Third-gradient continua: nonstandard equilibrium equations and selection of work conjugate variables

Roberto Fedele
Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Milan, Italy

Received I5 March 2022; accepted 20 April 2022

Abstract

This paper outlines the variational derivation of the Lagrangian equilibrium equations for the third-gradient materials, stemming from the minimization of the total potential energy functional, and the selection of suitable dual variables to represent the inner work in the Eulerian configuration. Volume, face, edge and wedge contributions were provided through integration by parts of the inner virtual work and by repeated applications of the divergence theorem extended to embedded submanifolds with codimension one and two. Detailed expressions were provided for the contact pressures and the edge loading, revealing the complex dependence on the face normals and on the mean curvature. Relationships were specified among the Lagrangian (hyper-)stress tensors of rank lower or equal to four, and their Eulerian counterparts.

Keywords

Third-gradient materials, hyperstresses, principle of virtual work, boundary conditions

I. Introduction

In a historical perspective, once that the expert of bridge construction Navier had provided rigorous formulations for the equilibrium problem, continuum mechanics could grow up with the works of Gabrio Piola [1,2] and of Augustin Cauchy [3,4]. These last authors became representatives of two diverse approaches: Piola based the postulation of mechanics on the principle of virtual work, while Cauchy on the balance law of forces and of moments of forces. The querelle concerning the most appropriate and effective way to formulate new models in continuum mechanics began immediately after the publication of Piola's works [5-7]. Among the others, Ernst Hellinger in his famous article for the Encyklopädie der mathematische dated 1913 (see [8-10]), established continuum mechanics on the basis of the principle of virtual work: his list of open problems included the generalization of Piola's approach to higher gradient continua.

In recent studies [11-14], the equilibrium equations for the second-gradient materials were derived in a fully variational approach. A viable strategy was drawn to transform such equations from the Lagrangian configuration to the Eulerian configuration, based on remarkable transformation formulae for the tangent and normal to the boundary edges and on a novel formulation for the divergence

[^0]theorem applied to curved surfaces with border, relating material and spatial expressions, which generalizes Piola's bulk transformation. In this paper, the investigation was extended to the third-gradient continua, governed by energy densities which depend on the derivatives of the placement map up to the third order (see, e.g., [15-20]). The approach pursued herein stems from the minimization of the total energy functional: as an alternative, recourse can be made to the postulation scheme for continuum mechanics based on the principle of virtual work, leading to the same results, in which a representation of adequate order can be selected for the inner virtual work regarded as a distribution over the set of virtual displacements. For such a class of materials, the inner work depends on a new ingredient, the triple stress, a fourth rank tensor whose entries are dimensionally equivalent to a pressure multiplied by a length squared (see, e.g., [21-23]). In this way, the deformable body becomes capable of bearing not only double forces over the boundary faces and loading distributed along the border edges, but also concentrated forces prescribed at the wedges. Such wedges or corner points are located at the intersection of at least three boundary edges, which represent discontinuity loci for the edge tangent. Moreover, the third-gradient modelling allows one to represent several static quantities (or covectors) only apparently exotic entering the equilibrium problem: such generalized loading can make work over the boundary surface versus the first and second normal derivatives of the placement map, and, along the border edges, versus the directional derivative of the placement map along its normals.

The third-gradient modelling represents a wide framework in which several problems of solid and fluid mechanics have been suitably addressed, and many others, already known or still to appear, could find an adequate location. We can mention, for instance, quasicrystals and their dynamic behaviour [24], the dislocation mechanics, the surface instability of homogeneously strained bodies [25], the behaviour of fluid interfaces [26,27], and recently mechanics of bone tissue [28]. Moreover, important insights are expected for multiscale phenomena rooted into the micro or nano structure of engineered materials, implying the existence of a boundary layer and the dependence of the mechanical response on an inner length scale (see, e.g., [29-35]), which are being favouring the development of non conventional numerical models [36-40] and of hybrid numerical experimental strategies [41-47]. Unfortunately, existence, uniqueness and stability results for such a class of materials have not been achieved yet, differently from second-gradient continua (see, e.g., [48-50]). However, several studies recognized common predictive capabilities and formulation similarities among the higher gradient models and other generalized approaches, such as the nonlocal elasticity and peridynamics (see, e.g., [51-53]).

In the recent literature, also the synthesis of metamaterials is attracting more and more interest (see, e.g., $[32,54-57])$. In fact, once the desired mechanical behaviour at the macroscale is specified, the synthesis problem can be regarded as an inverse problem [58-60], seeking the architecture at the microscale apt to generate after homogenization such a macroscopic behaviour [61-68]. For third-gradient continua, the synthesis problem has not yet been addressed. One of the aims of this paper consists of precisely stating the mathematical properties of the macroscopic behaviour assumed as a target, in order to permit the inverse modelling of the microstructure originating such a behaviour. A huge comprehension of the microstructural ingredients giving rise to the third-gradient behaviour can feed novel theories for damage and plasticity, in which higher gradient dependence of deformation energy and Rayleigh functionals [69-74] play a relevant role. Moreover, we expect that also the phase field theory, aiming to regularize the fracture propagation problems, will soon include second- and third-gradient modelling to properly describe the elastic part of the deformation [75]. This opinion is motivated by the need to properly accommodate edge and point contact forces [76], in the presence of fracture processes with geometric nonlinearity.

This paper was organized as follows. In sections 2 and 3, the Lagrangian equilibrium equations for the third-gradient materials were derived through a variational approach, revealing a significant complexity of the diverse contributions and the presence of nonstandard boundary conditions. Section 4 was devoted to alternative expressions for the equilibrium equations which turn out to be especially meaningful, emphasizing the dependence on the normals and on the mean curvature. In section 5, novel transformation formulae were specified, between Lagrangian and Eulerian work conjugate variables, in particular among Piola and Cauchy hyperstress tensors up to the fourth rank. Section 6 outlines some research perspectives for which the present results represent important, although intermediate, achievements. Appendix 1 gathers the basic properties of the surface and edge projectors.

I.I. Notation

Recourse will be made to index, componentwise notation for the involved equations, although sometimes the relevant matrix or tensorial expressions will be reported (see [77]). Classical syntaxis of tensor algebra will be adopted (see $[78,79]$), with the Einstein convention on the implicit sum of repeated indices. In tensor calculus, to distinguish valences acting on Lagrangian vectors from those specifying Eulerian spaces, e.g., as in F_{A}^{a}, the former will be indicated by uppercase letters, i.e., A, B, \ldots, the latter by lowercase ones, a, b, \ldots. The Lagrangian gradient will be denoted by symbols $\nabla \equiv \partial / \partial X^{A}$, with the obvious extension to k th F_{A}^{a} order gradients as $\nabla^{(k)}=\nabla \nabla^{(k-1)}$; seldom recourse will be made to symbol DIV to denote the divergence operator.

2. Third-gradient energy

In some works of Gabrio Piola (see, e.g., [80]), the equilibrium problem of a continuous medium was investigated with reference to general expressions of the deformation energy density, depending not only on the local deformation gradient $\mathbf{F}=\partial \boldsymbol{\chi} / \partial \mathbf{X}$ but also on its higher order spatial derivatives $\nabla^{(k)} \mathbf{F}$, with $k \geqslant 1$. In this paper, we considered energy densities in the form $\mathrm{W}\left(\mathbf{F}, \nabla \mathbf{F}, \nabla^{(2)} \mathbf{F}\right)$. Accordingly, the placement map $\boldsymbol{\chi}(\mathbf{X})$, defined in the Lagrangian or material domain $\Omega_{\star} \subset \mathcal{R}^{3}$ and valued in the Eulerian or deformed domain $\Omega \subset \mathcal{R}^{3}$ (both equipped with a basis of mutually orthogonal unit vectors), must be sufficiently smooth with its derivatives up to the third order, and ensure a suitable trace regularity (see, e.g., [81]). Assuming for the Jacobian determinant the condition $J=\operatorname{det}(\mathbf{F})>0$, the same regularity must be guaranteed for the inverse placement map: hence, the deformation process establishes a diffeomorphism between the reference and the current domain, regarded as differential submanifolds with boundary $[12,82]$. The objectivity of the energy can be ensured by prescribing a dependence on the right Cauchy-Green tensor $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$ and on its gradient $\nabla \mathbf{C}$ and $\nabla^{(2)} \mathbf{C}$ (or on $\mathbf{C}^{-1}, \nabla \mathbf{C}^{-1}$, and $\nabla^{(2)} \mathbf{C}^{-1}$), as illustrated in Fortune and Vallee [83] and Auffray et al. [84]. To attain the equilibrium configuration of a deformable body, the minimum of the following energy functional is sought:

$$
\begin{equation*}
\hat{\boldsymbol{\chi}}=\arg \min _{K}\left\{\mathcal{E}^{\mathrm{TOT}}(\boldsymbol{\chi})=\int_{\Omega_{\star}} \mathrm{W}\left(\mathbf{F}, \nabla \mathbf{F}, \nabla^{(2)} \mathbf{F}\right) d \Omega_{\star}-\mathcal{E}^{\mathrm{EXT}}\left(\boldsymbol{\chi}, \nabla \boldsymbol{\chi}, \nabla^{(2)} \boldsymbol{\chi}\right)\right\}, \tag{1}
\end{equation*}
$$

where symbol $\mathcal{E}^{\mathrm{EXT}}$ denotes the external work, and the feasible functional subset K must ensure the sufficient regularity incorporating the essential boundary conditions on the placement map and on its firstand second-order normal derivatives. The volume integral of the stored energy density in equation (1) will be denoted by symbol $\mathcal{E}^{\text {DEF }}$. It is worth emphasizing that the stored energy density is expressed in terms of \mathbf{F} instead of \mathbf{C} (and relevant gradients) to make the formulation simpler and permit the analytical manipulation. When prescribing the stationarity condition, the first variation of the above functional, discussed in Fedele [12], can be evaluated herein with reference to such a more general energy density, as follows

$$
\begin{align*}
& \delta \int_{\Omega_{\star}} \mathrm{W}\left(\mathbf{F}, \nabla \mathbf{F}, \nabla^{(2)} \mathbf{F}\right) d \Omega_{\star}= \\
& = \tag{2}\\
& =\int_{\Omega_{\star}}\left(\frac{\partial \mathrm{W}}{\partial \mathbf{F}}: \delta \mathbf{F}+\frac{\partial \mathbf{W}}{\partial \nabla \mathbf{F}} \vdots \delta(\nabla \mathbf{F})+\frac{\partial \mathbf{W}}{\partial \nabla^{(2)} \mathbf{F}}:: \delta\left(\nabla^{(2)} \mathbf{F}\right)\right) d \Omega_{\star}= \\
& =\underbrace{\int_{\Omega_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A}^{i}} \delta F_{A}^{i} d \Omega_{\star}}_{=\delta \varepsilon_{I}^{\mathrm{DEF}}}+\underbrace{\int_{\Omega_{\star}} \frac{\partial \mathbf{W}}{\partial F_{A, B}^{i}} \delta F_{A, B}^{i} d \Omega_{\star}}_{=\delta \varepsilon_{I I}^{\mathrm{DFF}}}+\underbrace{\int_{\Omega_{\star}} \frac{\partial \mathbf{W}}{\partial F_{A, B C}^{i}} \delta F_{A, B C}^{i} d \Omega_{\star}}_{=\delta \varepsilon_{I I I}^{\mathrm{DEF}}}
\end{align*}
$$

where symbols $:, \therefore$, and $::$ denote the usual double dot product, the triple, and quadruple contraction, respectively (see, e.g., [77]). The contributions of the external virtual work $\delta \mathcal{E}^{\mathrm{EXT}}$ will be specified elsewhere. The first two addends $\delta \mathcal{E}_{I}^{\mathrm{DEF}}$ and $\delta \mathcal{E}_{I I}^{\mathrm{DEF}}$ were integrated in Fedele [12,13]. Now let us focus on the term involving the third gradient of the placement map, above specified as $\delta \mathcal{E}_{I I}^{\mathrm{DEF}}$. Considering that $\delta F_{A, B C}^{i}=\partial^{3} \delta \chi^{i} / \partial X^{A} \partial X^{B} \partial X^{C}$, the above equation can be further reduced. Moreover, due to the Schwarz
theorem, one has $F_{A, B C}^{i}=F_{A, C B}^{i}=F_{C, A B}^{i}=F_{C, B A}^{i}=F_{B, C A}^{i}=F_{B, A C}^{i}$ (3! permutations) for each i, this tensor is totally symmetric in the Lagrangian valences, and the comma can be omitted without ambiguity. By commuting the partial derivative and the first variation, integrating by parts one has

$$
\begin{align*}
\delta \mathcal{E}_{I I I}^{\mathrm{DEF}} & =\int_{\Omega_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} \delta F_{A B C}^{i} d \Omega_{\star}=\int_{\Omega_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} \frac{\partial}{\partial X^{C}}\left(\delta F_{A B}^{i}\right) d \Omega_{\star}= \\
& =\int_{\Omega_{\star}}\left[\frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} \delta F_{A B}^{i}\right)-\frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \delta F_{A B}^{i}\right] d \Omega_{\star} \tag{3}
\end{align*}
$$

Applying the Gauss-Ostrogradsky divergence theorem to the first addend, and denoting the boundary surface as $\Sigma_{\star} \equiv \partial \Omega_{\star}$, one obtains

$$
\begin{equation*}
\delta \mathcal{E}_{I I I}^{\mathrm{DEF}}=\underbrace{\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} \delta F_{A B}^{i} N_{C} d \Sigma_{\star}}_{(\diamond)} \underbrace{-\int_{\Omega_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \delta F_{A B}^{i} d \Omega_{\star}}_{(\ddagger)} \tag{4}
\end{equation*}
$$

while in the volume integral the test function $\delta F_{A B}^{i}$ can be further reduced as follows

$$
\begin{align*}
(\ddagger)= & -\int_{\Omega_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{A}} \delta \chi^{i} d \Omega_{\star}= \\
= & -\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{\partial}{\partial X^{A}} \delta \chi^{i} N_{B} d \Sigma_{\star}+ \tag{5}\\
& +\int_{\Omega_{\star}} \frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{\partial}{\partial X^{A}} \delta \chi^{i} d \Omega_{\star}=
\end{align*}
$$

In equation (5), the last contribution can easily be integrated by parts with respect to the partial derivative left, obtaining, through the divergence theorem, another term referred to the boundary surface plus a not reducible volume integral, namely

$$
\begin{align*}
= & -\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \delta F_{A}^{i} N_{B} d \Sigma_{\star}+ \\
& +\int_{\Omega_{\star}} \frac{\partial}{\partial X^{A}}\left[\frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \delta \chi^{i}\right] d \Omega_{\star}+ \\
& -\int_{\Omega_{\star}} \frac{\partial}{\partial X^{A}}\left[\frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)\right] \delta \chi^{i} d \Omega_{\star} \\
= & \underbrace{\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{\partial}{\partial X^{A}} \delta \chi^{i} N_{B} d \Sigma_{\star}}_{=(\Delta)}+ \tag{6}\\
& +\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \delta \chi^{i} N_{A} d \Sigma_{\star}+ \\
& -\int_{\Omega_{\star}} \frac{\partial}{\partial X^{A}} \frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \delta \chi^{i} d \Omega_{\star}
\end{align*}
$$

To reduce the boundary term (Δ) of equation (6), a specific strategy was proposed by Paul Germain (see, e.g., $[22,85]$). In fact, by utilizing the relationship $\delta_{A}^{C}=\left[M_{\|}\right]_{A}^{C}+\left[M_{\perp}\right]_{A}^{C}$ involving complementary surface projectors [12] (see Appendix 1), the gradient of the virtual placement map in Lagrangian form can be additively decomposed into a normal and and a tangential contribution, namely

$$
\begin{align*}
(\Delta)= & -\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}}\right) N_{B} \delta_{A}^{D}\left[\frac{\partial}{\partial X^{D}} \delta \chi^{i}\right] d \Sigma_{\star}= \\
= & -\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}}\right) N_{B}\left(\left[M_{\|}\right]_{A}^{D}+\left[M_{\perp}\right]_{A}^{D}\right)\left[\frac{\partial}{\partial X^{A}} \delta \chi^{i}\right] d \Sigma_{\star}= \\
= & \underbrace{-\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B}\left[M_{\perp}\right]_{A}^{D}\left[\frac{\partial}{\partial X^{D}} \delta \chi^{i}\right] d \Sigma_{\star}}_{(\perp)} \tag{7}\\
& \underbrace{\int_{1}}_{\Sigma_{\star} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B}\left[M_{\|}\right]_{A}^{D}\left[\frac{\partial}{\partial X^{D}} \delta \chi^{i}\right] d \Sigma_{\star}}
\end{align*}
$$

The addend (\perp) with the normal projector includes the normal derivative of the virtual placement and cannot be further reduced. In fact, recalling that $\left[\mathbf{M}_{\perp}\right]_{A}^{D}=N^{D} N_{A}$, from equation (7) one can write

$$
\begin{align*}
(\perp) & =-\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{A} N^{D}\left[\frac{\partial}{\partial X^{D}} \delta \chi^{i}\right] d \Sigma_{\star}= \\
& =-\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{A}\left[N^{D} \frac{\partial}{\partial X^{D}} \delta \chi^{i}\right] d \Sigma_{\star}= \tag{8}\\
& =-\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{A}\left[\frac{\partial}{\partial N} \delta \chi^{i}\right] d \Sigma_{\star}
\end{align*}
$$

On the contrary, surface term ($\|)$ in equation (7) including the tangential projector $\mathbf{M}_{\|}$can be further reduced. Exploiting the idempotence of the projector (see Appendix 1), namely, by the property $\left[M_{\|}\right]_{A}^{D}=\left[M_{\|} \|_{A}^{E}\left[M_{\|}\right]_{E}^{D}\right.$, we can duplicate it and utilize the ambient variables for both the divergence operator and the virtual placement map, thus avoiding the intrinsic representation of the surface. Through integration by parts one obtains

$$
\begin{align*}
(\|)= & -\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B}\left[M_{\|}\right]_{A}^{E} \frac{\partial}{\partial X^{D}} \delta \chi^{i}\left[M_{\|}\right]_{E}^{D} d \Sigma_{\star}= \\
= & -\int_{\Sigma_{\star}}\left\{\frac{\partial}{\partial X^{D}}\left[\frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B}\left[M_{\|}\right]_{A}^{E} \delta \chi^{i}\right]+\right. \tag{9}\\
& \left.-\frac{\partial}{\partial X^{D}}\left[\frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B}\left[M_{\|}\right]_{A}^{E}\right] \delta \chi^{i}\right\}\left[M_{\|}\right]_{E}^{D} d \Sigma_{\star}
\end{align*}
$$

The first addend in equation (9), once attained the format suitable for the surface divergence theorem (see e.g. [84,86]), can be transported to the border edge $L_{\star} \equiv \partial \Sigma_{\star}=\partial \partial \Omega_{\star}$ as follows

$$
\begin{align*}
= & -\int_{L_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} B_{A} \delta \chi^{i} d L_{\star}+ \tag{10}\\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E}^{D} \frac{\partial}{\partial X^{D}}\left\{\frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B}\left[M_{\|} \|_{A}^{E}\right\} \delta \chi^{i} d \Sigma_{\star} .\right.
\end{align*}
$$

In the first addend, we have set $\left[M_{\|}\right]_{A}^{E} B_{E}=B_{A}$, since the edge normal vector is tangent to the boundary face. The second addend, to be discussed later, must be interpreted as the surface divergence of a tangential vector field $\operatorname{DIV}_{\| \Sigma_{\star}}\left(\mathbf{v}_{\|}\right)$, where \mathbf{v} herein is the triple stress with two indices already contracted
and one (Lagrangian) valence left free for the projector. The expressions within the volume and over the boundary surface derived above must be added to their counterparts provided by the first- and the second-gradient contributions of the energy variation (see [11-13]).

3. Nonstandard boundary conditions

Let us consider the surface integral in equation (4) marked by (\diamond). Through the same strategy utilized above, resting on an additive decomposition by complementary projectors (see Appendix 1), we can manage the partial derivatives of the virtual placement one at a time, obtaining

$$
\begin{align*}
(\diamond) & =+\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C}\left[\frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{A}} \delta \chi^{i}\right] d \Sigma_{\star}= \\
& =+\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} \delta_{B}^{E}\left[\frac{\partial}{\partial X^{E}} \frac{\partial}{\partial X^{A}} \delta \chi^{i}\right] d \Sigma_{\star}= \tag{11}\\
& =+\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C}\left(\left[M_{\perp}\right]_{B}^{E}+\left[M_{\|}\right]_{B}^{E}\right)\left[\frac{\partial}{\partial X^{E}} \frac{\partial}{\partial X^{A}} \delta \chi^{i}\right] d \Sigma_{\star}=
\end{align*}
$$

Recalling the expression of the normal projector (see [12,84] and Appendix 1), one finds

$$
\begin{align*}
= & \underbrace{+\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} N^{E} N_{B}\left[\frac{\partial}{\partial X^{E}} \frac{\partial}{\partial X^{A}} \delta \chi^{i}\right] d \Sigma_{\star}}_{=(\triangleright)}+ \tag{12}\\
& +\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E}\left[\frac{\partial}{\partial X^{E}} \frac{\partial}{\partial X^{A}} \delta \chi^{i}\right] d \Sigma_{\star}=
\end{align*}
$$

Considering the Schwarz theorem on the permutation of the mixed derivatives, we can further manipulate the first addend in equation (12) obtaining

$$
\begin{align*}
(\triangleright)= & +\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E} \underbrace{\left(\left[M_{\perp}\right]_{A}^{R}+\left[M_{\|}\right]_{A}^{R}\right)}_{=\delta_{A}^{R}} \frac{\partial}{\partial X^{R}}\left[\frac{\partial}{\partial X^{E}} \delta \chi^{i}\right] d \Sigma_{\star}= \\
= & +\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E} N^{R} N_{A} \frac{\partial}{\partial X^{R}}\left[\frac{\partial}{\partial X^{E}} \delta \chi^{i}\right] d \Sigma_{\star}+ \\
= & -\int_{\Sigma_{\star}} \frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{R} \frac{\partial}{\partial X^{R}}\left[\frac{\partial}{\partial X^{E}} \delta \chi^{i}\right] d \Sigma_{\star}= \tag{13}\\
& +\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N_{A} \frac{\partial}{\partial N}\left[\frac{\partial}{\partial N} \delta F_{A B C}^{i}\right. \\
\partial X_{B} & N_{C} N^{E}\left[M_{\|}\right]_{A}^{R} \frac{\partial}{\partial X^{R}}\left[\frac{\partial}{\partial X^{E}} \delta \chi^{i}\right] d \Sigma_{\star}=
\end{align*}
$$

We can recognize the second order directional derivative along the normal of the virtual placement map, namely $\left(\partial^{2} / \partial N^{2}\right) \delta \chi^{i}$, which was not included among the second-gradient equations (see [14]). The dual covector represents a triple inner force acting over the boundary face. Grouping the residual contributions, namely the last addends in equations (12) and (13) which include the tangential projectors, exploiting idempotence and integrating by parts one has

$$
\begin{align*}
& +\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{R}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}} \frac{\partial}{\partial X^{E}} \delta \chi^{i}\right\}\left[M_{\|}\right]_{A^{\prime}}^{R} d \Sigma_{\star}+ \\
& -\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{R}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right\} \frac{\partial}{\partial X^{E}} \delta \chi^{i}\left[M_{\|}\right]_{A^{\prime}}^{R} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}} \frac{\partial}{\partial X^{A}} \delta \chi^{i}\right\} d \Sigma_{\star}+ \tag{14}\\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right\} \frac{\partial}{\partial X^{A}} \delta \chi^{i} d \Sigma_{\star}=
\end{align*}
$$

At this point, the surface divergence theorem can be applied to the first and third term in equation (14). Resulting $\left[M_{\|}\right]_{A^{\prime}}^{R}\left[M_{\|}\right]_{A}^{A^{\prime}} B_{R}=B_{A}$, one finds for the first two addends

$$
\begin{align*}
& +\int_{L_{\star}} \frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} B_{A} N^{E}\left[\frac{\partial}{\partial X^{E}} \delta \chi^{i}\right] d L_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\left[\frac{\partial}{\partial X^{E}} \delta \chi^{i}\right] d \Sigma_{\star}= \tag{15}
\end{align*}
$$

Moreover, further decomposing the Lagrangian gradient of the virtual placement into a normal and a tangential component, we can write

$$
\begin{align*}
= & +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} B_{A} N^{E}\left[\frac{\partial}{\partial X^{E}} \delta \chi^{i}\right] d L_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\left[M_{\perp}\right]_{E}^{S}\left[\frac{\partial}{\partial X^{S}} \delta \chi^{i}\right] d \Sigma_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\left[M_{\|}\right]_{E}^{S}\left[\frac{\partial}{\partial X^{S}} \delta \chi^{i}\right] d \Sigma_{\star}= \\
= & +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} B_{A}\left[\frac{\partial}{\partial N} \delta \chi^{i}\right] d L_{\star}+ \tag{16}\\
& -\underbrace{}_{=(\mathbb{\Sigma})}\left[M_{\Sigma_{\star}}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|} \|\right]_{A}^{A^{\prime}}\right) N_{E}\left[\frac{\partial}{\partial N} \delta \chi^{i}\right] d \Sigma_{\star}+ \\
& -\underbrace{}_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\left[M_{\|}\right]_{E}^{S}\left(\frac{\partial}{\partial X^{S}} \delta \chi^{i}\right) d \Sigma_{\star}
\end{align*}
$$

The first two contributions in the last equality of equation (16) cannot be further reduced including the first normal derivative of the placement map. For the last addend one has

$$
\begin{align*}
& (\boxtimes)=-\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left\{\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\right. \\
& \left.\left[M_{\|}\right]_{E}^{E^{\prime}} \delta \chi^{i}\right\} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left\{\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\left[M_{\|}\right]_{E}^{E^{\prime}}\right\} \delta \chi^{i} d \Sigma_{\star}= \tag{17}\\
& =-\int_{L_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right) B_{E} \delta \chi^{i} d L_{\star}+ \\
& \quad+\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left\{\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\left[M_{\|}\right]_{E}^{E^{\prime}}\right\} \delta \chi^{i} d \Sigma_{\star}
\end{align*}
$$

Analogously, being $\left[M_{\|} \|_{E^{\prime}}^{E}\left[M_{\|}\right]_{B}^{E^{\prime}} B_{E}=B_{B}\right.$, for the last two addends in equation (14) one has

$$
\begin{align*}
& \underbrace{+\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} B_{B} \frac{\partial}{\partial X^{A}} \delta \chi^{i} d L_{\star}}_{=(\odot)}+ \\
& \underbrace{-\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{E} \partial X^{E}}_{=\left({ }^{\circ}\right)}\left[\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right] \frac{\partial}{\partial X^{A}} \delta \chi^{i} d \Sigma_{\star} \tag{18}
\end{align*}=
$$

To reduce the terms in equation (18), let us observe that a pair of linear operators can be defined also along the edge L_{\star} projecting vectors of the ambient space onto complementary subspaces: we will refer to them as tangential and normal edge projectors (marked by the subscript L), namely, $\left[M_{L \|}\right]_{A}^{E}=T^{E} T_{A}$ and $\left[M_{L \perp}\right]_{A}^{E}=B^{E} B_{A}+N^{E} N_{A}$, being $\delta_{A}^{E}=\left[M_{L \|}\right]_{A}^{E}+\left[M_{L \perp}\right]_{A}^{E}$ (see Appendix 1). Hence, one can write

$$
\begin{align*}
(\odot)+\left(^{\circ}\right)= & +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} B_{B} \underbrace{\left(\left[M_{L \|}\right]_{A}^{E}+\left[M_{L \perp}\right]_{A}^{E}\right)}_{=\delta_{A}^{E}} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d L_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left[\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right] \underbrace{\left(\left[M_{\|}\right]_{A}^{E}+\left[M_{\perp}\right]_{A}^{E}\right)}_{=\delta_{A}^{E}} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d \Sigma_{\star}= \tag{19}
\end{align*}
$$

Paying attention to the simultaneous presence of surface and edge projectors (the latter marked by subscript L, see Appendix 1), we find

$$
\begin{align*}
= & +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} B_{B}\left[M_{L \|}\right]_{A}^{E} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d L_{\star}+ \\
& +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} B_{B}\left[M_{L \perp}\right]_{A}^{E} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d L_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left[\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right]\left[M_{\|}\right]_{A}^{E} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d \Sigma_{\star}+ \tag{20}\\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left[\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right]\left[M_{\perp}\right]_{A}^{E} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d \Sigma_{\star}=
\end{align*}
$$

By representing as usual the normal face projector through the face normals, namely $\left[M_{\perp}\right]_{A}^{E}=N^{E} N_{A}$, and expressing the projectors along the border edges (with subscript L) in terms of the mutually orthogonal unit vectors $\boldsymbol{B}, \boldsymbol{T}, \boldsymbol{N}$, one can write

$$
\begin{align*}
= & +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} B_{B}\left[M_{L \|}\right]_{A}^{E} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d L_{\star}+ \\
& +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} B_{B} B^{E} B_{A} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d L_{\star}+ \\
& +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} B_{B} N^{E} N_{A} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d L_{\star}+ \tag{21}\\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left[\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right]\left[M_{\|}\right]_{A}^{E} \frac{\partial}{\partial X^{E}} \delta \chi^{i} d \Sigma_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left[\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right] N_{A}\left[\frac{\partial}{\partial N} \delta \chi^{i}\right] d \Sigma_{\star}=
\end{align*}
$$

where the edge contribution with the normal edge projector was split into two since $\left[\mathbf{M}_{L \perp}\right]=\mathbf{B} \otimes \mathbf{B}+\mathbf{N} \otimes \mathbf{N}$. Hence, exploiting idempotence of the projectors in the first and fourth row of equation (21), rearranging terms one finds

$$
\begin{align*}
= & +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} B_{A} B_{B} N_{C}\left[\frac{\partial}{\partial B} \delta \chi^{i}\right] d L_{\star}+ \\
& +\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{A} B_{B} N_{C}\left[\frac{\partial}{\partial N} \delta \chi^{i}\right] d L_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right) N_{A}\left[\frac{\partial}{\partial N} \delta \chi^{i}\right] d \Sigma_{\star}+ \\
& \underbrace{\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} B_{B} N_{C}\left[M_{L \|}\right]_{A}^{A^{\prime}} \frac{\partial \delta \chi^{i}}{\partial X^{E}}\left[M_{L \|}\right]_{A^{\prime}}^{E} d L_{\star}}_{=(\triangleright \Delta)}+ \tag{22}\\
& -\underbrace{\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left[\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right]\left[M_{\|}\right]_{A}^{A^{\prime}} \frac{\partial \delta \chi^{i}}{\partial X^{E}}\left[M_{\|} \|_{A^{\prime}}^{E} d \Sigma_{\star}\right.}_{=(\propto)}
\end{align*}
$$

In the last equality of equation (22), the first three addends, namely edge and surface integrals including the directional derivatives of the virtual placement along the relevant normals, cannot be further reduced. The last two integrals, including tangential projectors (along the edge and over the face), must be integrated by parts to achieve the format suitable for the divergence theorem. For these last two addends one can write

$$
\begin{align*}
(\bowtie)+(\propto) & =+\int_{L_{\star}} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} B_{B} N_{C}\left[M_{L \|}\right]_{A}^{A^{\prime}} \delta \chi^{i}\right\}\left[M_{L \|}\right]_{A^{\prime}}^{E} d L_{\star}+ \\
& -\int_{L_{\star}}\left[M_{L \|}\right]_{A^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} B_{B} N_{C}\left[M_{L \|}\right]_{A}^{A^{\prime}}\right\} \delta \chi^{i} d L_{\star}+ \\
& -\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{E}}\left\{\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right)\left[M_{\|}\right]_{A}^{A^{\prime}} \delta \chi^{i}\right\}\left[M_{\|}\right]_{A^{\prime}}^{E} d \Sigma_{\star}+ \tag{23}\\
& +\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{E}}\left\{\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|} \|\right]_{B}^{E^{\prime}}\right)\left[M_{\|}\right]_{A}^{A^{\prime}}\right\} \delta \chi^{i}\left[M_{\|}\right]_{A^{\prime}}^{E} d \Sigma_{\star}=
\end{align*}
$$

At this stage, we can apply the divergence theorem to the first and third addends of equation (23). Differently from the first-gradient theory, in which only the volume boundary is considered, and from the second-gradient approach, in which contributions relevant to the border edges are included, here the differential "border" of a curved edge L_{\star} is involved, i.e., $\partial L_{\star}=\partial \partial \partial \Omega_{\star}$. Such a discrete set is constituted of the end wedges, separating from each other the contiguous regular edges: the tangential space is spanned by the edge tangent $\left(\mathbf{M}_{L \|}=\mathbf{T} \otimes \mathbf{T}\right.$, see Appendix 1), and the divergence theorem for the first addend along the border edge L_{\star} is reduced to the fundamental theorem of calculus. Hence, one can write

$$
\begin{align*}
= & +\sum_{r}\left[\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} B_{B} T_{A}\right) \delta \chi^{i}\right]_{P_{\star(r-1)}}^{P_{\star r}}+ \\
& -\int_{L_{\star}} T^{E} T_{A^{\prime}} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} B_{B} T^{A^{\prime}} T_{A}\right\} \delta \chi^{i} d L_{\star}+ \tag{24}\\
& -\int_{L_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right) B_{A} \delta \chi^{i} d L_{\star}+ \\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left\{\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right)\left[M_{\|}\right]_{A}^{A^{\prime}}\right\} \delta \chi^{i} d \Sigma_{\star}
\end{align*}
$$

where $P_{\star r}$ and $P_{\star(r-1)}$ denote the wedges located at the ends of the same regular part of the edge L_{\star} (possibly numbered as r th), and the square brackets denote as usual the expression $[f]_{a}^{b}=f(b)-f(a)$.

Let us notice that, if we differentiate the squared norms $T_{A} T^{A}=1$ and $N_{A} N^{A}=1$, we obtain

$$
\frac{\partial T_{A}}{\partial X_{E}} T^{A}=0 ; \quad \frac{\partial N_{A}}{\partial X_{E}} N^{A}=0 ;
$$

Hence, by the product rule, for equation (24) one finds

$$
\begin{align*}
& -\int_{L_{\star}} T^{E} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} B_{B} T_{A} T^{A^{\prime}}\right\} T_{A^{\prime}} \delta \chi^{i} d L_{\star}= \\
& =-\int_{L_{\star}} T^{E} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} B_{B} T_{A}\right\} \delta \chi^{i} d L_{\star} \tag{25}
\end{align*}
$$

Equivalent expressions can be written also for the contributions in equation (16)

$$
\begin{align*}
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right) N_{E}\left[\frac{\partial}{\partial N} \delta \chi^{i}\right] d \Sigma_{\star}= \\
& =-\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\left[\frac{\partial}{\partial N} \delta \chi^{i}\right] d \Sigma_{\star} \tag{26}
\end{align*}
$$

and in equation (17)

$$
\begin{align*}
& -\int_{L_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right) B_{E} \delta \chi^{i} d L_{\star}+ \\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left\{\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} N^{E}\left[M_{\|}\right]_{A}^{A^{\prime}}\right)\right. \\
& \left.\left[M_{\|}\right]_{E}^{E^{\prime}}\right\} \delta \chi^{i} d \Sigma_{\star}= \tag{27}\\
& =-\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} \frac{\partial N^{E}}{\partial X^{A}} B_{E} \delta \chi^{i} d L_{\star}+ \\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} \frac{\partial N^{E^{\prime}}}{\partial X^{A}}\right\} \delta \chi^{i} d \Sigma_{\star}
\end{align*}
$$

resulting

$$
\left[M_{\|}\right]_{A^{\prime}}^{S^{\prime}} \frac{\partial N^{E}}{\partial X^{S}}\left[M_{\|}\right]_{A}^{A^{\prime}}=\frac{\partial N^{E}}{\partial X^{A}}
$$

The contributions to the Lagrangian inner virtual work provided so far, related exclusively to the third gradient, are listed in what follows for the reader convenience. In the volume Ω_{\star} we found (equation (6))

$$
\begin{equation*}
-\int_{\Omega_{\star}} \frac{\partial}{\partial X^{A}} \frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \delta \chi^{i} d \Omega_{\star} \tag{28}
\end{equation*}
$$

Over the boundary surface Σ_{\star}, from equations (6) and (17) through (27), (10), (23), (8), (21), (15) through (26) and (13), one has

$$
\begin{align*}
& +\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{B}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{A} \delta \chi^{i} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C} \frac{\partial N^{E^{\prime}}}{\partial X^{A}}\right\} \delta \chi^{i} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E}^{D} \frac{\partial}{\partial X^{D}}\left\{\frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B}\left[M_{\|}\right]_{A}^{E}\right\} \delta \chi^{i} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left\{\left[M_{\|}\right]_{E^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right)\left[M_{\|}\right]_{A}^{A^{\prime}}\right\} \delta \chi^{i} d \Sigma_{\star}+ \tag{29}\\
& -\int_{\Sigma_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{A} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right\} N_{A} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}+ \\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left\{\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{B} N_{C}\left[M_{\|}\right]_{A}^{A^{\prime}}\right\} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{A} N_{B} N_{C} \frac{\partial^{2} \delta \chi^{i}}{\partial N^{2}} d \Sigma_{\star}
\end{align*}
$$

Along the border edge L_{\star}, from equations (17) through (27), (10), (24) through (25), (22) and (16), we have

$$
\begin{align*}
& -\int_{L_{\star}} \frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{B} N_{C} \frac{\partial N^{E}}{\partial X^{A}} B_{E} \delta \chi^{i} d L_{\star}+ \\
& -\int_{L_{\star}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) B_{A} N_{B} \delta \chi^{i} d L_{\star}+ \\
& -\int_{L_{\star}}\left[M_{\|} \|_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right) B_{A} \delta \chi^{i} d L_{\star}+\right. \tag{30}\\
& -\int_{L_{\star}} T^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} T_{A} B_{B} N_{C}\right) \delta \chi^{i} d L_{\star}+ \\
& +\int_{L_{\star}} \frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} B_{A} B_{B} N_{C} \frac{\partial \delta \chi^{i}}{\partial B} d L_{\star}+ \\
& +\int_{L_{\star}} \frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}}\left(B_{A} N_{B}+B_{B} N_{A}\right) N_{C} \frac{\partial \delta \chi^{i}}{\partial N} d L_{\star}
\end{align*}
$$

At the wedges P_{\star}, through equation (24) one has

$$
\begin{equation*}
+\sum_{r}\left[\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} T_{A} B_{B} N_{C}\right) \delta \chi^{i}\right]_{P_{\star, r-1}}^{P_{\star r r}} \tag{31}
\end{equation*}
$$

Due to the complexity of the above scenario, some remarks are provided as follows.

1. Over the volume Ω_{\star}, equation (28), the differential operator derived herein, $-\operatorname{DIV}(\operatorname{DIV}(\operatorname{DIV}(\cdot)))$, is in agreement with the $+\operatorname{DIV}(\operatorname{DIV}(\cdot)))$ operator found for the secondgradient materials, which in turn generalizes the - DIV (\cdot) equilibrium operator utilized for Cauchy's continua. Let us notice the alternating sign endowing such operators at increasing the gradient order.
2. Over the boundary surface Σ_{\star}, equation (29), we can recognize a contribution depending linearly on the face normal N_{A} after double contraction of the Lagrangian triple stress with the differential operator $\operatorname{DIV}(\operatorname{DIV}(\cdot))$: such a term must be added to the Cauchy traction, analogously to the term provided by the second-gradient contribution (with alternating signs). It represents a force per unit surface, generating work versus the virtual placement $\delta \chi^{i}$. Moreover, this force is endowed by other two addends, a surface divergence and a double surface divergence: the argument of the former is the tensor $\left(\partial / \partial X^{C}\right)\left(\partial \mathrm{W} / \partial F_{A B C}^{i}\right) N_{B}$ (one Lagrangian valence left free), for the latter tensor $\left(\partial \mathrm{W} / \partial F_{A B C}^{i}\right) N_{C}$, with two free (Lagrangian) valences. In addition, another term can be noticed, which originally was expressed as a double divergence, but then resulted drastically simplified due to the contraction with a valence of the outer projector. All these contributions generate work versus the virtual placement map.
3. Over the surface Σ_{\star}, equation (29), it can easily be recognized a triple force, namely, the Eulerian covector $\left(\partial \mathrm{W} / \partial F_{A B C}^{i}\right) N_{A} N_{B} N_{C}$, dimensionally a force per unit surface multiplied by a squared length, working versus the second normal derivative of the placement map $\partial^{2} \delta \chi^{i} / \partial N^{2}$ (with dimension one over a length).
4. Over the surface Σ_{\star}, equation (29), we can recognize also three contributions working versus the first normal derivative of the virtual placement map $\partial \delta \chi^{i} / \partial N$ (non-dimensional), which must be added to the double force of the second-gradient materials. Such contributions, which are dimensionally equivalent to a pressure multiplied by a length (to a work per unit surface), include the Eulerian covectors (at varying i) $\partial / \partial X^{C}\left(\partial \mathrm{~W} / \partial F_{A B C}^{i}\right) N_{B} N_{A}$, and other two tensors resulting from a surface divergence, which differ from each other in one (Lagrangian) valence, namely, $\left(\partial \mathrm{W} / \partial F_{A B C}^{i}\right) N_{C} N_{B}$ and $\left(\partial \mathrm{W} / \partial F_{A B C}^{i}\right) N_{C}$.
5. Along the border edge L_{\star}, equation (30), having codimension two w.r.t. the ambient space \mathcal{R}^{3}, the tangent space is generated by the edge tangent, while its orthogonal complement is spanned by the linear combination of the face normal \mathbf{N} and the edge normal \mathbf{B}. The corresponding edge integrals include contributions work conjugate to $\partial \delta \chi^{i} / \partial B$ and $\partial \delta \chi^{i} / \partial N$, which are analogous to the edge (inner) contributions of the second-gradient materials, dimensionally equivalent to a force (i.e. a work per unit length): those are the Eulerian covectors ($\partial \mathrm{W} / \partial F_{A B C}^{i}$) $B_{A} B_{B} N_{C}$ and $2\left(\partial \mathrm{~W} / \partial F_{A B C}^{i}\right) B_{(A} N_{B)} N_{C}$, respectively.
6. Along the edge L_{\star}, equation (30), other four contributions can be recognized, dimensionally equal to a force per unit length, working versus $\delta \chi^{i}$: the second addend is a covector analogous to the edge force of the second-gradient materials (one Lagrangian valence of the triple stress is contracted by the divergence operator), while the remaining terms originate from surface divergence operators.
7. Finally, the difference of concentrated forces can be recognized, evaluated at the wedge points $P_{\star r}$ and $P_{\star(r-1)}$, equation (31), which correspond to the ends of the r th regular part of the edge, working versus the virtual placement map at the same locations. Since the sum of all the contributions at varying r must be computed, at each wedge $P_{\star r}$ the difference of terms belonging to contiguous regular edges is evaluated.

Equations (28)-(31) were expressed in the same form they were derived through integration by parts and repeated applications of the divergence theorem, and correspond to a perspective "surface-driven". If we intend to list such contributions edge by edge as done in Eugster et al. [11] and Fedele [13] for the second-gradient continua, or wedge by wedge, we must consider that along each edge two contributions must be summed, provided from contiguous surfaces with their borders differently oriented, and the same occurs at each wedge with reference to the edges (at least three) having in common that point. Such a discussion and relevant calculations are beyond the scopes of this paper and will be adequately addressed elsewhere.

4. Dancing with the normals

For several surface and edge integrals listed above, it is possible to provide alternative expressions which are particularly meaningful' revealing in detail how the projectors and the surface divergence operators act onto the Lagrangian triple stress. Preliminarily, let us consider the surface divergence of the (surface)
tangential projector (see also [12,13]). By expressing the surface tangential projector as $\left[M_{\|}\right]_{E^{\prime}}^{E}=\delta_{E^{\prime}}^{E}-N^{E} N_{E^{\prime}}$, we obtain

$$
\begin{align*}
{\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(\left[M_{\|}\right]_{B}^{E^{\prime}}\right)=} & \left(\delta_{E^{\prime}}^{E}-N^{E} N_{E^{\prime}}\right) \frac{\partial}{\partial X^{E}}\left(\delta_{B}^{E^{\prime}}-N^{E^{\prime}} N_{B}\right)= \\
= & \delta_{E^{\prime}} \underbrace{\frac{\partial \delta_{B}^{E^{\prime}}}{\partial X^{E}}}_{=0}+\delta_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(-N^{E^{\prime}} N_{B}\right)+ \\
& +\left(-N^{E} N_{E^{\prime}}\right) \underbrace{\frac{\partial \delta_{B}^{E^{\prime}}}{\partial X^{E}}}_{=0}+\left(-N^{E} N_{E^{\prime}}\right) \frac{\partial}{\partial X^{E}}\left(-N^{E^{\prime}} N_{B}\right)= \tag{32}\\
= & -\frac{\partial N^{E^{\prime}}}{\partial X^{E^{\prime}}} N_{B}-\underbrace{N^{E} \frac{\partial N_{B}}{\partial X^{E}}}_{=0}-N_{E^{\prime}} \underbrace{N^{E} \frac{\partial}{\partial X^{E}}\left(N^{E^{\prime}}\right)}_{=0} N_{B}+ \\
& +N_{E^{\prime}}^{N^{E}} \underbrace{\frac{\partial}{\partial X^{E}}\left(N_{B}\right)}_{=0} N^{E^{\prime}}=+\underbrace{\frac{2}{R_{m}} N_{B}}
\end{align*}
$$

where symbol $\left(1 / R_{m}\right)$ denotes the mean curvature of the boundary face (see $\left.[12,86]\right)$. The relationship provided by equation (32) may be useful to simplify a few contributions to the inner work.
(i) With reference to equation (30), let us consider the edge term

$$
\begin{align*}
& +\int_{L_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right\} B_{A} \delta \chi^{i} d L_{\star}= \\
& =+\int_{L_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right\}\left[M_{\|} \|_{B}^{E^{\prime}} B_{A} \delta \chi^{i} d L_{\star}+\right. \tag{33}\\
& +\int_{L_{\star}}\left\{\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} B_{A}\right\}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(\left[M_{\|}\right]_{B}^{E^{\prime}}\right) \delta \chi^{i} d L_{\star}=
\end{align*}
$$

Utilizing the above relationship equation (32) and exploiting the projector idempotence one obtains

$$
\begin{align*}
= & +\int_{L_{\star}} \underbrace{\left[M_{\|}\right]_{B}^{E}}_{=\delta_{B}^{E}-N^{E} N_{B}} \frac{\partial}{\partial X^{E}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right\} B_{A} \delta \chi^{i} d L_{\star}+ \\
& +\int_{L_{\star}} \frac{2}{R_{m}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} B_{A} N_{B}\right) \delta \chi^{i} d L_{\star}= \\
= & +\int_{L_{\star}} \frac{\partial}{\partial X^{B}}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right\} B_{A} \delta \chi^{i} d L_{\star}+ \tag{34}\\
& -\int_{L_{\star}} \frac{\partial}{\partial N}\left\{\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right\} B_{A} N_{B} \delta \chi^{i} d L_{\star}+ \\
& +\int_{L_{\star}} \frac{2}{R_{m}} \frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} B_{A} N_{B} \delta \chi^{i} d L_{\star}=
\end{align*}
$$

Due to the fact that the normal derivative of the normal vanishes [12], i.e.

$$
N^{E} \frac{\partial N_{C}}{\partial X^{E}}=\frac{\partial N_{C}}{\partial N}=0
$$

applying the product rule to the first addend one obtains

$$
\begin{align*}
& =+\int_{L_{\star}}\left\{\frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C} B_{A}+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} \frac{\partial N_{C}}{\partial X^{B}} B_{A}+\right. \\
& \left.-\frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C} B_{A} N_{B}+\frac{2}{R_{m}} \frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} B_{A} N_{B}\right\} \delta \chi^{i} d L_{\star} \tag{35}
\end{align*}
$$

(ii) Let us consider over the boundary face Σ_{\star}, equation (29), the expressions

$$
\begin{align*}
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C}\left[M_{\|}\right]_{A}^{A^{\prime}}\right) \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}+ \tag{36}\\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right) N_{A} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}=
\end{align*}
$$

Exploiting equation (32) one finds

$$
\begin{align*}
= & +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{B} N_{C}\right) \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}} \frac{2}{R_{m}}\left[\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{A} N_{B} N_{C}\right] \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}+ \tag{37}\\
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{B}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right) N_{A} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}} \frac{2}{R_{m}}\left[\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} N_{B} N_{A}\right] \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}=
\end{align*}
$$

Differentiating by the product rule the functional groups within parentheses in the first and third addends and summing all the contributions, we obtain

$$
\begin{align*}
= & +\int_{\Sigma_{\star}} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}\left\{\left[M_{\|}\right]_{A}^{R} \frac{\partial}{\partial X^{R}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{C}+\right. \\
& +\left[M_{\|}\right]_{B}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C} N_{A}+ \\
& +\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}}\left[\frac{\partial N_{B}}{\partial X^{A}} N_{C}+\frac{\partial N_{C}}{\partial X^{A}} N_{B}+\frac{\partial N_{C}}{\partial X^{B}} N_{A}\right]+ \tag{38}\\
& \left.+\frac{4}{R_{m}} \frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} N_{B} N_{A}\right\}=
\end{align*}
$$

where we exploited the relationship

$$
\begin{equation*}
\left[M_{\|}\right]_{A}^{R} \frac{\partial N_{C}}{\partial X^{R}}=\left(\delta_{A}^{R}-N^{R} N_{A}\right) \frac{\partial N_{C}}{\partial X^{R}}=\frac{\partial N_{C}}{\partial X^{A}} \tag{39}
\end{equation*}
$$

Hence, by expressing the tangential projectors in terms of normals one finds

$$
\begin{align*}
= & +\int_{\Sigma_{\star}} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}\left\{\frac{\partial}{\partial X^{A}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{C}-\frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{C} N_{A}+\right. \\
& +\frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C} N_{A}-\frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C} N_{A} N_{B}+ \tag{40}\\
& \left.+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}}\left[\frac{\partial N_{B}}{\partial X^{A}} N_{C}+\frac{\partial N_{C}}{\partial X^{A}} N_{B}+\frac{\partial N_{C}}{\partial X^{B}} N_{A}\right]+\frac{4}{R_{m}} \frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} N_{B} N_{A}\right\}=
\end{align*}
$$

Rearranging terms and taking into account the total symmetry of the triple stress, finally one obtains

$$
\begin{align*}
= & +\int_{\Sigma_{\star}} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}\left\{\frac{\partial}{\partial X^{A}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{C}+\frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C} N_{A}\right. \\
& -2 \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{A} N_{B} N_{C}+ \\
& \left.+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}}\left[\frac{\partial N_{B}}{\partial X^{A}} N_{C}+\frac{\partial N_{C}}{\partial X^{A}} N_{B}+\frac{\partial N_{C}}{\partial X^{B}} N_{A}\right]+\frac{4}{R_{m}} \frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} N_{B} N_{A}\right\}= \tag{41}\\
= & +\int_{\Sigma_{\star}} \frac{\partial \delta \chi^{i}}{\partial N} d \Sigma_{\star}\left\{2 \frac{\partial}{\partial X^{A}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{C}-2 \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{A} N_{B} N_{C}+\right. \\
& \left.+3 \frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} \frac{\partial N_{B}}{\partial X^{A}} N_{C}+\frac{4}{R_{m}} \frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C} N_{B} N_{A}\right\}
\end{align*}
$$

(iii) We can operate in analogous way on other two surface contributions, equation (29), in which the work is generated versus the virtual placement map. The covectors correspond in turn to a surface divergence and to a double surface divergence, namely

$$
\begin{align*}
& +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{E}^{D} \frac{\partial}{\partial X^{D}}\left\{\frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{B}\left[M_{\|}\right]_{A}^{E}\right\} \delta \chi^{i} d \Sigma_{\star}+ \tag{42}\\
& -\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A^{\prime}}^{S} \frac{\partial}{\partial X^{S}}\left\{\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right)\left[M_{\|}\right]_{A}^{A^{\prime}}\right\} \delta \chi^{i} d \Sigma_{\star}=
\end{align*}
$$

Differentiating by the product rule the expressions within parentheses, we obtain

$$
\begin{align*}
= & +\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A}^{D} \frac{\partial}{\partial X^{D}}\left\{\frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}}\right) N_{B}\right\} \delta \chi^{i} d \Sigma_{\star}+ \\
& +\int_{\Sigma_{\star}} \frac{2}{R_{m}} \frac{\partial}{\partial X^{C}}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}}\right) N_{B} N_{A} \delta \chi^{i} d \Sigma_{\star}+ \\
& \underbrace{-\int_{\Sigma_{\star}}\left[M_{\|}\right]_{A}^{S} \frac{\partial}{\partial X^{S}}\left\{\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right)\right\} \delta \chi^{i} d \Sigma_{\star}}_{=(\square)}+ \tag{43}\\
& \underbrace{-\int_{\Sigma_{\star}} \frac{2}{R_{m}}\left[M_{\|}\right]_{E^{\prime}}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}} N_{C}\left[M_{\|}\right]_{B}^{E^{\prime}}\right) N_{A} \delta \chi^{i} d \Sigma_{\star}}_{=(\diamond)}
\end{align*}
$$

For the sake of clarity, let us develop the last two addends separately. Recalling that $\partial N_{C} / \partial N=0$, one finds

$$
\begin{align*}
(\diamond)= & -\int_{\Sigma_{\star}} \delta \chi^{i} d \Sigma_{\star}\left[M_{\|}\right]_{A}^{S} \frac{\partial}{\partial X^{S}}\{\underbrace{\left[M_{\|}\right]_{B}^{E}}_{=\delta_{B}^{E}-N^{E} N_{B}} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right)+ \\
& \left.+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} N_{B} \frac{2}{R_{m}}\right\}= \tag{44}\\
= & -\int_{\Sigma_{\star}} \delta \chi^{i} d \Sigma_{\star}\left[M_{\|}\right]_{A}^{S} \frac{\partial}{\partial X^{S}}\left\{\frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C}+\right. \\
& \left.+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} \frac{\partial N_{C}}{\partial X^{B}}-N_{B} N_{C} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} N_{B} \frac{2}{R_{m}}\right\}=
\end{align*}
$$

Utilizing the relationship $\left[M_{\|}\right]_{A}^{S}=\delta_{A}^{S}-N^{S} N_{A}$, the above surface integral can be split into two, namely the contribution multiplying δ_{A}^{S}

$$
\begin{align*}
= & -\int_{\Sigma_{\star}} \delta X^{i} d \Sigma_{\star}\left\{\frac{\partial}{\partial X^{A}} \frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C}+\frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{\partial N_{C}}{\partial X^{A}}+\right. \\
& +\frac{\partial}{\partial X^{A}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{\partial N_{C}}{\partial X^{B}}+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} \frac{\partial}{\partial X^{A}}\left(\frac{\partial N_{C}}{\partial X^{B}}\right)+ \tag{45}\\
& -\frac{\partial}{\partial X^{A}}\left(N_{B} N_{C}\right) \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)-N_{B} N_{C} \frac{\partial}{\partial X^{A}} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)+ \\
& \left.+\frac{\partial}{\partial X^{A}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C} N_{B} \frac{2}{R_{m}}+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} \frac{\partial}{\partial X^{A}}\left(N_{C} N_{B} \frac{2}{R_{m}}\right)\right\}+
\end{align*}
$$

and that multiplying $N^{S} N_{A}$

$$
\begin{align*}
& +\int_{\Sigma_{\star}} \delta \chi^{i} d \Sigma_{\star}\{N_{A} \frac{\partial}{\partial N} \frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C}+\frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{A} \underbrace{\frac{\partial N_{C}}{\partial N}}_{=0}+ \\
& +N_{A} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{\partial N_{C}}{\partial X^{B}}+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{A} N^{S} \frac{\partial^{2} N_{C}}{\partial X^{S} X^{B}}+ \\
& -N_{A} \underbrace{\frac{\partial}{\partial N}\left(N_{B} N_{C}\right)}_{=0} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)-N_{B} N_{C} N_{A} \frac{\partial}{\partial N} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)+ \tag{46}\\
& \left.+N_{A} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) N_{C} N_{B} \frac{2}{R_{m}}+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{A} \frac{\partial}{\partial N}\left(N_{C} N_{B} \frac{2}{R_{m}}\right)\right\}=
\end{align*}
$$

where the vanishing terms include the normal derivatives of the normal, namely $\partial N_{C} / \partial N=0$, explicitly or after permuting the mixed derivatives. For the readers' convenience, only equation (46) is reported herein in a more compact form, namely

$$
\begin{align*}
& +\int_{\Sigma_{\star}} \delta \chi^{i} d \Sigma_{\star}\left\{N_{A} N_{C} \frac{\partial}{\partial X^{B}} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)+\right. \\
& +N_{A} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{\partial N_{C}}{\partial X^{B}}-N_{B} N_{C} N_{A} \frac{\partial}{\partial N} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)+ \tag{47}\\
& \left.+N_{A} N_{C} N_{B} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right) \frac{2}{R_{m}}-\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{A} N_{C} N_{B} \frac{\partial}{\partial N}\left(\frac{2}{R_{m}}\right)\right\}
\end{align*}
$$

being $2 / R_{m}=-\partial N^{E} / \partial X^{E}$. The remaining term of equation (43) can be modified analogously, namely

$$
\begin{align*}
(\square)= & -\int_{\Sigma_{\star}} \delta \chi^{i} d \Sigma_{\star} \frac{2}{R_{m}} N_{A}\left\{\left[M_{\|}\right]_{B}^{E} \frac{\partial}{\partial X^{E}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right)+\right. \\
& \left.\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} N_{B} \frac{2}{R_{m}}\right\}= \\
= & -\int_{\Sigma_{\star}} \delta \chi^{i} d \Sigma_{\star} \frac{2}{R_{m}} N_{A}\left\{\frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right)+\right. \\
& \left.-N_{B} \frac{\partial}{\partial N}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} N_{C}\right)+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{C} N_{B} \frac{2}{R_{m}}\right\}= \tag{48}\\
=- & \int_{\Sigma_{\star}} \delta \chi^{i} d \Sigma_{\star}\left\{\frac{2}{R_{m}} N_{A} N_{C} \frac{\partial}{\partial X^{B}}\left(\frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}}\right)+\frac{2}{R_{m}} N_{A} \frac{\partial \mathrm{~W}}{\partial F_{A B C}^{i}} \frac{\partial N_{C}}{\partial X^{B}}+\right. \\
& \left.-\frac{2}{R_{m}} N_{A} N_{B} N_{C} \frac{\partial}{\partial N}\left(\frac{\partial \mathbf{W}}{\partial F_{A B C}^{i}}\right)+\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}} N_{A} N_{B} N_{C} \frac{4}{R_{m}^{2}}\right\}
\end{align*}
$$

Especially for the last contributions to the inner work over the boundary surface Σ_{\star} at point (iii), including as covectors the surface divergence and the double surface divergence, the use of such detailed expressions, useful for a better understanding or possibly for a cross validation, becomes prohibitive in the practice and the initial compact form seems preferable.

5. Dual variables

We derived the inner virtual work equations through the first variation of the Lagrangian energy functional $\mathcal{E}^{\mathrm{DEF}}$ in the reference configuration Ω_{\star} : integrating by parts, through the divergence theorem we provided volume, surface, edge and wedge contributions. So far, we utilized the partial derivatives of the energy density with respect to the first, second and third Lagrangian gradients of the placement map, namely, $F_{A}^{i}, F_{A B}^{i}, F_{A B C}^{i}$, without making more explicit their role. At this stage, we can analyse in depth these terms by setting

$$
\begin{equation*}
P_{1 i}^{A}=\frac{\partial \mathrm{W}}{\partial F_{A}^{i}} ; \quad P_{2 i}^{A B}=\frac{\partial \mathrm{W}}{\partial F_{A B}^{i}} ; \quad P_{3 i}^{A B C}=\frac{\partial \mathrm{W}}{\partial F_{A B C}^{i}}: \tag{49}
\end{equation*}
$$

where symbol $P_{1 i}^{A}(\mathbf{X})$ represents a stress-like tensor, referred to as first Piola-Kirchhoff stress, with a leg in the Eulerian configuration and another one in the Lagrangian configuration. $P_{2 i}^{A B}(\mathbf{X})$ and $P_{2 i}^{A B C}(\mathbf{X})$ represent the third and fourth rank tensors, one time covariant (Eulerian index) and two and three times contravariant (Lagrangian indices), respectively. We will refer to them in turn as Piola double and triple stress. Subscripts 1, 2, and 3 remark that the relevant tensors were provided by differentiation of the energy density w.r.t. the first, the second, and third placement gradients, respectively. At this point, we can everywhere substitute the symbols $P_{1 i}^{A}, P_{2 i}^{A B}$, and $P_{3 i}^{A B C}$, without any ambiguity. For instance, the Lagrangian inner virtual work in equation (2) can now be expressed as follows (see e.g. [11,12])

$$
\begin{align*}
& \delta \mathcal{E}^{\mathrm{DEF}}=\int_{\Omega_{\star}} P_{1 i}^{A} \delta F_{A}^{i} d \Omega_{\star}+\int_{\Omega_{\star}} P_{2 i}^{A B} \delta F_{A B}^{i} d \Omega_{\star}+\int_{\Omega_{\star}} P_{3 i}^{A B C} \delta F_{A B C}^{i} d \Omega_{\star} ; \\
& \delta F_{A}^{i}=\frac{\partial \delta \chi^{i}}{\partial X^{A}} ; \quad \delta F_{A B}^{i}=\frac{\partial^{2} \delta \chi^{i}}{\partial X^{A} \partial X^{B}} ; \quad \delta F_{A B C}^{i}=\frac{\partial^{3} \delta \chi^{i}}{\partial X^{A} \partial X^{B} \partial X^{C}} ; \tag{50}
\end{align*}
$$

It must be underlined that the analytical developments through the integration by parts were made possible by the above representation of the internal work, including $\delta F_{A}^{i}, \delta F_{A B}^{i}$, and $\delta F_{A B C}^{i}$. By a trivial change of variables, the same functional equation (50) can be referred to the Eulerian configuration Ω : however, while the Lagrangian virtual work represents the first variation of an energy functional, the Eulerian form does not, since the integration volume changes along the deformation process.

The Eulerian counterpart of the virtual placement map can be defined through the composition with the inverse mapping, namely $\delta \mathbf{c}(\mathbf{x})=\delta \boldsymbol{\chi} \circ \boldsymbol{\chi}^{-1}(\mathbf{x})$. Accordingly, we can express the first and, in a
sequence, the second (spatial) gradients of the Eulerian test function through their Lagrangian counterparts [12,14] namely

$$
\begin{align*}
\delta D_{j}^{i}= & \frac{\partial}{\partial x^{j}} \delta \chi^{i}(\mathbf{x})=\frac{\partial \delta \chi^{i}}{\partial X^{A}} \frac{\partial X^{A}}{\partial x^{j}}=\delta F_{A}^{i}\left(\mathbf{F}^{-1}\right)_{j}^{A} ; \tag{51}\\
& \left(\delta F_{A}^{i}=F_{A}^{j} \delta D_{j}^{i}\right)
\end{align*}
$$

and

$$
\begin{align*}
\delta D_{j k}^{i} & =\frac{\partial^{2}}{\partial x^{k} x^{j}} \delta \chi^{i}(\mathbf{x})=\frac{\partial}{\partial x^{k}}\left(\frac{\partial}{\partial x^{j}} \delta \chi^{i}(\mathbf{x})\right)= \\
& =\frac{\partial}{\partial x^{k}}\left(\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A}^{i}\right)=\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A}^{i}+\left(\mathbf{F}^{-1}\right)_{j}^{A} \frac{\partial}{\partial x^{k}} \delta F_{A}^{i}= \tag{52}\\
& =\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A}^{i}+\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A B}^{i}\left(\mathbf{F}^{-1}\right)_{k}^{B}
\end{align*}
$$

Rearranging equations (51) and (52), first one can write

$$
\begin{equation*}
\left(\mathbf{F}^{-1}\right)_{j}^{A}\left(\mathbf{F}^{-1}\right)_{k}^{B} \delta F_{A B}^{i}=\delta D_{k j}^{i}-\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{L} \delta F_{L}^{i} \tag{53}
\end{equation*}
$$

Recalling that, by differentiating the relationship $F_{A}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{L}=\delta_{A}^{L}$, one obtains (see e.g. [84])

$$
\begin{equation*}
F_{A}^{j} \frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{L}=-\frac{\partial}{\partial x^{k}}\left(F_{A}^{j}\right)\left(\mathbf{F}^{-1}\right)_{j}^{L} \tag{†}
\end{equation*}
$$

Equation (52) can be written as follows, after multiplying both sides by $F_{A}^{j} F_{B}^{k}$

$$
\begin{align*}
\delta F_{A B}^{i} & =F_{A}^{j} F_{B}^{k} \delta D_{k j}^{i}-F_{B}^{k} \underbrace{F_{A}^{j} \frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{L}}_{\text {via }(\dagger)} \delta F_{L}^{i}= \\
& =F_{A}^{j} F_{B}^{k} \delta D_{k j}^{i}+F_{B}^{k} \frac{\partial}{\partial x^{k}}\left(F_{A}^{j}\right)\left(\mathbf{F}^{-1}\right)_{j}^{L} \delta F_{L}^{i}= \tag{54}\\
& =F_{A}^{j} F_{B}^{k} \delta D_{k j}^{i}+F_{A C}^{j} \underbrace{F_{B}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{C}}_{=\delta_{B}^{C}}\left(\mathbf{F}^{-1}\right)_{j}^{L} \delta F_{L}^{i}= \\
& =F_{A}^{j} F_{B}^{k} \delta D_{k j}^{i}+F_{A B}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{L} \delta F_{L}^{i}=F_{A}^{j} F_{B}^{k} \delta D_{k j}^{i}+F_{A B}^{j} \delta D_{j}^{i}
\end{align*}
$$

Thereafter, let us compute the Eulerian third gradient of the placement map. Differentiating equation (52) by the product rule, one obtains

$$
\begin{align*}
\delta D_{j k l}^{i}= & \frac{\partial^{3}}{\partial x^{l} x^{k} x^{j}} \delta \chi^{i}(\mathbf{x})=\frac{\partial}{\partial x^{l}}\left(\frac{\partial}{\partial x^{k}} \frac{\partial}{\partial x^{j}} \delta \chi^{i}(\mathbf{x})\right)= \\
= & \frac{\partial}{\partial x^{l}}\left(\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A}^{i}+\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A B}^{i}\left(\mathbf{F}^{-1}\right)_{k}^{B}\right)= \\
= & \frac{\partial}{\partial x^{l}} \frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A}^{i}+\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \frac{\partial}{\partial x^{l}} \delta F_{A}^{i}+\frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A B}^{i}\left(\mathbf{F}^{-1}\right)_{k}^{B}+ \\
& +\left(\mathbf{F}^{-1}\right)_{j}^{A} \frac{\partial}{\partial x^{l}} \delta F_{A B}^{i}\left(\mathbf{F}^{-1}\right)_{k}^{B}+\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A B}^{i} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{k}^{B}= \tag{55}\\
= & \frac{\partial^{2}}{\partial x^{l} \partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A}^{i}+\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A B}^{i}\left(\mathbf{F}^{-1}\right)_{l}^{B}+ \\
& +\frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A B}^{i}\left(\mathbf{F}^{-1}\right)_{k}^{B}+\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A B C}^{i}\left(\mathbf{F}^{-1}\right)_{l}^{C}\left(\mathbf{F}^{-1}\right)_{k}^{B}+ \\
& +\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A B}^{i} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{k}^{B}
\end{align*}
$$

Grouping the contributions including $\delta F_{A B}^{i}$, one finds

$$
\begin{align*}
\delta D_{j k l}^{i}= & \frac{\partial^{2}}{\partial x^{l} \partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta F_{A}^{i}+\delta F_{A B}^{i}\left\{\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A}\left(\mathbf{F}^{-1}\right)_{l}^{B}+\right. \\
& \left.+\frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{j}^{A}\left(\mathbf{F}^{-1}\right)_{k}^{B}+\left(\mathbf{F}^{-1}\right)_{j}^{A} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{k}^{B}\right\}+ \tag{56}\\
& +\delta F_{A B C}^{i}\left(\mathbf{F}^{-1}\right)_{j}^{A}\left(\mathbf{F}^{-1}\right)_{k}^{B}\left(\mathbf{F}^{-1}\right)_{l}^{C}
\end{align*}
$$

We intend to express the Lagrangian third gradient of virtual placement map as a function of the Eulerian gradients. To this purpose, let us multiply both the sides of the above equation by the product $F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}$, so that one has $\left(\mathbf{F}^{-1}\right)_{j}^{A} F_{A^{\prime}}^{j}=\delta_{A^{\prime}}^{A}$, etc. Hence, one can write

$$
\begin{align*}
\delta F_{A^{\prime} B^{\prime} C^{\prime}}^{i}= & +\delta D_{j k l}^{i} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+ \\
& -\frac{\partial^{2}}{\partial x^{l} \partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} F_{A}^{p} \delta D_{p}^{i} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+ \\
& -\delta F_{A B}^{i}\left\{\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A}\left(\mathbf{F}^{-1}\right)_{l}^{B} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+\right. \tag{57}\\
& +\frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{j}^{A}\left(\mathbf{F}^{-1}\right)_{k}^{B} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+ \\
& \left.+\left(\mathbf{F}^{-1}\right)_{j}^{A} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{k}^{B} F_{A^{\prime}}^{j}{ }_{I^{\prime}}^{k} F_{C^{\prime}}^{l}\right\}=
\end{align*}
$$

Preliminarily, we observe that the terms within curly brackets in equation (57) can be developed by utilizing equation (\dagger) and simplifying the products

$$
\begin{align*}
& -\delta F_{A B}^{i}\left\{-\frac{\partial}{\partial x^{k}} F_{A^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A}\left(\mathbf{F}^{-1}\right)_{l}^{B} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+\right. \\
& -\frac{\partial}{\partial x^{l}} F_{A^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A}\left(\mathbf{F}^{-1}\right)_{k}^{B} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+ \\
& \left.-\left(\mathbf{F}^{-1}\right)_{j}^{A} \frac{\partial}{\partial x^{l}} F_{B^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{B} F_{A^{\prime}}^{j} F_{C^{\prime}}^{l}\right\}= \\
= & -\delta F_{A B}^{i}\left\{-F_{A^{\prime} N}^{j}\left(\mathbf{F}^{-1}\right)_{k}^{N}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{C^{\prime}}^{B} F_{B^{\prime}}^{k}+\right. \tag{58}\\
& \left.-F_{A^{\prime} N}^{j}\left(\mathbf{F}^{-1}\right)_{l}^{N}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{B^{\prime}}^{B} F_{C^{\prime}}^{l}-\delta_{A^{\prime}}^{A} F_{B^{\prime} N}^{k}\left(\mathbf{F}^{-1}\right)_{l}^{N}\left(\mathbf{F}^{-1}\right)_{k}^{B} F_{C^{\prime}}^{l}\right\}= \\
= & -\delta F_{A B}^{i}\left\{-F_{A^{\prime} N}^{j} \delta_{B^{\prime}}^{N}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{C^{\prime}}^{B}+\right. \\
& \left.-F_{A^{\prime} N}^{j} \delta_{C^{\prime}}^{N}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{B^{\prime}}^{B}-\delta_{A^{\prime}}^{A} F_{B^{\prime} N}^{k} \delta_{C^{\prime}}^{N}\left(\mathbf{F}^{-1}\right)_{k}^{B}\right\}= \\
= & -\delta F_{A B}^{i}\left\{-F_{A^{\prime} B^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{C^{\prime}}^{B}-F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{B^{\prime}}^{B}-\delta_{A^{\prime}}^{A} F_{B^{\prime} C^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{B}\right\}
\end{align*}
$$

Recalling that, from equation (\dagger), the following expression for the Eulerian derivative becomes available (see [84])

$$
\begin{equation*}
\frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A}=-\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R S}^{m}\left(\mathbf{F}^{-1}\right)_{k}^{S}\left(\mathbf{F}^{-1}\right)_{m}^{A} \tag{59}
\end{equation*}
$$

for the term with the second derivatives in equation (57) one finds by the product rule

$$
\begin{align*}
& \frac{\partial}{\partial x^{l}} \frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}= \\
& =-\frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R S}^{m}\left(\mathbf{F}^{-1}\right)_{k}^{S}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{A^{\prime}}^{j}{ }_{I_{B^{\prime}}^{k}}^{k} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}+ \\
& -\left(\mathbf{F}^{-1}\right)_{j}^{R} \frac{\partial}{\partial x^{l}} F_{R S}^{m}\left(\mathbf{F}^{-1}\right)_{k}^{S}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}+ \tag{60}\\
& -\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R S}^{m} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{k}^{S}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}+ \\
& -\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R S}^{m}\left(\mathbf{F}^{-1}\right)_{k}^{S} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}=
\end{align*}
$$

The multiple products of deformation gradients and their inverses can easily be simplified obtaining

$$
\begin{align*}
= & +\frac{\partial}{\partial x^{l}} F_{A^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R S}^{m} \delta_{B^{\prime}}^{S}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}+ \\
& -\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R S T}^{m}\left(\mathbf{F}^{-1}\right)_{l}^{T} \delta_{B^{\prime}}^{S}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{A^{\prime}}^{j} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}+ \\
& +\delta_{A^{\prime}}^{R} F_{R S}^{m} \frac{\partial}{\partial x^{l}} F_{B^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{S}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}+ \tag{61}\\
& -\delta_{A^{\prime}}^{R} F_{R S}^{m} \delta_{B^{\prime}}^{S} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}=
\end{align*}
$$

where recourse was made to equation (\dagger). Thereafter, one can write

$$
\begin{align*}
= & +F_{A^{\prime} U}^{j}\left(\mathbf{F}^{-1}\right)_{l}^{U}\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R B^{\prime}}^{m} \delta_{m}^{p} F_{C^{\prime}}^{l} \delta D_{p}^{i}+ \\
& -\delta_{A^{\prime}}^{R} F_{R S T}^{m} \delta_{C^{\prime}}^{T} \delta_{B^{\prime}}^{S} \delta_{m}^{p} \delta D_{p}^{i}+ \\
& +\delta_{A^{\prime}}^{R} F_{R S}^{m} F_{B^{\prime} Q}^{k}\left(\mathbf{F}^{-1}\right)_{l}^{Q}\left(\mathbf{F}^{-1}\right)_{k^{\prime}}^{S} \delta_{m}^{p} F_{C^{\prime}}^{l} \delta D_{p}^{i}+ \\
& -\delta_{A^{\prime}}^{R}{ }_{R S}^{m} \delta_{B^{\prime}}^{S} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}= \tag{62}\\
= & +F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R B^{\prime}}^{m} \delta D_{m}^{i}-F_{A^{\prime} B^{\prime} C^{\prime}}^{m} \delta D_{m}^{i}+ \\
& +F_{A^{\prime} S}^{m} F_{B^{\prime} C^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{S} \delta D_{m}^{i}-F_{A^{\prime} B^{\prime}}^{m} \frac{\partial}{\partial x^{l}}\left(\mathbf{F}^{-1}\right)_{m}^{A} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}=
\end{align*}
$$

Let us notice that the last term in equation (62), after inserting the expression for the Eulerian derivative of the inverse matrix components (from equation 59), can be simplified as follows (note that sign minus disappeared)

$$
\begin{aligned}
& +F_{A^{\prime} B^{\prime}}^{m}\left(\mathbf{F}^{-1}\right)_{m}^{T}\left(\mathbf{F}^{-1}\right)_{l}^{V} F_{T V}^{s}\left(\mathbf{F}^{-1}\right)_{s}^{A} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}= \\
& +F_{A^{\prime} B^{\prime}}^{m}\left(\mathbf{F}^{-1}\right)_{m}^{T} \delta_{C^{\prime}}^{V} F_{T V}^{s} \delta_{s}^{p} \delta D_{p}^{i}=+F_{A^{\prime} B^{\prime}}^{m}\left(\mathbf{F}^{-1}\right)_{m}^{T} F_{T C^{\prime}}^{p} \delta D_{p}^{i}
\end{aligned}
$$

At the light of the above developments, the contribution with the second derivatives in equation (60) becomes

$$
\begin{align*}
& \frac{\partial}{\partial x^{l}} \frac{\partial}{\partial x^{k}}\left(\mathbf{F}^{-1}\right)_{j}^{A} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l} F_{A}^{p} \delta D_{p}^{i}= \\
& =+F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R B^{\prime}}^{p} \delta D_{p}^{i}-F_{A^{\prime} B^{\prime} C^{\prime}}^{p} \delta D_{p}^{i}+F_{B^{\prime} C^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k^{\prime}}^{S} F_{A^{\prime} S^{\prime}}^{p} \delta D_{p}^{i}+ \\
& +F_{A^{\prime} B^{\prime}}^{m}\left(\mathbf{F}^{-1}\right)_{m}^{T} F_{T C^{\prime}}^{p} \delta D_{p}^{i}= \\
& =\delta D_{p}^{i}\left\{+F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{R} F_{R B^{\prime}}^{p}-F_{A^{\prime} B^{\prime} C^{\prime}}^{p}+\right. \tag{63}\\
& \left.+F_{B^{\prime} C^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{S} F_{A^{\prime} S}^{p}+F_{A^{\prime} B^{\prime}}^{m}\left(\mathbf{F}^{-1}\right)_{m}^{T} F_{T C^{\prime}}^{p}\right\}= \\
& =\delta D_{p}^{i}\left\{-F_{A^{\prime} B^{\prime} C^{\prime}}^{p}+\left(\mathbf{F}^{-1}\right)_{j}^{R}\left[F_{A^{\prime} C^{\prime} C^{\prime}}^{j} F_{R B^{\prime}}^{p}+F_{B^{\prime} C^{\prime}}^{j} F_{A^{\prime} R}^{p}+F_{A^{\prime} B^{\prime}}^{j} F_{R C^{\prime}}^{p}\right]\right\}
\end{align*}
$$

On the basis of equations (58) and (63), the Lagrangian third gradient of the placement map in equation (57) can now be expressed as

$$
\begin{align*}
\delta F_{A^{\prime} B^{\prime} C^{\prime}}^{i}= & +\delta D_{j k l}^{i} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+ \\
& -\delta D_{p}^{i}\left\{-F_{A^{\prime} B^{\prime} C^{\prime}}^{p}+\left(\mathbf{F}^{-1}\right)_{j}^{R}\left[F_{A^{\prime} C^{\prime}}^{j} F_{R B^{\prime}}^{p}+F_{B^{\prime} C^{\prime}}^{j} F_{A^{\prime} R}^{p}+F_{A^{\prime} B^{\prime}}^{j} F_{R C^{\prime}}^{p}\right]\right\}+ \tag{64}\\
& -\delta F_{A B}^{i}\left\{-F_{A^{\prime} B^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{C^{\prime}}^{B}-F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{B^{\prime}}^{B}-\delta_{A^{\prime}}^{A} F_{B^{\prime} C^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{B}\right\}=
\end{align*}
$$

but the Eulerian second-gradient $D_{k l}^{i}$ still does not appear explicitly. Recalling from equation (54) that $\delta F_{A B}^{i}=F_{A}^{l} F_{B}^{k} \delta D_{k l}^{i}+F_{A B}^{l} \delta D_{l}^{i}$, we can write

$$
\begin{align*}
\delta F_{A^{\prime} B^{\prime} C^{\prime}}^{i}= & +\delta D_{j k l}^{i} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+ \\
& -\delta D_{p}^{i}\left\{-F_{A^{\prime} B^{\prime} C^{\prime}}^{p}+\left(\mathbf{F}^{-1}\right)_{j}^{R}\left[F_{A^{\prime} C^{\prime}}^{j} F_{R B^{\prime}}^{p}+F_{B^{\prime} C^{\prime}}^{j} F_{A^{\prime} R}^{p}+F_{A^{\prime} B^{\prime}}^{j} F_{R C^{\prime}}^{p}\right]\right\}+ \\
& -\underbrace{\left[F_{A}^{l} F_{B}^{r} \delta D_{r l}^{i}+F_{A B}^{l} \delta D_{l}^{i}\right]}_{=\delta F_{A B}^{i}}\left\{-F_{A^{\prime} B^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{C^{\prime}}^{B}+\right. \tag{65}\\
& \left.-F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{B^{\prime}}^{B}-\delta_{A^{\prime}}^{A} F_{B^{\prime} C^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{B}\right\}=
\end{align*}
$$

Grouping the coefficients of the Eulerian gradients, we find

$$
\begin{align*}
\delta F_{A^{\prime} B^{\prime} C^{\prime}}^{i}= & +\delta D_{j k l}^{i} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+ \\
& -\delta D_{p}^{i}\left\{-F_{A^{\prime} B^{\prime} C^{\prime}}^{p}+\left(\mathbf{F}^{-1}\right)_{j}^{R}\left[F_{A^{\prime} C^{\prime}}^{j} F_{R B^{\prime}}^{p}+F_{B^{\prime} C^{\prime}}^{j} F_{A^{\prime} R}^{p}+F_{A^{\prime} B^{\prime}}^{j} F_{R C^{\prime}}^{p}\right]+\right. \\
& \left.+F_{A B}^{p}\left[-F_{A^{\prime} B^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{C^{\prime}}^{B}-F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{B^{\prime}}^{B}-\delta_{A^{\prime}}^{A} F_{B^{\prime} C^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{B}\right]\right\} \tag{66}\\
& -\delta D_{k l}^{i}\left\{-F_{A}^{l} F_{B}^{k} F_{A^{\prime} B^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{C^{\prime}}^{B}-F_{A}^{l} F_{B}^{k} F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} \delta_{B^{\prime}}^{B}+\right. \\
& \left.-F_{A}^{l} F_{B}^{k} \delta_{A^{\prime}}^{A} F_{B^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{B}\right\}=
\end{align*}
$$

and then

$$
\begin{align*}
= & +\delta D_{j k l}^{i} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}+ \\
& -\delta D_{p}^{i}\left\{-F_{A^{\prime} B^{\prime} C^{\prime}}^{p}+\left(\mathbf{F}^{-1}\right)_{j}^{R}\left[F_{A^{\prime} C^{\prime}}^{j} F_{R B^{\prime}}^{p}+F_{B^{\prime} C^{\prime}}^{j} F_{A^{\prime} R}^{p}+F_{A^{\prime} B^{\prime}}^{j} P_{R C^{\prime}}^{p}\right]+\right. \\
& \left.+\left[-F_{A^{\prime} B^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} F_{A C^{\prime}}^{p}-F_{A^{\prime} C^{\prime}}^{j}\left(\mathbf{F}^{-1}\right)_{j}^{A} F_{A B^{\prime}}^{p}-F_{A^{\prime} B}^{p} F_{B^{\prime} C^{\prime}}^{k}\left(\mathbf{F}^{-1}\right)_{k}^{B}\right]\right\} \tag{67}\\
& -\delta D_{r l}^{i}\left\{-F_{B}^{r} F_{A^{\prime} B^{\prime} \delta^{\prime}}^{j} \delta_{j}^{l} \delta_{C^{\prime}}^{B}-F_{B}^{r} F_{A^{\prime} C^{\prime}}^{j} \delta_{j}^{l} \delta_{B^{\prime}}^{B}-F_{A}^{l} \delta_{A^{\prime}}^{A} F_{B^{\prime} C^{\prime}}^{j} \delta_{j}^{r}\right\}=
\end{align*}
$$

In the above equation, the contributions within the square brackets turn out to be equal opposite and cancel out. Despite the cumbersome calculations, finally a compact form is attained

$$
\begin{align*}
\delta F_{A^{\prime} B^{\prime} C^{\prime}}^{i}= & +\delta D_{j k l}^{i} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}-\delta D_{p}^{i}\left\{-F_{A^{\prime} B^{\prime} C^{\prime}}^{p}\right\} \\
& -\delta D_{r l}^{i}\left\{-F_{C^{\prime}}^{r} F_{A^{\prime} B^{\prime}}^{l}-F_{B^{\prime}}^{r} F_{A^{\prime} C^{\prime}}^{l}-F_{A^{\prime}}^{l} F_{B^{\prime} C^{\prime}}^{r}\right\}= \tag{68}\\
= & +\delta D_{p}^{i} F_{A^{\prime} B^{\prime} C^{\prime}}^{p}+\delta D_{r l}^{i}\left\{+F_{C^{\prime}}^{r} F_{A^{\prime} B^{\prime}}^{l}+F_{B^{\prime}}^{r} F_{A^{\prime} C^{\prime}}^{l}+F_{A^{\prime}}^{l} F_{B^{\prime} C^{\prime}}^{r}\right\}+ \\
& +\delta D_{j k l}^{i} F_{A^{\prime}}^{j} F_{B^{\prime}}^{k} F_{C^{\prime}}^{l}
\end{align*}
$$

The Lagrangian inner virtual work of equation (50), once referred to the spatial configuration, must equal its Eulerian counterpart, expressed through properly selected dual variables.

Through equations (51), (54), and (68), one finds

$$
\begin{align*}
\delta \mathcal{E}^{\mathrm{DEF}}= & \int_{\Omega} J^{-1} P_{1 i}^{A} \delta F_{A}^{i} d \Omega+\int_{\Omega} J^{-1} P_{2 i}^{A B} \delta F_{A B}^{i} d \Omega+\int_{\Omega} J^{-1} P_{3 i}^{A B C} \delta F_{A B C}^{i} d \Omega= \\
= & \int_{\Omega} J^{-1} P_{1 i}^{A} \underbrace{F_{A}^{j} \delta D_{j}^{i}}_{\delta F_{A}^{i}} d \Omega+ \\
& +\int_{\Omega} J^{-1} P_{2 i}^{A B}[F_{A}^{j} F_{B}^{k} \delta D_{k j}^{i}+F_{A B}^{j} \underbrace{\left(\mathbf{F}^{-1}\right)_{j}^{L} \delta F_{L}^{i}}_{\delta D_{j}^{i}} d \Omega+ \tag{69}\\
& +\int_{\Omega} J^{-1} P_{3 i}^{A B C}\left[+\delta D_{j k l}^{i} F_{A}^{j} F_{B}^{k} F_{C}^{l}+\delta D_{p}^{i} F_{A B C}^{p}+\right. \\
& \left.+\delta D_{r l}^{i}\left\{+F_{C}^{r} F_{A B}^{l}+F_{B}^{r} F_{A C}^{l}+F_{A}^{l} F_{B C}^{r}\right\}\right] d \Omega= \\
& =\int_{\Omega} T_{1 i}^{j} \delta D_{j}^{i} d \Omega+\int_{\Omega} T_{2 i}^{j k} \delta D_{j k}^{i} d \Omega+\int_{\Omega} T_{3 i}^{j k l} \delta D_{j k l}^{i} d \Omega
\end{align*}
$$

It is worth emphasizing that the Eulerian test functions appearing in the last row, namely $\delta D_{j}^{i}, \delta D_{j k}^{i}$, and $\delta D_{j k l}^{i}$, result from the transformation of the Lagrangian test functions $\delta F_{A}^{i}, \delta F_{A B}^{i}$, and $\delta F_{A B C}^{i}$, respectively, when referred to the current configuration Ω. On the basis of equation (69), it is now possible to specify relationships between the Eulerian and the Lagrangian dual quantities, distinguishing first-, sec-ond-, and third-gradient contributions, namely

$$
\begin{align*}
& T_{1 i}^{j}=J^{-1} P_{1 i}^{A} F_{A}^{j}+J^{-1} P_{2 i}^{A B} F_{A B}^{j}+J^{-1} P_{3 i}^{A B C} F_{A B C}^{j} ; \\
& T_{2 i}^{j k}=J^{-1} P_{2 i}^{A B} F_{A}^{j} F_{B}^{k}+J^{-1} P_{3 i}^{A B C}\left(F_{C}^{j} F_{A B}^{k}+F_{B}^{j} F_{A C}^{k}+F_{A}^{k} F_{B C}^{j}\right) ; \tag{70}\\
& T_{3 i}^{j k l}=J^{-1} P_{3 i}^{A B C} F_{A}^{j} F_{B}^{k} F_{C}^{l} ;
\end{align*}
$$

It is worth underlying that the Lagrangian triple stress tensor $P_{3 i}^{A B C}$ affects all the Eulerian stress tensor of order lower or equal, namely $T_{1 i}^{j}, T_{2 i}^{j k}$, and $T_{3 i}^{j k l}$. The same occurs for $P_{2 i}^{A B}$, affecting $T_{1 i}^{j}, T_{2 i}^{j k}$, and for $P_{1 i}^{A}$, related exclusively to $T_{1 i}^{j}$. This circumstance is a consequence of the mutual relationships among the Lagrangian gradient of the virtual placement map, namely $\delta F_{A}^{i}, \delta F_{A B}^{i}$, and $\delta F_{A B C}^{i}$, and their Eulerian counterparts, i.e. $\delta D_{j}^{i}, \delta D_{j k}^{i}$, and $\delta D_{j k l}^{i}$. Such a pyramidal, top-down architecture is typical of N th gradient formulations, and gives rise to a peculiar structure of the equilibrium equations at increasing the gradient order. Once selected the above work conjugate pairs, the mathematical structure of the governing equations remains the same in the Eulerian and in the Lagrangian configuration, and the integration by parts can be carried out once in an abstract setting, without duplicating the procedure.

6. Closing remarks and future prospects

In this paper, the equilibrium equations for the third-gradient materials were derived by a fully variational approach, stemming from the minimization of the total potential energy functional. As expected, the cumbersome analytical calculations and the complexity of the nonstandard equilibrium conditions turned out to be significantly increased with respect to those relevant to the second-gradient continua. The adopted strategy, resting on the integration by parts, on the use of complementary projectors for the boundary faces and for their border edges, and on the divergence theorem for embedded submanifolds, has allowed us to specify volume, surface, edge, and wedge conditions in a very elegant and clear fashion. The inner virtual work turned out to depend not only on the stress tensor but also on double and triple (hyper-)stress tensors, of third and fourth rank, respectively, dimensionally equivalent to a pressure multiplied in turn by a length and by a length squared. It is worth pointing out that, in the present third-gradient approach, the stored energy W depends on $F_{A}^{i}, F_{A B}^{i}$, and $F_{A B C}^{i}$, and the number of parameters entering such an energy and affecting Piola stresses $P_{1 i}^{A}, P_{2 i}^{A B}$, and $P_{3 i}^{A B C}$ is very large: this circumstance makes it urgent to develop $a d$ hoc homogenization procedures.

The different contributions to the inner virtual work over the boundary face included not only the virtual placement map, but also its first and second normal derivatives: along the edges, with codimension two, virtual work was generated versus the placement derivatives along both the face and the edge normals. Detailed expressions were provided for the contact pressure and the edge force, revealing the complex dependence on the face normals and on the mean curvature of the boundary surface. In addition, the inner virtual work was expressed in the Eulerian form by pairs of work conjugate variables: remarkable transformations among Piola (material) and Cauchy (spatial) hyperstresses with rank lower or equal to four were specified, revealing coupling among the Lagrangian and the Eulerian tensors of different orders. These results represent an important step to develop the transformation of the thirdgradient equilibrium equations from the Lagrangian configuration to the Eulerian configuration.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Roberto Fedele (iD) https://orcid.org/0000-0003-1057-9581

References

[1] dell'Isola, F, Maier, G, Perego, U, et al. The complete works of Gabrio Piola: volume I. Commented English translationEnglish and Italian edition. Basingstoke: Springer Nature, 2014.
[2] dell'Isola, F, Andreaus, U, Cazzani, A, et al. The complete works of Gabrio Piola: volume II-commented English translation. Basingstoke: Springer Nature, 2018.
[3] Cauchy, A. EEuvres complètes: Series 1 (Cambridge Library Collection-Mathematics), vol. 9. Cambridge: Cambridge University Press, 2009.
[4] Truesdell, CA. Cauchy and the modern mechanics of continua. Rev His Sci 1992; 45(1): 5-24.
[5] dell'Isola, F, Andreaus, U, and Placidi, L. At the origins and in the vanguard of peridynamics. Non-local and highergradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 2015; 20(8): 887-928.
[6] Barchiesi, E, Ciallella, A, and Scerrato, D. A partial report on the controversies about the principle of virtual work: from Archytas of Tarentum to Lagrange, Piola, Mindlin and Toupin. In: dell'Isola, F, Eugster, SR, Spagnuolo, M, et al. (eds) Evaluation of scientific sources in mechanics. Cham: Springer, 2022, pp. 341-377.
[7] Spagnuolo, M, Ciallella, A, and Scerrato, D. The loss and recovery of the works by Piola and the Italian tradition of mechanics. In: dell'Isola, F, Eugster, SR, Spagnuolo, M, et al. (eds) Evaluation of scientific sources in mechanics. Cham: Springer, 2022, pp. 315-340.
[8] Eugster, S, and dell'Isola, F. Exegesis of the introduction and Sect. I from "Fundamentals of the Mechanics of Continua" by E. Hellinger. Z Angew Math Mech 2017; 97(4): 477-506.
[9] Eugster, S, and dell'Isola, F. Exegesis of Sect. II and III. A from "Fundamentals of the Mechanics of Continua" by E. Hellinger. Z Angew Math Mech 2018; 98(1): 31-68.
[10] Eugster, S, and dell'Isola, F. Exegesis of Sect. III.B from "Fundamentals of the Mechanics of Continua" by E. Hellinger. Z Angew Math Mech 2018; 98(1): 69-105.
[11] Eugster, SR, dell'Isola, F, Fedele, R, et al. Piola transformations in second-gradient continua. Mech Res Commun 2022; 120: 103836.
[12] Fedele, R. Piola's approach to the equilibrium problem for bodies with second gradient energies. Part I: first gradient theory and differential geometry. Contin Mech Thermodyn 2021; 34: 445-474.
[13] Fedele, R. Approach à la Piola for the equilibrium problem of bodies with second gradient energies. Part II: variational derivation of second gradient equations and their transport. Contin Mech Thermodyn. Epub ahead of print 3 May 2022. DOI: 10.1007/s00161-022-01100-z.
[14] dell'Isola, F, Eugster, SR, Fedele, R, et al. Second-gradient continua: from Lagrangian to Eulerian and back. Math Mech Solids. Epub ahead of print 5 March 2022. DOI: 10.1177/10812865221078822.
[15] Mindlin, RD. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1965; 1(4): 417-438.
[16] dell'Isola, F, Seppecher, P, and Madeo, A. How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach "à la D' Alembert." Z Angew Math Phys 2012; 63(6): 1119-1141.
[17] Polizzotto, C. A second strain gradient elasticity theory with second velocity gradient inertia-part I: constitutive equations and quasi-static behavior. Int J Solids Struct 2013; 50(24): 3749-3765.
[18] dell'Isola, F, Madeo, A, and Seppecher, P. Cauchy tetrahedron argument applied to higher contact interactions. Arch Ration Mech Anal 2016; 219: 1305-1341.
[19] Eremeyev, V. Local material symmetry group for first- and second-order strain gradient fluids. Math Mech Solids 2021; 26(8): 1173-1190.
[20] Eremeyev, V, Cazzani, A, and dell'Isola, F. On nonlinear dilatational strain gradient elasticity. Contin Mech Thermodyn 2021; 33: 1429-1463.
[21] Podio-Guidugli, P, and Vianello, M. Hypertractions and hyperstresses convey the same mechanical information. Contin Mech Thermodyn 2010; 22: 163-176.
[22] dell'Isola, F, and Seppecher, P. Commentary about a paper. Contin Mech Thermodyn 2011; 23(5): 473-478.
[23] Polizzotto, C. A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int J Solids Struct 2016; 90: 116-121.
[24] Agiasofitou, E, and Lazar, M. The elastodynamic model of wave-telegraph type for quasicrystals. Int J Solids Struct 2014; 51(5): 923-929.
[25] Exadaktylos, G, and Vardoulakis, I. Surface instability in gradient elasticity with surface energy. Int J Solids Struct 1998; 35(18): 2251-2281.
[26] Gouin, H. The second gradient theory applied to interfaces: models of continuum mechanics for fluid interfaces. In: Steinchen, A (ed.) Dynamics of multiphase flows across interfaces, lecture notes in physics, vol. 467. Berlin: Springer, 1996, pp. 8-13.
[27] Krawietz, A. Surface tension and reaction stresses of a linear incompressible second gradient fluid. Contin Mech Thermodyn. Epub ahead of print 10 January 2021. DOI: 10.1007/s00161-020-00951-8.
[28] Giorgio, I, Spagnuolo, M, Andreaus, M, et al. In depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials. Math Mech Solids 2021; 26(7): 1074-1103.
[29] Cordero, NM, Forest, S, and Busso, EP. Second strain gradient elasticity of nano-objects. J Mech Phys Solids 2016; 97: 92-124.
[30] Eugster, S, dell'Isola, F, and Steigmann, D. Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math Mech Complex Syst 2019; 7(1): 75-98.
[31] De Angelo, M, Spagnuolo, M, D’Annibale, F, et al. The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens. Contin Mech Thermodyn 2019; 31(4): 1181-1203.
[32] dell'Isola, F, Seppecher, P, Alibert, JJ, et al. Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin Mech Thermodyn 2019; 31(4): 851-884.
[33] Giorgio, I, Harrison, P, dell'Isola, F, et al. Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proc R Soc A: Math Phys Eng Sci 2018; 474(2216): 20180063.
[34] Spagnuolo, M, Yildizdag, M, Andreaus, U, et al. Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures? Math Mech Solids 2021; 26(1): 18-29.
[35] Turco, E, and Barchiesi, E. Kinematically triggered nonlinear vibrations of Hencky-type pantographic sheets. Math Mech Complex Syst 2022; 9(3): 311-335.
[36] Hosseini, S, and Niiranen, J. 3 D strain gradient elasticity: variational formulations, isogeometric analysis and model peculiarities. Comput Methods Appl Mech Eng 2022; 389: 114324.
[37] Reiher, JC, Giorgio, I, and Bertram, A. Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J Eng Mech 2017; 143(2): 04016112.
[38] Makvandi, R, Reiher, J, and Bertram, A. Isogeometric analysis of first and second strain gradient elasticity. Comput Mech 2018; 61: 351-363.
[39] Barchiesi, E, dell'Isola, F, Bersani, AM, et al. Equilibria determination of elastic articulated duoskelion beams in 2D via a Riks-type algorithm. Int J Non-Linear Mech 2021; 128: 103628.
[40] Giorgio, I. A discrete formulation of Kirchhoff rods in large-motion dynamics. Math Mech Solids 2020; 25(5): 1081-1100.
[41] dell'Isola, F, Lekszycki, T, Spagnuolo, M, et al. Experimental methods in pantographic structures. In: dell'Isola, F, and Steigmann, DJ (eds) Discrete and continuum models for complex metamaterials. Cambridge: Cambridge University Press, 2020, pp. 263-291.
[42] Barchiesi, E, dell'Isola, F, and Hild, F. On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation. Int J Solids Struct 2021; 208-209: 49-62.
[43] Giorgio, I, Varano, V, dell'Isola, F, et al. Two layers pantographs: a 2D continuum model accounting for the beams' offset and relative rotations as averages in SO_{3} Lie groups. Int J Solids Struct 2021; 216: 43-58.
[44] Yildizdag, M, Barchiesi, E, and dell'Isola, F. Three-point bending test of pantographic blocks: numerical and experimental investigation. Math Mech Solids 2020; 25(10): 1965-1978.
[45] Fedele, R, Ciani, A, Galantucci, L, et al. Characterization of innovative $\mathrm{CFC} / \mathrm{Cu}$ joints by full-field measurements and finite elements. Mater Sci Eng A 2014; 595: 306-317.
[46] Fedele, R, Ciani, A, Galantucci, L, et al. A regularized, pyramidal multi-grid approach to global 3D-volume digital image correlation based on X-ray micro-tomography. Fundam Inf 2013; 125(3-4): 361-376.
[47] Fedele, R. Simultaneous assessment of mechanical properties and boundary conditions based on digital image correlation. Exp Mech 2015; 55: 139-153.
[48] Eremeyev, VA. Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity. Mech Res Coттии 2021; 117: 103782.
[49] Nazarenko, L, Glüge, R, and Altenbach, H. Positive definiteness in coupled strain gradient elasticity. Contin Mech Thermodyn 2021; 33: 713-725.
[50] Nazarenko, L, Glüge, R, and Altenbach, H. Uniqueness theorem in coupled strain gradient elasticity with mixed boundary conditions. Contin Mech Thermodyn 2021; 34: 93-106.
[51] Eringen, AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 2019; 10(5): 425-435.
[52] Huang, Y, Oterkus, S, Hou, H, et al. Peridynamic model for visco-hyperelastic material deformation in different strain rates. Contin Mech Thermodyn. Epub ahead of print 20 November 2019. DOI: 10.1007/s00161-019-00849-0.
[53] Ozdemir, M, Kefal, A, Imachi, M, et al. Dynamic fracture analysis of functionally graded materials using ordinary statebased peridynamics. Compos Struct 2020; 244: 112296.
[54] Abdoul-Anziz, H, and Seppecher, P. Strain gradient and generalized continua obtained by homogenizing frame lattices. Math Mech Complex Syst 2018; 6(3): 213-250.
[55] dell'Isola, F, Seppecher, P, Spagnuolo, M, et al. Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Contin Mech Thermodyn 2019; 31(4): 1231-1282.
[56] Turco, E, and Barchiesi, E. Equilibrium paths of Hencky pantographic beams in a three-point bending problem. Math Mech Complex Syst 2019; 7(4): 287-310.
[57] Alibert, JJ, Seppecher, P, and dell'Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 2003; 8(1): 51-73.
[58] Giorgio, I. Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Contin Mech Thermodyn 2021; 33: 1063-1082.
[59] Ciallella, A. Research perspective on multiphysics and multiscale materials: a paradigmatic case. Contin Mech Thermodyn 2020; 32(3): 527-539.
[60] Giorgio, I, Ciallella, A, and Scerrato, D. A study about the impact of the topological arrangement of fibers on fiberreinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials. Int J Solids Struct 2020; 203: 73-83.
[61] Pideri, C, and Seppecher, P. A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin Mech Thermodyn 2015; 9: 241-257.
[62] Yang, H, and Müller, W. Size effects of mechanical metamaterials: a computational study based on a second-order asymptotic homogenization method. Arch Appl Mech 2021; 91(7): 1037-1053.
[63] Ayad, M, Karathanasopoulos, N, Reda, H, et al. On the role of second gradient constitutive parameters in the static and dynamic analysis of heterogeneous media with micro-inertia effects. Int J Solids Struct 2020; 190: 58-75.
[64] Weeger, O. Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials. Int J Solids Struct 2021; 224: 111037.
[65] Ganghoffer, J, and Reda, H. A variational approach of homogenization of heterogeneous materials towards second gradient continua. Mech Mater 2021; 158: 103743.
[66] Bacigalupo, A, and Gambarotta, L. Second-gradient homogenized model for wave propagation in heterogeneous periodic media. Int J Solids Struct 2014; 51(5): 1052-1065.
[67] Abali, BE, and Barchiesi, E. Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization. Contin Mech Thermodyn 2021; 33: 993-1009.
[68] Vazic, B, Abali, BE, Yang, H, et al. Mechanical analysis of heterogeneous materials with higher-order parameters. Eng Comput. Epub ahead of print 15 December 2021. DOI: 10.1007/s00366-021-01555-9.
[69] dell'Isola, F, and Placidi, L. Variational principles are a powerful tool also for formulating field theories. In: dell'Isola, F, and Gavrilyuk, S (eds) Variational models and methods in solid and fluid mechanics (CISM courses and lectures), vol. 535. New York: Springer, 2012, pp. 1-15.
[70] Giorgio, I, Andreaus, U, dell'Isola, F, et al. Viscous second gradient porous materials for bones reconstructed with bioresorbable grafts. Extreme Mech 2017; 13: 141-147.
[71] Placidi, L, Barchiesi, E, and Misra, A. A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math Mech Complex Syst 2018; 6(2): 77-100.
[72] Berezovski, A, Yildizdag, ME, and Scerrato, D. On the wave dispersion in microstructured solids. Contin Mech Thermodyn 2020; 32(3): 569-588.
[73] Ciallella, A, Pasquali, D, Gołaszewski, M, et al. A rate-independent internal friction to describe the hysteretic behavior of pantographic structures under cyclic loads. Mech Res Commun 2021; 116: 103761.
[74] Massoumi, S, and La Valle, G. Static analysis of 2D micropolar model for describing granular media by considering relative rotations. Mech Res Commun 2022; 119: 103812.
[75] Javanbakht, M, Ghaedi, MS, Barchiesi, E, et al. The effect of a pre-existing nanovoid on martensite formation and interface propagation: a phase field study. Math Mech Solids 2021; 26(1): 90-109.
[76] Spagnuolo, M, and Cazzani, A. Contact interactions in complex fibrous metamaterials. Contin Mech Thermodyn 2021; 33: 1873-1889.
[77] Itskov, M. Tensor algebra and tensor analysis for engineers. With applications to continuum mechanics. 4th ed. Cham: Springer, 2015.
[78] Levi-Civita, T. Lezioni di calcolo differenziale assoluto. Rome: Alberto Stock Editore, 1925.
[79] Ricci-Curbastro, G, and Levi-Civita, T. Méthodes de calcul différentiel absolu et leurs applications. Math Ann 1900; 54: 125-201.
[80] Piola, G. Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione. Modena: Tipi del R.D Camera, 1846.
[81] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations. New York: Springer, 2011.
[82] Marsden, J, and Hughes, T. Mathematical foundations of elasticity (Dover Books of Civil and Mechanical Engineering). 3rd ed. New York: Dover Publications Inc., 1993 (originally published by Englewood Cliffs, NJ, 1983).
[83] Fortune, D, and Vallee, C. Bianchi identities in the case of large deformations. Int J Eng Sci 2001; 39(2): 113-123.
[84] Auffray, N, dell’Isola, F, Eremeyev, V, et al. Analytical continuum mechanics à la Hamilton Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids 2015; 20(4): 375-417.
[85] Germain, P. The method of virtual power in the mechanics of continuous media, I: second-gradient theory. Math Mech Complex Syst 2020; 8(2): 153-190.
[86] Spivak, M. A comprehensive introduction to differential geometry, vol. I-II. 3rd ed. Houston, TX: Publish or Perish Inc., 2005.

Appendix I

Properties of surface and edge projectors

In this appendix the basic properties of the surface and edge projectors are briefly recalled (see also [12]). As well known, at each point of the same curved surface $\Sigma_{\star} \equiv \partial \Omega_{\star}$, a pair of complementary linear operators can be defined, apt to project any vector of the ambient space onto the tangential and normal spaces, referred to as the (Lagrangian) tangential and normal projectors and denoted by symbols $\left[M_{\|}\right]_{B}^{A}$ and $\left[M_{\perp}\right]_{B}^{A}$, respectively. Such projectors possess the following noteworthy properties (in both index and matrix notation):

$$
\begin{align*}
& {\left[M_{\|}\right]_{B}^{A}+\left[M_{\perp}\right]_{B}^{A}=\delta_{B}^{A} ; \quad \mathbf{M}_{\|}+\mathbf{M}_{\perp}=\mathbf{1} ;} \\
& {\left[M_{\perp}\right]_{A}^{C}=N^{C} N_{A} ; \quad\left[\mathbf{M}_{\perp}\right]=\mathbf{N} \otimes \mathbf{N} ;} \\
& {\left[M_{\|}\right]_{A}^{C}=\delta_{A}^{C}-N^{C} N_{A} ; \quad\left[\mathbf{M}_{\|}\right]=\mathbf{1}-\mathbf{N} \otimes \mathbf{N} ;} \tag{71}\\
& {\left[M_{\|}\right]_{B}^{A}\left[M_{\|}\right]_{C}^{B}=\left[M_{\|}\right]_{C}^{A} ; \quad \mathbf{M}_{\|}^{2}=\mathbf{M}_{\|} ;} \\
& {\left[M_{\perp}\right]_{B}^{A}\left[M_{\perp}\right]_{C}^{B}=\left[M_{\perp}\right]_{C}^{A} ; \quad \mathbf{M}_{\perp}^{2}=\mathbf{M}_{\perp} ;}
\end{align*}
$$

where the Kronecker symbol $\delta_{B}^{A}=\mathbf{1}=g_{B}^{A}$ represents the unit operator, coincident with the mixed form of the metric tensor. The last two properties are usually referred to as idempotence of the projector.

Analogously, at each point of a border edge $L_{\star} \equiv \partial \Sigma_{\star} \equiv \partial \partial \Omega_{\star}$, which is a unidimensional manifold with codimension two, a pair of complementary linear operators can be defined, apt to project any vector of the ambient space onto the space spanned by the tangent vector \mathbf{T}, and onto its orthogonal complement, spanned by any linear combination of the face normal \mathbf{N} and of the edge normal \mathbf{B}. Such projectors will be denoted by symbols $\left[M_{L \|}\right]_{B}^{A}$ and $\left[M_{L \perp}\right]_{B}^{A}$, respectively, marked by subscript L. One has:

$$
\begin{align*}
& {\left[M_{L \|}\right]_{A}^{E}=T^{E} T_{A} ; \quad \mathbf{M}_{L \|}=\mathbf{T} \otimes \mathbf{T} ;} \\
& {\left[M_{L \perp}\right]_{A}^{E}=B^{E} B_{A}+N^{E} N_{A} ; \quad \mathbf{M}_{L \perp}=\mathbf{B} \otimes \mathbf{B}+\mathbf{N} \otimes \mathbf{N} ;} \tag{72}\\
& \delta_{A}^{E}=\left[M_{L \|}\right]_{A}^{E}+\left[M_{L \perp}\right]_{A}^{E}=T^{E} T_{A}+B^{E} B_{A}+N^{E} N_{A} ; \\
& \mathbf{1}=\mathbf{M}_{L \|}+\mathbf{M}_{L \perp}=\mathbf{T} \otimes \mathbf{T}+\mathbf{B} \otimes \mathbf{B}+\mathbf{N} \otimes \mathbf{N}
\end{align*}
$$

It is worth noting that, along a border edge, the edge tangent vector and the edge normal lie over the plane tangent to the boundary face at that point. By formulae:

$$
\begin{equation*}
\left[M_{\|}\right]_{A}^{E} T^{A}=T^{E} ; \quad\left[M_{\|}\right]_{A}^{E} B^{A}=B^{E} ; \tag{73}
\end{equation*}
$$

[^0]: Corresponding author:
 Roberto Fedele, Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20 I 33 Milan, Italy. Email: roberto.fedele@polimi.it

