficient payload; however, it can be accommo-
dated in larger drones, as done for example in Ref. [81].

One application concerning ToF involves the two concrete blocks in 
reference and deformed configuration shown in Fig. 14. Prior to 
comparing the point clouds, a registration procedure is performed in 
order to determine the rigid transformation that aligns the two clouds, 
generally referred to different coordinates system as they correspond to 
different loading/environmental situations (and most probably a 
different time). Therefore, the camera location is usually different for 
the two acquisitions.

The presence of noise or large displacements in real applications may 
pose challenges in the registration process [133,134]. Furthermore, 
large data sets usually imply huge computational effort. Downsampling 
is often applied to reduce the point cloud size and mitigate the problem.

3.4.2. Spatial resolution and uncertainty
Spatial resolution of most of the state of the art ToF cameras is poorer 

than the resolution of 2D digital cameras. The resolution of most ToF 
sensors is below 1 MP [135,136], while common 2D digital cameras can 
easily reach tens of MP. Testing the accuracy of ToF cameras from 
different producers [136] showed that an absolute error smaller than 2 
mm could be achieved with a measuring range between 0.5 and 3 m. 

Fig. 13. (a) Image of a monitored region with cracks; (b) displacement field 
(horizontal components) recovered by DIC; (c) map of the horizontal 
strain components.
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Similarly, lab experiments showed that the accuracy of the ToF sensor 
employed in our preliminary investigations varied from 1.1 mm to 12.7 
mm for a measuring range 1 m–5 m [137]. Anyway, ToF cameras must 
be close to the dam surface during scanning due to the limited infrared 
projector and sunlight disturbances. A close-up acquisition also benefits 
photogrammetry, which can therefore rely on the visibility of natural 
features such as dust, impurities, scratches.

The spatial resolution of 3D DIC measurements strongly depends on 
camera characteristics, camera-target distance, and processing param-
eters (most importantly, subset size and overlap between subsequent 
subsets). Generally, DIC relies on surface texture. Generating artificial 
speckles on dam surfaces is time consuming and expensive. Therefore, 
the use of natural features is highly preferred, limiting the acquisition to 
close-up images as suggested for all three techniques considered here.

The lower limit of the displacement discontinuities measured by DIC 
in lab, with a speckle application of the monitored surface, shown in 
Fig. 13, was 0.02 mm. This value can be hardly reached in dam appli-
cations, but measuring relative displacements of the order of 1 mm can 
be feasible.

3.4.3. Texture information and processing time
Texture information can segment potentially damaged regions and 

allows combining data concerning consecutive regions lying on the large 
dam surfaces. This property is natively returned by photogrammetry, as 
opposed to the pure 3D coordinates of point clouds returned by ToF 
cameras. However, the combination of calibrated ToF and RGB cameras 
can overcome this limitation.

DIC, although not producing textured 3D point clouds, allows to 
associate every 3D point to the gray level of the images used to estimate 
the points. Therefore, all the considered techniques allow to obtain 
texture information, whereas photogrammetry produces more realistic 
results.

An advantage of ToF sensors with respect to photogrammetry and 
DIC is that ToF sensors allow to obtain the data in real time, while the 
other two techniques typically require relatively long processing to 
produce a high-resolution spatial model of the area of interest [138].

In any case, one factor currently hindering the implementation of 
UAV measurements in large applications is the payload limit [82], which 
imposes restrictions on flight duration and may lead to the need for 

multiple flights to complete the measurements.

4. Summary and conclusion

This contribution provides an overview on different experimental, 
computational and data management methodologies that can support 
the structural health assessment of existing dams. Large amounts of data 
about ambient conditions and structural response collected by sensor 
networks are recorded and analyzed, usually by statistical models or 
machine learning tools capable of defining warning thresholds and 
highlighting anomalous values. Both approaches were considered in the 
present work, showing that BRT can exhibit superior performance in 
predicting the structural response under normal operating conditions. In 
contrast, the HST methodology can significantly reduce the computa-
tional burden associated to the identification of constitutive and inter-
facial parameters that enter into simulation models grounded on the 
physics of the real facility, which are generally defined in the finite 
element framework. A specially designed inverse analysis procedure 
based on the separation of mechanical and thermal properties of the dam 
body and foundation is proposed.

The digital twins of existing dams, properly calibrated and validated, 
and continuously updated on the flow of monitoring data, permit to 
evaluate the effects of extreme environmental conditions, damage or 
collapse mechanisms that never actually occurred. The current status of 
the structure can thus be assessed with greater reliability, anticipating 
any likely degradation processes and identifying the type and severity of 
any possible damage.

In long-existing dams, the number of installed measuring devices 
may be limited and their positioning may not be optimal for reliable 
model calibration and anomaly detection. Under these conditions, 
complementary monitoring solutions based on emerging full-field 
measurement techniques performed by mounting various equipment 
on drones can be implemented.

The type and configuration of UAVs to be used strongly depend on 
the adopted measurement technique, which in turn is dictated by the 
accuracy to be achieved and by technological considerations. Standard 
commercial drones, equipped with a single 2D camera, can collect im-
ages for photogrammetric processing. In the case of 3D DIC or ToF 
sensors, custom equipment is usually required. Using DIC also imposes 

Fig. 14. Two concrete blocks in reference (a, b, c) and deformed (d, e, f) configuration: (a, d) photographs of the objects; (b, e) top view of the textured (colored) 
point cloud; (c, f) 3D view of the textured point cloud.
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restrictions on the distance between camera and object, while photo-
grammetry can process images captured from random positions, thus 
offering greater flexibility in the measurement setup. In all cases, ma-
chine learning tools can reduce noise produced by vibrations and sub-
optimal environmental conditions to provide high-quality results.

The above mentioned methodologies can be used to evaluate the 
relative displacements that develop at joints, for model calibration 
purposes. In fact, joint characteristics are affected by large uncertainties 
in aged dams. In this context, surface texture can be exploited to inspect 
large areas by combining data regarding partially overlapping consec-
utive regions. Our preliminary validation studies have highlighted the 
different precision obtainable from alternative remote measurement 
systems. However, continued technological advances will in all cases 
produce increasingly better results in a short time.

Overall, the simulation model of the structure, the installed sensor 
network, the data processing algorithms, an optimized plan of periodic 
complementary inspections and the digitalization of all available in-
formation define a complete and reliable surveillance system capable of 
automatically evaluate the health status of existing dams and diagnose 
any malfunctioning.
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